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Abstract. This paper analyses the properties of the generalized con-
ics which are generated from N focal points with various weights. The
weighting enables to obtain up to N corners located at the focal points.
The corresponding level sets enable to capture the shape convexities and
concavities. From the shape analysis perspective, the generalized conics
enrich the variety of shapes that can be described or represented.
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1 Introduction

A generalized conic is a locus of points satisfying the equidistance property of the
conic section (parabola, hyperbola or ellipse) that is extended to accept infinitely
many focal points. Originally this subject raised an interest in the mathematical
community. In particular, a multifocal ellipse (also called n-ellipse or polyellipse)
plays a crucial role in solving Fermat-Torricelli [9, 10] and Weber [11] problems.
The aim of the present paper is to explore the representational power of the
generalized conics for shape analysis.

Our previous research studied the ellipse and hyperbola, their properties
and applicability to space tessellation [4], skeletonization [2, 4, 6] and smooth-
ing [6]. The developed framework for efficient computation of the confocal elliptic
and hyperbolic distance fields was extended to accept infinitely many weighted
foci [3]. Also the geometric nature of the foci was reconsidered to accept not
only the points, but also the shapes. This fact enables to apply various weighting
schemes for objects, their parts and groups, and promote a hierarchical represen-
tation. The application scenarios were further enriched by the facility location
problem and route planning. This paper questions the potential for shape rep-
resentation when using the generalized conics. In particular, the interest lies in
analysing the conditions causing the corners in the level sets.

The remaining of the paper is organized as follows. Sec. 2 provides an overview
of the main definitions and properties of the generalized conics. Sec. 3 describes
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a method for efficient computation of the corresponding distance fields with the
use of Distance Transform (DT) [1, 3]. Sec. 4 and 6 analyse the configurations
of the weighted foci that produce convex and concave corners. The discussion
continues in Sec. 5 and 7 by introducing an approach to vary the angle at these
corners. The possibilities for the shape representation are discussed in Sec. 8.
Finally, Sec. 9 concludes the paper.

2 Generalized conics

The properties of conic sections, such as parabola, hyperbola and ellipse, can
be extended to accept infinitely many focal points. The resulting level sets are
called generalized conics. Each level set depends on the number of focal points,
their corresponding weights and the distance metric.

Consider the Euclidean distance, denoted as δ, between the two 2D points
P = (xP , yP ) and Q = (xQ, yQ):

δ(P,Q) =
√

(xP − xQ)2 + (yP − yQ)2 (1)

Definition 1. A multifocal ellipse (also referred to as n-ellipse, or polyellipse),
denoted as ME(w1F1, w2F2, ..., wNFN ), is a locus of points P ∈ R2 with a
constant sum of the weighted distances to its N focal points:

ME =

N∑
i=1

wiδ(P, Fi) = const (2)

Remark 1. The weights corresponding to the focal points in ME(F1, F2, ..., FN )
are necessarily positive.

Definition 2. Let F and G be two sets of focal points with M and N elements
respectively. A multifocal hyperbola, MH(w1F1, · · · , wMFM |ν1G1, · · · , νNGN ),
is a locus of points P ∈ R2 such that the following absolute difference of the
distances remains constant:

MH = |
M∑
i=1

wiδ(P, Fi)−
N∑
j=1

νjδ(P,Gj)| = const (3)

Property 1. The level sets ME are convex and compact [7].

Property 2. The equation (2) reaches the minimum in exactly one point, when
the focal points are non-collinear [7].

Property 3. If the focal points are collinear, the equation (2) reaches the mini-
mum in all points of a line segment connecting a pair of the focal points [7].
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3 Generalized conics from the Distance Transform

To enable an efficient discrete computation of the distance fields representing the
generalized conics, it is proposed to use a classical image processing approach
called the Distance Transform (DT) [1]. Now coordinates are integers, while
Def. 1 and 2 use continuous coordinates. Some of the properties may suffer from
sampling, e.g. if the continuous minimum is between two sampling points.

Definition 3. Let Ibinary be a 2D binary image and F ⊂ Ibinary - a non-empty
set of feature elements: Ibinary(F ) = 0 and Ibinary(M) = 1, ∀F ∈ F , ∀M 6∈ F .
Distance Transform (DT) is an operator that converts a binary into a gray-scale
image, D : Ibinary 7→ R. It assigns to each pixel its distance to the nearest feature
element with regard to the selected metric d: D(M) = min{d(M,F ) | F ∈ F},
D(F ) = 0. DT generated from F is denoted by DF .

