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Abstract. The use of plane graphs for the description of image structure
and shape representation poses two problems : (1) how to obtain the set
of vertices, the set of edges and the incidence relation of the graph, and
(2) how to embed the graph into the plane image. Initially, the image is
represented by an embedded graph G in a straight forward manner, i.e.
the edges of G represent the 4-connectivity of the pixels. Let G denote
a (planar) abstract dual of G. Dual graph contraction is used to reduce
the pair (G,G) to a pair (H, H) of planar abstract duals. Dual graph
contraction is unsymmetric due to an extra condition on the choice of
the contraction kernels in G. This condition is shown to be necessary
and sufficient for H to be embedded onto G. The embedding is applied
to the description of image structure and to shape representation.

1 Introduction

A key concept in combinatorial topology is the separation of topology (the graph)
and embedding (of the graph) [Fra96]. In a hierarchical representation of an
image by a sequence of plane graphs on increasing levels of abstraction and
scale, however, the hierarchy should also be reflected by the embedding. Thus,
the embedding of a lower level graph induces constraints on the embedding of
higher level graphs. Let a high and a low level graph be denoted by H = (Vi, Ex)
and L = (Vi, Ep) respectively. The hierarchy is reflected by the embedding of
H and L (Fig. 1), if

1. Vg C Vg,

2. each embedded edge from Ep (as subset of the plane) is a union of embedded
edges from Ej,,

3. each region from the embedding of H (as subset of the plane) is a union of
regions from the embedding of L.
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Note the transitivity of the above conditions. The high level graph is a con-
nected topological minor of the low level graph [Die97]. This paper is devoted to
hierarchies of graphs as obtained by dual graph contraction [KM95]. It will be
shown that an embedding of a higher level graph may always be derived from
the embedding of a lower level graph such that the above conditions are fulfilled.
Note, however, that dual graph contraction yields two hierarchies of graphs: on
a planar graph and on its (planar) abstract dual. It will turn out that, in gen-
eral, it is impossible to obtain a proper embedding of both hierarchies. Proper
embedding of graph hierarchies is crucial for document image analysis [BK99]
and the description of image structure [GEK99]. In this paper we propose a new
application for dual graph contraction in which embedding is crucial, i.e. shape
representation. The outline of the paper is as follows: In Section 2 dual graph
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Fig. 1. Hierarchical embedding. (a) Low level. (b) High level.

contraction is described in terms of equivalence relations. In Section 3 the em-
bedding of high level graphs onto low level graphs is related to the unsymmetry
of dual graph contraction. Section 4 demonstrates the use of the embedding for
the description of image structure. Section 5 is devoted to shape representation
by means of embedded graphs that describe the structure of distance transforms.
We conclude in Section 6.

2 Dual Graph Contraction by Equivalence Relations

Throughout the paper we refer to the following definition of a graph.

Definition 1 (Graph). A graph G = (V, E) is given by a finite set V of ele-
ments called vertices, a finite set E of elements called edges with ENV = () and
an incidence relation 1 which associates with each edge e € E a subset of V' with
one or two elements. The vertices in 1(e) are called the end vertices of e.

Note that the definition includes graphs with self-loops (i.e. edges with only
one end vertex) and multiple edges (i.e. several edges with identical sets of end
vertices).



Let (G, G) denote a pair of planar graphs, where G is an abstract dual [Die97]
of G. We write G = (V,E) and G = (V,E). Dual edge contraction [Kro95]
[KM95] of the pair (G, G) is specified by contraction kernels which form a span-
ning forest F of G. The result of dual edge contraction consists of a pair denoted

by (G/F,G \ F), in which

— G/F is obtained from G by contracting the edges of F' as shown below.

— F denotes the subgraph of G that is induced by the edges which are dual to
the edges of F.

— G\ F is obtained from G by the removal of all edges from F.

In the following, the vertex set, the edge set and the incidence relation of G/F
are defined by means of an equivalence relation on the vertex set V of G.

The spanning forest F' partitions V: each vertex belongs to exactly one con-
nected component of F'. Hence, the binary relation ~7 defined as

U ~%W & U and W belong to the same connected component of F (1)

is an equivalence relation on V. Let the equivalence class of ¥ be denoted by
[0]. The vertex set of G'/F equals the quotient of V' by ~+, defined as

V\ ~z={tlz|veV} (2)

If B denotes the set of edges in F', the edge set of G/F equals E \ E+. The
incidence relation iz 7 of G/F is derived from the incidence relation itz of G in

the following way: For a non-loop € € E \ E with 15(€) = {v,0} set
g7 (@) = {[vlF} U {[wlF)- (3)
For a loop € € E \ E& with 15(e) = {v} set
ig7(e) = {[lF} (4)

The second step of dual graph contraction, i.e dual face contraction, consists in
the contraction of edges from the graph G'\ F' and the removal of the correspond-
ing dual edges in G/F. The contraction kernels in G \ F are to form a spanning
forest F' of G\ F. However, each connected component of F’ is required to
contain at most one vertex whose degree in G \ F is larger than two. In the
following, this constraint will be referred to as degree constraint. It assures that
the removal of the corresponding dual edges in G/F is restricted to so called
redundant edges, i.e. parallel edges, or loops that do not surround a subgraph of
G/F (Fig. 2).

