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Abstract. In this paper we describe modifications of irregular image
segmentation pyramids based on user-interaction. We first build a hier-
archy of segmentations by the minimum spanning tree based method,
then regions from different (granularity) levels are combined to a final
(better) segmentation with user-specified operations guiding the segmen-
tation process. Based on these operations the users can produce a final
image segmentation that best suits their applications. This work can be
used for applications where we need accuracy in image segmentation, in
annotating images or creating ground truth among others.

1 Introduction

Image segmentation cannot produce a perfect final segmentation, only by using
low-level visual cues. The reason is the intrinsic ambiguity in the exact location
of region boundaries in digital images. In general, homogeneity of low-level cues
will not map to the semantics [12], and the degree of homogeneity of a region is
in general quantified by threshold(s) for a given measure [6]. To avoid problems
with the automatic segmentation methods one can use human help to guide seg-
mentation methods, producing results acceptable by users/practitioners. Most
interactive or semi-automatic segmentation algorithms make use of this external
knowledge, some of them e.g. Snakes [11], Live Wire (or Intelligent Scissors) [17]
and recent approaches based on the Graph Cuts formalism [1, 18, 16] are well
known. They are often used in e.g. medical image segmentation, image or video
object extraction and to refine or improve results from automatic methods.

But the notion of ’interactive’ is ambiguous and not very well defined. Some
of the methods are initialized (e.g. statistic shape models, rule sets, training
sets) others use seed points or strokes for guiding and limiting a segmentation
process [9]. Besides initialization, existing methods can also be categorized ei-
ther as optimizing (manually guided, influenced) or post-processing methods
(manually corrected, modified) [10]. The work presented in this paper is located
between the last two categories. It uses user-interaction to guide the minimum
spanning tree (MST) based pyramid segmentation [8]. The MST-based segmen-
tation method produces a stack of (dual) graphs (a graph pyramid) [8] on each
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level of the pyramid (Fig. 3). Each level of this hierarchy corresponds to one
image segmentation. Regions from different levels of the segmentation pyramid
are combined by user interaction resulting in a modified pyramid containing the
’final good’ segmentation at top. In the regions where the user did not set any
modification operation, the algorithm will be guided automatically by a pairwise
comparison of region similarity [5].

Meine et al. [15] use the topological GeoMap representation and user inter-
action to guide a segmentation method in the medical image analysis. The use
of a topologically correct representation has a major impact on the processing
and its results. This motivated us to use combinatorial maps, as a topological
representation. The authors in [13] interactively modify a hierarchical watershed
segmentation, which is similar to our user modification(s) of the MST based
segmentation hierarchy. In our case we can, if needed, access each pixel, which
is not the case in the work of [13].

The paper is structured as follows. We first give a short overview of the
combinatorial maps and combinatorial pyramids (Section 2). After that the op-
erations that a user can set are presented in Section 3.1, in Section 4 we show
some results and conclude the paper.