According to (2), the multifocal ellipses represent a sum of DTs of the focal
points taken as feature elements F = {F1, F2, ..., FN} with their weights:

CMEFF =

N∑
i=1

wiDFi (4)

In (4) CMEFF denotes the Confocal Multifocal Elliptic Field, defined on an
image of the same size as Ibinary.

The Confocal Multifocal Hyperbolic Field, denoted as CMHFF|G , can be
represented by the difference between a pair of CMEF fields generated from
the sets F and G (refer to (2) and (3)):

CMHFF|G = CMEFF − CMEFG (5)

As opposed to MHw,v, pixels in CMHFF|G can be mapped to a negative
distance value. It means that these pixels are closer to CMEFG in terms of a
minimal total distance. The positive sign defines the pixels that are closer to
CMEFF . The zero values - the pixels equidistant from CMEFF and CMEFG .

4 Multifocal ellipse with corners

This section discusses the configurations and properties of N focal points that
generate corners passing through them. By corner we define a point of a curve,
where the left-hand tangent differs from the right-hand tangent. In the case of
multifocal ellipses the corners are formed by the level sets passing through the fo-
cal points. To simplify the upcoming discussion, let us introduce a normalization
of N weights w1, w2, . . . , wN , where each of them is divided by the maximum
value max(w1, w2, . . . , wN ). As a result, the largest weight becomes 1, whereas
the others vary in the open interval between 0 and 1.

Property 4. For the given set of N focal points the weighted multifocal ellipse
may contain 1 ≤M ≤ N corners.
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(a) one corner (b) two corners (c) three corners (d) four corners

Fig. 1: Level sets containing one or several corners. The numbers indicate the
weights of the focal points.

First, consider N focal points forming a convex hull and their level sets.
By taking the different values of weights, a corner is a part of either a level
set passing through a single focal point, or is a part of a closed sequence of
arcs connecting multiple focal points. An example of a convex hull containing
four points is shown in Fig. 1. Here, the global minimum of the distance field
is marked as a red point. Changing the weights generates level sets containing
one (Fig. 1a), two (Fig. 1b), three (Fig. 1c) and four (Fig. 1d) corners. In the
latter, the corner with the larger angle has a focal point with a smaller weight.

Second, let a set of N focal points have at least one inside the convex
hull. As stated in Prop. 1, the level sets are convex. So a level set contains
maximally as many corners as there are focal points in the convex hull. Let
ME(ωA, νB, µC) be a multifocal ellipse (Fig. 2a), where ω, ν, µ are weights.
Let us add the points D and E with the weights ν and ζ respectively inside the
convex hull (Fig. 2b and 2c). According to the Prop. 1, there can be no level set
connecting A, B, C, D and E. Instead, the added points can either be at the
global minimum (Fig. 2b), or at the corner of another level set (Fig. 2c).

Property 5. There is a unique combination of the normalized weights that creates
a level set passing through all the given focal points.

(a) (b) (c)

Fig. 2: Multifocal ellipses for (a) convex, (b)-(c) non-convex sets of focal points.
The numbers indicate the weights.
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As follows from the axiom about a unique line passing through two points [5],
there is a unique polygon that connects N focal points and, thus, a unique set
of the respective angles. Similar reasoning can be applied for the angles at the
corners. Prop. 5 stems from the fact, that the angle formed at the corner of
the level set depends only on the weight of the corresponding focal point. For
example, if N focal points form an equiangular polygon, the level set passing
through them requires all weights to be 1. In the general case, the larger weight
corresponds to a point with a smaller angle.

5 Changing the angle of the egg-shape corner

In the previous sections we discussed the multifocal ellipses with regard to the
types of level sets containing the corners. One of the findings established a re-
lation between the angles and the weights of the focal points. Here this corre-
spondence is formalized for the level sets conforming an oval, or an egg-shape,
generated from a pair of focal points with non-equal weights. According to the
Def. 1, the confocal ellipses with two weighted foci F1 and F2 can be defined as:

ME(w1F1, w2F2) = {P ∈ R2|w1δ(P, F1) + w2δ(P, F2) = const} (6)

Applying the normalization strategy to (6) results in having a single weight

0 ≤ µ = min(w1,w2)
max(w1,w2)

≤ 1. In special cases, the distance field is composed of

concentric circles (µ = 0) and confocal ellipses (µ = 1). Otherwise, the level
sets represent an egg-shape with various sharpness. As an example, observe the
distance field of multifocal ellipses for µ = 0.47 (Fig. 3a). The particular interest
lies in a level set passing through the focal point, thus, having a sharp corner.
Let us now define the angle that corresponds to it.