The result of dual graph contraction is a pair (H, H) of planar graphs, in
which H is an abstract dual of H. If F’ denotes the subgraph of G that is induced
by the edges which are dual to the edges in F', then

H=(G\F)/F and H=(G/F)\F. (5)
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Fig. 2. Dual face contraction. (a) Contraction kernel in G\ F. (b) Removal of redundant
edges in G/F (dotted).

The degree constraint ensures that the degree of a vertex [v]p in H cannot
exceed the degree of vertex v in G \ F. Furthermore, the degree of vertex v in
G \ F is restricted by the degree of the vertex v in G. Hence, if the degree of
vertex [v]p in H is denoted by degy ([v]F), the following inequation holds:

degr ([v]rr) < dega\r(v) < dega(v) Vv e V. (6)

In particular, the maximal vertex degree in H is restricted by the maximal vertex
degree in G.

3 Embedding of Contracted Graphs

Let G = (V, E) denote a plane graph and assume F' to be a spanning forest of G
that fulfills the degree constraint. An embedding of G/F can be obtained from
the embedding of G in the following way (Fig. 3):

1. Interpret the connected components of F' as rooted trees: If the connected
component has a (unique) vertex r, whose degree in G is larger than two,
declare r to be the root. Otherwise declare any vertex of the connected
component to be the root.

2. Let R denote the set of all roots from step 1. For the vertex set of G/F, i.e.
the quotient V'\ ~p of V' by ~p the following holds

VA ~r=A{[r]r | r € R}. (7)

For each r € R set the location of [r]r to the location of r in G.
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Fig. 3. (a) Graph G. Bold edges belong to spanning forest F. F fulfills the degree
constraint. Roots are enlarged. (b) Embedding of G/F

3. Let EF denote the set of edges in F. The edge set of G/F equals E \ EF.
Let e be an edge from E\ Er and let the connected components of F', where
the end vertices of e in G belong to, be denoted by C'C; and C'Cs. Since the
roots r1 and ry of CCy and C'Cy are the only vertices in C'C; U CCy that
may have a degree greater than two in G, there is a unique path IT = I (e)
from r; to 72 in G which contains e. Furthermore, for any two edges e, e’ the
paths II(e) and II(e') may only intersect at vertices from R. The embedding
of e in G / F is given by the union of all (embedded) edges that belong to
II(e).

Note that the embedding of the paths, as described in step 3, fails whenever F’
does not fulfill the degree constraint. Hence, the degree constraint is necessary
and sufficient for the graph G/F to be embedded onto G.

4 Image Structure

Gray level images may be interpreted as digital elevation models [DEM], in which
the altitudes are given by the gray levels. In [KD94] the structure of an image
is defined via the crest lines of the corresponding DEM. In this section, a plane
graph is constructed, which describes the crest lines in a DEM. It is referred to
as crest graph. The crest graph for the gray level image in Fig. 4(a) is depicted
in Fig. 5(a). In contrast to the graph constructed in [GEK99], the crest graph
has the following properties:



— The crest graph is embedded such that the edges describe the run of the
crest lines in the DEM.

— The vertex set of the crest graph may include vertices that do not represent
a hill of the DEM. The extra vertices represent branching points of crest
lines that are not located on the top of hills.
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Fig. 4. (a) The gray levels of the pixels. (b) The pair (G, G) restricted to the square
region marked in (a). The vertices of G [G] are depicted as squares [circles].

The crest graph is constructed in the following way:

1. The DEM is transformed into a pair (G,G) of attributed plane graphs, in
which G and G are plane duals [Die97]. The pair (G, G) will later be trans-
formed into a pair (G.,G.), in which G, is the crest graph. An example of
(G, Q) is given in Fig. 4(b). The vertices of G represent the pixels centers,
while the edges of GG indicate the 4-neighborhood of the pixels. The vertex
value is set to the altitude associated with the corresponding pixel. Through-
out the transformation of (G, G) into (G.,G.), the value of an edge from G
is to indicate the lowest altitudes along the embedded edge. Hence, the value
of an edge e with end vertices v and v is initialized to the minimum of the
vertex values of u and v. The vertices of G represent the regions of G' and
are located at the crossings of the pixel borders. The edges of G’ are straight
line segments that reflect the 4-neighborhood of the regions from G. Their
values are initialized to the values of the corresponding dual edges in G. A
vertex ¥ of G is initialized to the minimal value of all edges to surround the
region (basin) represented by T, i.e. the minimal value of all edges in G that
are incident to ¥ . Throughout the construction of (G.,G.) from (G, G), the
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(a) Crest graph (b) River line graph

Fig. 5. The crest graph and the river line graph. The vertices which represent hills
respectively basins are drawn larger.

Fig. 6. Overlay of the crest graph (thick lines) and the river line graph (thin lines)
from Fig. 5.



value of a vertex T from G is to indicate the lowest altitude in the region
(basin) represented by v.

2. The pair (G, G.) is generated from (G, G) by a sequence of monotonic dual
graph contractions [GEK99]: Besides the general requirements described in
Section 2, each contraction kernel of G' [G] has to contain exactly one local
maximum [minimum]| of vertex values. The vertex value in the contracted
graph is set to the maximum [minimum] of the vertex values in the corre-
sponding contraction kernel. Monotonic dual graph contraction stops when
no contraction kernel with more than one vertex can be chosen.

3. The crest graph G. is embedded into the plane as described in Section 3.

If monotonic dual graph contraction is applied to the pair (G,G) instead of
(G, @), the graph G will be transformed into a graph that describes the river
lines of a DEM. The river line graph of Fig. 4(a) is depicted in Figure 5(b)). An
overlay of the the crest graph and the river line graph is shown in Fig. 6. Note
that, in general, the crest graph and the river line graph are not even abstract
duals. However, embedding the two graphs into the DEM, two basins separated
by a crest line are always connected by at least one river line that crosses the
crest line at a local minimum (saddle point).

The calculation of the crest graph was implemented in CT+ based on LEDA
[MN99]. In order to describe gray level edges in images, we calculated the crest
graph on the image transformed by the Sobel operator (Fig. 7). Note that the
crest graph is always connected.

(a) (b) (c)

Fig. 7. (a) Gray level image. (b) Input image for the calculation of the crest graph
(Sobel operator on (a)). (c) Crest graph of (b). The widths of the edges correspond to
the edge values, i.e. the altitudes of the saddle points.



5 Shape from the Structure of Distance Transforms

In this section the shape of a 4-connected set S of square pixels is represented by
an embedded graph. The embedded graph is the crest graph calculated from a
distance transform of S, i.e. the gray values indicate the distance of the pixel to
the outside of S. The calculation of the crest graph is done exactly as explained
in the previous section. Note that this concept is not restricted to a special grid
or to a special distance.

As an example consider the 4-connected set of pixels in Fig. 8(b). The num-
bers in Fig. 8(b) indicate the chamfer-3-4 distance [CM91] from the pixels to the
outside. A sphere with respect to the chamfer-3-4 distance is shown in Fig. 8(a).
The crest graph of the distance transform is depicted in Fig. 8(c). The advantages
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Fig. 8. (a) Sphere with respect to the chamfer-3-4 distance. (b) Chamfer-3-4 distance
transform of an object. (c) Crest graph of (b).

of the crest graph compared to the medial axis [Ser82] are as follows.

— Whatever structuring elements are taken for the computation of the distance
transform, the crest graph is always connected.

— No pruning is needed [Ogn94].

— The structure of the crest graph, i.e. the crest graph without its embedding,
yields a more compact and more abstract description of the shape.

In contrast to the medial axis, shape representation by means of the crest graph
is lossy. In particular, the crest graph does not represent narrowing dead ends.
In the future we will try to overcome this drawback by a modification of the
distance transform: the pixel values at the edge of the image are raised such
that they form a new summit. The edges which connect this summit with the
summits in the inner part of the image will run through the narrowing dead
ends.



6 Conclusion

The hierarchy of planar graphs, as obtained by dual graph contraction, has been
combined with a hierarchical plane embedding of the graphs. It was shown that,
in general, it is impossible to find such an embedding also for the corresponding
hierarchy of the dual graphs. The proposed hierarchical embedding is very useful
for the description of image structure by monotonic dual graph contraction and
improves the method proposed in [GEK99]. If the image structure is computed
on gray values coming from a distance transform of a binary image, monotonic
dual graph contraction yields a skeleton-like plane graph. In contrast to the
skeletons formed by pixels no pruning is necessary. Future work will focus on
the proper representation of narrowing dead ends.
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