2 Combinatorial Image Pyramids

In this section a short overview of the most important concepts of combinatorial
image pyramids are given. Combinatorial maps and generalized combinatorial
maps define a general framework which allows to encode any subdivision on nD
topological spaces orientable or non-orientable with or without boundaries [2].
Images and its structure are represented in this work as weighted combinatorial
maps. Using 2D images, combinatorial maps may be understood as a particular
encoding of a planar graph, where each edge is split into two half-edges called
darts. Since each edge connects two vertices, each dart belongs to only one ver-
tex. A 2D combinatorial map is formally defined by the triplet G = (D, σ, α) [3]
where D represents the set of darts and σ(d) is a permutation on D encountered
when turning clockwise around each vertex. Finally α(d) is an involution on D
which maps each of the two darts of one edge to the other one. Given a combi-
natorial map G = (D, σ, α), its dual is defined by G = (D, ϕ, α), with ϕ = σ ◦α.
The cycles of permutation ϕ encode the faces/regions of the combinatorial map.
In the following cycles of α, σ(d) and ϕ containing a dart d will be respectively
denoted by α∗(d), σ∗(d) and ϕ∗(d) (an example of a combinatorial map is shown
in Fig. 1). Thus all graph definitions used in irregular pyramids are analogously
defined. A combinatorial pyramid is a stack of combinatorial maps successively
reduced by the set of contraction and removal operations, i.e. (G0, ..., Gk) where
k represents the levels of the pyramid. Each map k+1 is built from the one below,
k, by selecting a set of contraction kernels Kk,k+1 and applying it to a given com-
binatorial map Gk to get the reduced map Gk+1 = C[Gk,Kk,k+1] = Gk \Kk,k+1.
More on removal of the redundant edges can be found in [2].
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Fig. 1: The house and its region relations are described with permutations on
the dartset D of the combinatorial map. The infinite face f∞ϕ is encoded with
the orbit ϕ∗(−2) = (−2, 1).

Region adjacency graphs (RAG), dual graphs [8], combinatorial maps [7],
and GeoMap [15] have been used before [2] to represent the partitioning of 2D
space. From these structures, we use the combinatorial maps because RAGs
cannot correctly encode multiple boundaries and inclusions. Dual graphs lack
the explicit encoding of edge orientation around vertices, which is present in a
combinatorial map [2](e.g. Fig. 1). Moreover with combinatorial maps, its dual
must not be explicitly represented. One combinatorial map is enough to fully
characterize the partition and to deduce the dual graph.

3 Interactive Operations on Pyramids

Usually, automatic segmentation methods will not be able to deliver a final seg-
mentation that is acceptable by the users (see Fig. 2). Thus there is a need to
perform a user interaction such that one can produce a better image segmenta-
tion. We have chosen a (hierarchical) pyramid based segmentation method where
we define user operations which will guide the merging and division by using re-
gions in different level of the pyramid to a final acceptable image segmentation.
The irregular (combinatorial) pyramid [7] produces automatically a stack of seg-
mented images (only some levels are shown in Fig. 2). The segmentation results
are produced automatically by merging processes that take low-level cues (in
this example RGB color values) into consideration [5].

In this work, the user can set focus on region(s) lying in different levels of
the pyramid (having different granularities). One can apply the process of man-
ually changing the image segmentation by merging and/or division operations in
any level within the stack of segmentations. Note that in our pyramid all these
manual operations defined on the regions will change the merging tree (Fig. 3a).
Moreover they also guide the processes in changing it, resulting in a stack of seg-
mented images where the final (wished) segmentation is at top of the pyramid.
Because we keep the hierarchy it is always possible to decompose the object into
its subparts or restart the process for further refinement. Instead of doing this
with unpredictable result (e.g. effect of a stroke in Graph Cuts) we can explicitly
address each region in the merging tree (until the pixel level if needed) while non
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Fig. 2: Image segmentation with automatic segmentation method [8];
a) Due to lack of contrast bird is merged with meadow (Image 43074 from [14]);
b) Due to the thin structure the Danube river disappears.

restricting the flexibility of the algorithm in merging (other) non selected (or not
in the focus) regions automatically. E.g. Fig. 3b) shows (two) final segmentations
(level k and k + 1). The user has decided first to put focus on parts of the face
like eyes, mouth, nose, ears etc. (lv. k), which then got manually merged with
the face (lv. k + 1). The inclusion relations of the eyes, mouth, nose and ears,
within the face is correctly encoded in our merging tree. As it is shown, note
that in our pyramid we can keep many ’final’ segmentations.

3.1 Modifying Operations

The manual image segmentation process consists of two parts: (1) building the
irregular pyramid based on the MST [8, 7], and (2) a user interface where the user
places its modification operations 1. The framework uses as input the original
image, its stack of automatically generated segmented images at different levels
(e.g. images in Fig. 2a) and the hierarchical information of the merging tree.

Modifying relations between regions, requires the creation of a correspon-
dence between the user-operations based on regions in the user interface (visual
representation) and their combinatorial map correspondent in the same level of
the pyramid. This information is given by the structural description of the image
relations, inherently encoded in its primal and dual combinatorial maps. To get
the inter-pixel boundary [4] in the primal or the edge representing the adjacency
in its dual, a calculation is done through permutations on the darts in D (e.g.
boundary between the roof (region 1) and the wall (region 2) in Fig. 1). Each
region is represented in the primal by a dart ∈ D and its orbit ϕ∗ describing the
boundary. These darts (aligned around a vertex corresponding to this region)
encode also the relations to the neighboring regions in the dual. Therefore the

1 Can be found in http://www.prip.tuwien.ac.at/
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Fig. 3: a) Discrete levels with the merging tree. Interactive operations combine
regions from different segmentations in different levels of the pyramid. Green ver-
tices represent regions inhibited from merging in further processing, and red ver-
tices are chosen to get merged. b) User segmentation of Image 189080 from [14];

joining edge, for e.g. merging two regions, is calculated through iterating the
ϕ∗ permutations for each region until both darts belong to the same cycle of α
and hence to the same edge. This transformation from regions to edges is neces-
sary because the operations placed in the user interface implicitly describe what
to do and the representation in terms of combinatorial maps explicitly defines
what to be modified. In the presented work we need only the concept of regions’
boundary in order to define the user operations. Thus, the idea is general and
can be implemented also on other topological representations like region adja-
cency graphs, dual graphs [8] etc. Therefore this work is not limited to the image
representation with combinatorial maps even though it strongly benefits from
them.

The operations for the purpose of modifying the relations between the regions
are placed in the user interface either by separate selection or brushing over them
(e.g. Fig. 4). The two fundamental operations that can be applied on adjacent
regions r1 and r2 for guiding the segmentation process are:

– mrg(r1, r2): merging regions r1 and r2,
– imrg(r1): inhibition of merging r1 with other regions in the levels above

One can define other operations as a combination of these two basic modifying
operations. These operations exert influence on the merging tree. But merging
solely does not implicate that the resulting region will be inhibited automatically
since the algorithm can decide to merge it with other regions in higher levels of
the pyramid. Through nesting other combinations are possible, for e.g.:

– imrg(mrg(r1, r2)): merge and inhibit the resulting region,
– imrg(r1, r2): inhibit both from merging with other regions, etc.

Since we use a hierarchical representation, it is also possible to select regions at
different granularity from multiple levels. The basic way of doing this is traversing
through all the segmentation levels of the pyramid. The other way is the ’ex-
plore’ mode, intended to traverse down (toward higher resolution) only within



a) Brush mode b) Merge mode c) Explore mode

Fig. 4: User interactions. a) Using brush mode (red line) for effectively applying
merge operations (encircle bird), b) Merging regions by selection (yellow - first
selected region, violet - region to be selected), c) Dividing a region (surrounded
red) into its components within its receptive field and restoring a single region
from a lower level (indicated with yellow) e.g. the birds beak.

the receptive field of a single region (Fig. 4c). This can be used as a way of
applying operations in higher levels on previously merged regions (at lower level
of granularity). Its main purpose is dividing them again while e.g. inhibiting the
current state. It is also possible that some regions (or their receptive fields) over-
lap which can lead to conflicts in operations e.g. merging two regions and one
of them is inhibited at the same time. We resolve these conflicts by analyzing
the combinatorial map and the relations of region(s) under operation i.e. the
affected edges (see Section 3.2).

The listing above of operations should be understood as an outline of the
versatility of the framework, since many other operations are possible. Finally a
set of operations is passed on to the framework, to perform the final segmenta-
tion. Each operation entry is of the form {lv., op., r1[, r2]} where lv. is the level,
op. the operation, r1 the first region and r2 the second one (optional).

3.2 Building Segmentation

In the bottom-up automatic building of the pyramid [8] candidate edges for
contraction are chosen to be the smallest weighted edges. The decision whether
two regions (vertices connected by edges) are merged is guided by comparison
of region similarity [5]. The set of user operations are not immediately applied
upwards in the merging tree. Since we allow operations to be selected on different
levels of the pyramid we need to down-project these operations on a common
starting level. A common starting level is the lowest level in which at least one
operation is defined. In this common starting level the candidate-edges affected
from operations (contraction or inhibition) are determined, allowing rebuilding
the pyramid from this level upwards. More precisely, deleting all older levels
above the common starting level and recalculating new levels, i.e. the merging
tree is changed only from the common starting level above. That implies the
recalculation of the operations to an equivalent instruction set, which is achieved
with the hierarchical information, through permutations on D with ϕ and set
operations as shown in the following example.
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Fig. 5: The combinatorial map from a segmentation in a lower level (than Fig. 1)
of the hierarchy.

Fig. 1 and Fig. 5 are two consecutive levels, k + 1 and k in the pyramid.
Let Fig. 5 be a common starting level. The boundary of the roof of the house
(region 1) remains the same in both of the levels. However the wall of the house
(region 2) in level k is divided into two subregions 2

′
and 2

′′
. When applying

e.g. the operation imrg(mrg(1, 2)) in level k + 1, meaning merge region 1 (roof)
and 2 (wall) in Fig. 1 and inhibit the resulting region from merging’ we can see
that this operation leads to a different non corresponding result imrg(mrg(1, 2

′
))

when applied on the combinatorial map in the level below (shown in Fig. 5).
Beginning from the relation between the regions in the common starting

level k and the level above k+ 1, its ϕ permutation, the corresponding darts (or
edges) can be reconstructed as shown in Fig. 5 (right). There are two different
categories and collections of edges (inhibition and removal) necessary to process
the operation correctly:

1. Former Contractions: in each set of Rk,1 and Rk,2 some darts belong
to the same cycle of α. This edge indicates the adjacency/subdivision from
region Rk+1,2 in level k and is marked for removal e.g. (7,−7).

2. User Operations:

– all edges of Rk,1 and Rk,2 without the marked edges for removal from
former contractions represent the outer borders of regions Rk,1 and Rk,2.
All these edges are marked for inhibition, e.g. darts (3,−3)(5,−5),
(2,−2)(4,−4) and (6,−6), (5,−5)

– the darts from the outer borders of Rk,1 and Rk,2 of each region are
compared to find the edge in common. This edge is marked for removal
e.g. (5,−5).

Selection of edge (5,−5) would lead to a conflict because it appears in both inhi-
bition and removal edge sets. Because user intention is to merge, a rule decides
that this edge has to be removed. Similar to above example we have correctly
defined the assignment to the collections of user selected edges for processing
(removal or inhibition) for all other user operations. Rebuilding the pyramid
from the common starting level, is done as follows: first all edges in this collec-
tion of edges are processed first, then all other edges not in this collection are
automatically processed by [8]. The processing is based on dual contraction [3]



and guarantees a consistent state of the combinatorial map. Note that all edges
marked for inhibition will not be deleted by the automated process and sur-
vive until the top of the pyramid. The resulting segmentation pyramid considers
the selected regions and operations containing a new final segmentation at top,
where a final state is reached (e.g. Fig. 3, lv. k).

This framework can be used easily for creating a nested image annotation
tree, e.g. by locking all levels below the top of the pyramid and iteratively merge
the remaining regions (e.g. Fig. 3, lv. k+1) to build a new hierarchy. In contrast
to other tools (e.g. labelme[19]) where each level of abstraction has to be created
separately, this is an enormous simplification. Furthermore it could be easily used
in creating ground truth in image and video databases.

4 Segmentation Results

We show by means of some images the applicability of the framework. The user
has to define what is the region of focus and which objects are of interest. To
produce the result in Fig. 6a three pyramid rebuilds are necessary. A detailed set
of user operations applied are shown in Table 1. The brush was used to encircle
the bird (Fig. 4a) in a level of the pyramid with a fine segmentation. This causes
that a limiting boundary is created. In the second run errors in segmentation
were removed. Finally in the third run the outside area is inhibited and all inner
regions are automatically merged to produce a final segmentation (Fig. 6a). In
an aerial image of the Danube river (Fig. 2b) the user wants to segment the
river properly. Some parts of the river were correctly segmented automatically
in higher levels, thus these regions are inhibited in the first manual interaction.
In the thinner branches correction at pixel level is necessary, thus 36 clicks are
needed (Table 1, Fig. 6b). The last image segmented (Fig. 6c) by a user has
multiple regions of interest at different granularities (the rock, the person on
the rock and the lake/river). Within multiple levels and two rebuilds regions are
merged together and inhibited from merging. The processing takes in general per
rebuild couple of seconds on images with 500×500 on a PC (2 GHz processor with
1 GB RAM). Since each user segmentation is intended for different applications,
a straightforward comparison with other frameworks is difficult.

a) 43074: Focus on the bird b) Focus on the river c) 14036: Focus on details

Fig. 6: Final segmentation after user interaction on the segmentation hierarchy.



Image Run Input # Op. # Lv. Clicks Interaction Time Comp. Time

43074 1. brush 104 imrg(mrg) 1 1 01:09/01:41 00:32

2. select 7 imrg
5

7
00:13/03:51 00:55

select 3 imrg(mrg) 6

3. select 1 imrg(mrg) 1 2 00:02/00:18 00:10

River 1. select 14 imrg(mrg) 3 28
00:49/06:24 00:43

select 5 imrg 5 5

2. select 3 imrg 1 3 00:02/00:33 00:10

14036 1. select 2 imrg
3

2
00:09/01:20 01:35

select 2 imrg(mrg) 4

2. select 3 imrg
1

3
00:14/01:00 00:15

select 2 imrg(mrg) 4

Table 1: Segmentation results in Fig. 6. # Lv.: number of different levels mod-
ified, # Op.: sum of operations, Time: min:sec, interaction time contains time
for placing operations/int. time overall, computation time: time for result

5 Discussion

Depending on the object(s)/region of interest where the user wants to set the
focus on, the following ways can lead to the same final segmentation result: (1)
select different regions from different levels, (2) encircle object of interest with
the brush (or selection), (3) limit/fill-out object of interest using the brush (or
selection), (4) start from a coarse segmentation of the object and then split up
or (5) start from a fine segmentation of the object and merge. One can choose to
combine one of the above to have a hybrid approach. Explicitly defining what to
be done might cause that an object not denoted, but correctly segmented before
will get lost. As shown in Figure 6, it is possible to force a segmentation, in the
worst case by defining operations using segments at pixel level. Undoing opera-
tions relates to modify the instruction set, hence it is also possible to start from
or correct an existing segmentation produced by other segmentation methods.
A solution might be to reconstruct the hierarchical merging tree by using the
segments of the output of the segmentation method. Out of the receptive fields
of each segment, operations can be created to recalculate the intermediate levels.

The user interface interacts with the segmentation framework but is clearly
separated and no knowledge about the underlying data-structure is necessary.
We will further evaluate this framework in the terms of usability.

6 Conclusion

The approach of interactively modifying an irregular pyramid by guiding it with
user-specified operations is introduced. In contrast to other methods, the pre-
sented framework delivers a general purpose but versatile method for creating
user-guided segmentation hierarchies. The various strategies of interactions and
the solutions developed for effective processing have been analyzed and dis-
cussed.
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