(a) level sets for a pair of
weighted focal points

(b) half of the level set containing the
corner

Fig. 3: Egg-shape with a sharp corner, α = 62◦, µ = 0.47.

Theorem 1. Consider a weighted ellipse, ME(F1, µF2) with a sharp corner at
the focal point F2. The cosine of the angle α between the major axis and the
tangent passing through F2 equals the weight µ < 1 corresponding to F2.
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The implication of Th. 1 to shape representation is the enrichment of the
geometric primitives that can be used to describe an object or its part. In contrast
to ellipses, the generated egg-shapes can fit the corner of the polygonal shape
by having one extra parameter for the weight. The angle φ of the corner formed
by the two tangents at F2 is φ = 2α. Then the level set satisfies:

δ(F1, P ) + cos
φ

2
δ(F2, P ) = δ(F1, F2) (7)

Given a shape satisfying (7), it is possible to reconstruct its parameters (Fig. 3b).
The focal point F2 is at the corner forming an angle α with the symmetry axis.
The point M belongs to the level set of F2 and is on the same line with F1 and
F2. Assuming P = M and φ

2 = α in (7) results in:

δ(F1, F2) =
δ(M,F2) · (1 + cosα)

2
(8)

Consequently, F1 can be found by moving from F2 towards M by δ(F1, F2).

6 Multifocal hyperbola with corners

The generalized conics in the form of the multifocal ellipses produce only convex
level sets. The concavities can be obtained by using the multifocal hyperbolas.
The resultant level sets do not necessarily satisfy the properties of convexity and
the location of the global minimum (refer to Prop. 1-3).

Property 6. There exist no closed level set that passes through all the focal points
of the multifocal hyperbola.

The Prop. 6 follows from the fact that a multifocal hyperbola tessellates the
space based on proximity to one of the sets of focal points. As a result two sets
of focal points are separated by the curve mapped to the zero distance values.

Property 7. The level set that passes through the focal point of the multifocal
hyperbola can be represented by the focal point itself and a closed curve.

The weights with the opposite signs cause one group of foci to form the
minima, while the other group - the maxima. Thus, the same distance value can
be located on the slope of the different focal point(s). Let MH(ηD| ωA, νB, µC)
be a multifocal hyperbola (Fig. 4). Assume that the weights satisfy the following
constraints: η ∈ [−1 . . . 0); µ, ω, ν ∈ (0 . . . 1]. The level set containing B is the
focal point itself, since it is a global maximum. Point A is a local maximum,
hence, its distance value is also present on the slope of B. Similarly, the level
set of C contains the focal point itself and a closed curve surrounding A and B.
Finally, point D is a local minimum, and the corresponding level set is the point
itself and a closed curve surrounding all the focal points.

In general, focal points with the negative weight enable to create concavities
in the level sets. As an example, consider a negatively weighted focal point added
at the global minimum of the multifocal ellipse with identical weights (Fig. 5).
Varying the negative weight value changes the degree of concavity.
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(a) 3D representation of
the distance field

(b) Level sets containing
the focal points

Fig. 4: Level sets of the multifocal hyperbola MH(ηD| ωA, νB, µC)

(a) (b) (c)

Fig. 5: Level sets of the multifocal hyperbola. The numbers indicate the weights.

7 Changing the angle of the hyperbolic corner

Similarly to the egg-shape, it is possible to define the relation between the angle
at the corner of the hyperbolic branch and the weight at the corresponding focal
point. With respect to Def. 2, the weighted hyperbola generated from two focal
points F1 and F2 can be formalized as:

MH(w1F1|w2F2) = |w1δ(P, F1)− w2δ(P, F2)| = const (9)

After applying normalization (9), there remains only one weighting parameter

0 ≤ µ = min(w1,w2)
max(w1,w2)

≤ 1. The level sets of the distance field vary from concentric

circles (µ = 0) to hyperbolic branches (µ = 1).

Theorem 2. Consider a weighted multifocal hyperbola, MH(F1|µF2), with a
sharp corner at the focal point F2. The cosine of the angle β between the line
segment F1F2 and the tangent passing through F2 equals the weight µ < 1 of F2

taken with the opposite sign.

The angle ψ of the concave corner formed by the two tangents at F2 is
ψ = 2(π − β). Then the level set satisfies

δ(F1, P )− cos
ψ

2
δ(F2, P ) = δ(F1, F2) (10)

The described hyperbolic corners can be potentially used to represent concavities
of the shape. By similar reasoning to Sec. 5, consider the hyperbolic shape that
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(a) level sets for a pair of
weighted focal points

(b) half of the level set containing the
corner

Fig. 6: Hyperbolic branch with a sharp corner, β = 118◦, µ = 0.47.

satisfies (10) (Fig. 6b). The focal point F2 is located at the corner that forms
the angle β with the symmetry axis. Substitute P = M and ψ

2 = β in (10):

δ(F1, F2) =
δ(M,F2) · (1− cosβ)

2
(11)

Consequently, F1 can be found by moving from F2 towards M by δ(F1, F2).

8 Shape representation with generalized conics

This paper introduced an approach to represent and reconstruct a shape gen-
erated from a pair of focal points with weights (Sec. 5 and 7). It enables to
efficiently capture egg-shapes and hyperbolic shapes with corners using three
parameters: two end points of the symmetry axis, and an angle at the corner.
Such representation is invariant to translation, rotation and scaling. An exten-
sion to N focal points is not covered in this paper. Since the number of equations
increases with the number of focal points, one possibility to represent a complex
shape might be connected with machine learning. The structure of the shape
will then be captured in a vector of weights of the focal points.

(a) (b) (c) (d)

Fig. 7: Shapes generated from three focal points. The numbers reflect the weights.
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9 Conclusion

This paper introduced the analysis of the generalized conics from the perspective
of shape representation. Changing the weights of the focal points in multifocal
ellipses enables to generate shapes with convex corners. In turn, multifocal hy-
perbolas make it possible to capture concave corners. The proposed findings
broaden the view on shape representation and have a potential to efficiently
generate a complex contour with a small number of focal points (Fig. 7).
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Appendix A

Proof of the Theorem 1
The weighted multifocal ellipse is generated from a pair of focal points

F1 and F2 such that the weight, 0 < µ < 1, corresponds to F2 (see Fig. 3b).

Let us denote δ(F1, F2) = 2f , δ(F1, P ) = n, δ(F2, P ) = m, and F̂1F2P = α.
By definition the level set contains a group of points that are mapped to the
same distance value. So the distance value at F2 is identical to the one at P .
According to the normalized version of (6), it equals:

δ(F1, F2) + µδ(F2, F2) = δ(F1, F2) = 2f (12)
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As can be noted from (12), the distance value corresponding to the level set with
a corner equals the length of the line segment F1F2. Let us substitute it in the
analogical equation for P :

δ(F1, P ) + µδ(F2, P ) = 2f (13)

n+ µm = 2f (14)

=⇒ n = 2f − µm (15)

In order to derive an alternative estimate of m, consider a triangle 4F1PF2.
According to the law of cosines [8]:

m2 + 4f2 − 4mf cosα = n2 (16)

Substituting the value of n from (15) in (16) leads to:

m2 + 4f2 − 4mf cosα = 4f2 − 4µmf +m2µ2 (17)

=⇒ m =
4f(µ− cosα)

µ2 − 1
(18)

The important assumption about the point P in continuous space states that
it is infinitely close to F2. This implies that the length of m converges to zero.
Then (18) can be further simplified:

m =
4f(µ− cosα)

µ2 − 1
= 0 (19)

=⇒ µ = cosα (20)

According to (20) the angle formed at the corner of the level set depends on the
weight of the focal point and not on the distance between the foci. �

Appendix B

Proof of the Theorem 2
The weighted multifocal hyperbola is defined using a pair of focal points F1

and F2 (see Fig. 6b). The level set passing through F2 contains a sharp corner.

Let us denote δ(F1, F2) = 2f , δ(F1, P ) = n, δ(F2, P ) = m, and F̂1F2P = β.
Assuming the normalized version of the (9) the distance value at F2 equals:

|δ(F1, F2)− µδ(F2, F2)| = δ(F1, F2) = 2f (21)

Similarly to the proof for the egg-shape, consider a triangle 4F1PF2 and
derive the following relations:

n = 2f + µm (22)

m =
−4f(µ+ cosβ)

µ2 − 1
(23)

In the continuous space m is infinitely small. In the discrete space it can be
assigned to zero, resulting in: µ = − cosβ. So the angle at the corner of the
hyperbolic branch depends only on the weight of the respective focal point. �


