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Abstract. Graph pyramids allow to combine pruning of skeletons with a
concept known from the representation of line images, i.e. generalization
of paths without branchings by single edges. Pruning will enable further
generalization of paths and the latter speeds up the former. Within the
unified framework of graph pyramids a new hierarchical representation
of shape is proposed that comprises the skeleton pyramid, as proposed
by Ogniewicz. In particular, the skeleton pyramid can be computed in
parallel from any distance map.

1 Introduction

A major goal of skeletonization consists in bridging the gap between low level
raster-oriented shape analysis and a semantic object description [Ogn94]. In or-
der to create a basis for the semantic description, the medial axis [Blu62,Ser82] is
often transformed into a plane graph [Ogn94]. This task has been solved using the
Voronoi diagram defined by the boundary points of a shape [Ogn93,0gn94,0K95]
or by the use of special metrics on derived grids [Ber84]. In this paper we will
propose a method that is not confined to a special metric (distance map) on a
special grid nor on a special irregular structure like the Voronoi diagram.

The new method starts with a regular or irregular neighborhood graph. The
neighborhood graph reflects the arrangement of the sample points in the plane.
The vertices of the neighborhood graph represent the sample points and the
distances from the sample points to the boundary of the shape are stored in the
vertex attributes. The edges of the neighborhood graph represent the neighbor-
hood relations of the sample points. All illustrations in this paper refer to the
regular neighborhood graph, in which the sample points represent pixel centers
and the edges indicate the 4-connectivity of the pixels (Fig. 1a). The vertex at-
tributes reflect the Euclidean distance map (EDM) on a 4-connected set S of
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pixels: each pixel p of S is equipped with the Euclidean distance between the
center of p and the closest pizel center outside of S [SLI8] (Fig. 1b).

The dual of the neighborhood graph is referred to as crack graph. The edges
of the crack graph describe the borders of the pixels. Each edge e of the neigh-
borhood graph perpendicularly intersects exactly one edge € of the crack graph.
The edge e is called the dual of € and vice versa. Each vertex of the crack graph
stands for a pixel corner (Fig. 2b).

Dual graph contraction (DGC) [Kro95] is used to successively generalize the
neighborhood graph by the removal and the contraction of edges. One level of
the resulting graph pyramid will be called skeleton graph (Fig. 5a). This term
is justified by the fact that all centers of maximal disks (with respect to the
distance map) are represented by vertices of the skeleton graph. Furthermore,
the skeleton graph is always connected.
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Fig. 1. (a) 4-connected pixel set. (b) Squared distances of (a).

This paper is organized as follows: Section 2 is devoted to the initialization of
the attributes in the neighborhood graph and in the crack graph. In Section 3 the
crack graph is contracted. Regarding the neighborhood graph this amounts to
the deletion of edges that are dual to the ones contracted in the crack graph. The
reduced neighborhood graph is called extended skeleton graph (since it contains
the skeleton graph). In Section 4 the extended skeleton graph is contracted to
the skeleton graph. An overview of the different graphs and their relations is
given in Fig.2a.

Like the skeleton, the skeleton graph is not robust. In Section 5 we propose
a pruning and generalization method for the skeleton graph. It is based on DGC
and yields the new shape representation by means of a graph pyramid. The



neighborhood dual
gra?)h u crack graph

edge | deletion DGC
extended dual | contracted
skeleton ~ " crack graph
graph
DGC
skeleton
graph

(a) (b)

Fig. 2. (a) Overview of the graphs and their relations. (b) Neighborhood graph (O)
and crack graph (O) restricted to the sub-window in Fig. 1b. The numbers indicate the
attribute values of the vertices and the edges.

pyramid proposed in [OK95] can be obtained from the new representation by
threshold operations. We conclude in Section 6.

2 Initialization of the Neighborhood Graph and the
Crack Graph

The neighborhood graph may be interpreted as digital elevation model (DEM),
if the vertex attributes, i.e. the distances of the corresponding sampling points
to the border of the shape, are interpreted as altitudes. Intuitively, the plan
for the construction of the skeleton graph is to reduce the neighborhood graph
such that the remaining edges describe the connections of the summits in the
DEM via the crest lines of the DEM. In contrast to [KD94,NGC92] our concept
is a dual one: the neighborhood relations of the basins are described by the
dual of the skeleton graph. In the next two sections it will turn out that the
reduction of the skeleton graph depends only on the order of the values from
the distance transform. Hence, we may use squared distances and thus avoid
non-integer numbers. The idea for the reduction of the neighborhood graph is to
remove edges that do not belong to ridges - thus forming the basins represented
by the dual graph. The following initialization (Fig. 2b) will allow to control this
process. The first part refers to the neighborhood graph, the second to the crack
graph (Fig. 2b):

— Let dist?(v) denote the squared distance of the pixel that corresponds to
vertex v. The attribute value of v is set to dist?(v). The attribute value of
edge e = (u,v) is set to the minimum of dist?(u) and dist*(v).



— The attribute value of edge € is set to the attribute value of edge e, where e
denotes the edge in the neighborhood graph that is dual to €. The attribute
value of vertex v is set to the minimum of the attribute values of all edges
incident to v.

3 Contracting the crack graph

Recall, that the contraction of an edge in the crack graph is associated with the
removal of the corresponding dual edge in the neighborhood graph [BK99a]. The
neighborhood graph can never become disconnected: The removal of an edge e
would disrupt the neighborhood graph, only if the corresponding dual edge €
in the crack graph was a self-loop. DGC, however, forbids the contraction of
self-loops.

In order to get an intuitive understanding of the duality between contraction
and deletion, we focus on the embedding of graphs on the plane (only planar
graphs can be embedded on the plane) [TS92]. An embedding of the neighbor-
hood graph on the plane divides the plane into regions (Fig.3). Note that the
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Fig. 3. Duality of edge deletion in a plane graph (a)—(b) and edge contraction in the
dual of the plane graph (c)—(d). The regions r1,...,r4 in (a) are represented by the
vertices T1,...,7z in (c).

removal of an edge in the neighborhood graph is equivalent to the fusion of the
regions on both sides of the edge. In terms of watersheds [MR98] it is intuitive
to fuse the regions of the neighborhood graph until each of the resulting regions
corresponds to exactly one basin of the landscape. Two neighboring regions
may be fused, if there is no separating ridge between the regions. Due
to the initialization of the attribute values in the crack graph, we may formulate
a criterion for the fusion of two regions as follows [GEK99]: Let r; and ro denote
two regions of the neighborhood graph and let 71 and 75 denote the correspond-
ing vertices in the crack graph. The regions ry and 7o (11 # r2) may be fused,
if there exists an edge € between 71 and 73, whose attribute value equals the at-
tribute value of 71 or the attribute value of 73. Assume that the attribute value
of 73 is smaller or equal to the attribute value of 75. Then the fusion of r; and



ro is achieved by the contraction of 77 into 73 (Fig. 3c). Thus, during the whole
contraction process the attribute values of a vertex in the crack graph indicates
the altitude of the deepest point in region represented by the vertex.

Multiple fusions can be done by iterating the following parallel steps:

1. For each edge of the crack graph that meets the above criterion for con-
traction, mark the end vertex with the minimal attribute value. In case of
equality choose one of the end vertices by a random process.

2. Form a maximal independent set (MIS) of the marked vertices as explained
in [Mee89]. The MIS is a maximal subset of the marked vertices, no two
elements of which are connected by an edge.

3. Contract all edges that are incident to a vertex v of the MIS and that meet
the above criterion for contraction (v being the end vertex with the minimal
attribute).

The iteration stops, when none of the edges in the crack graph meets the above
criterion. The resulting graph is called extended skeleton graph (Fig. 5a). It is
connected and it still contains all vertices of the neighborhood graph.

4 Contracting the neighborhood graph

In this section the extended skeleton graph is further reduced to the so called
skeleton graph. The skeleton graph

— still must contain all vertices which represent maximal discs and
— still must be connected.

We focus on edges e = (u,v) such that v has degree 1 in the extended skeleton
graph. The idea is to contract v into u, if we can tell by a local criterion that v
does not represent a center of a maximal disc. All edges that have a degree-one
end vertex to fulfill this criterion may then be contracted in parallel.

Consider an edge e = (u,v) such that v is the end vertex with degree one.
Using the notation of Section 2, i.e. dist(v) [dist?(v)] for the [squared] distance
of a vertex v, we formulate the following criterion: If

dist(u) — dist(v) = 1, (1)

the vertex v does not represent a center of a maximal disc and v may be con-
tracted into u [San94].

The distances dist(u) and dist(v) in condition(1) are integers 1. This follows
from equation

dist? (u) = (dist(v) + 1)? = dist*(v) + 2dist(v) + 1 (2)

and the fact that the squared distances are integers.

! Thus condition(1) may be checked using only the squared distances and a look-up
table.



In case of grids other than the square grid or in case of irregular samplings,
Equation 1 generalizes to

dist(u) — dist(v) =|| u — v ||2, (3)

where || - ||2 denotes the Euclidean length of u — v. In terms of [Ser82], u is
upstream of v. Repeated contraction of edges in the extended skeleton graph
yields the skeleton graph (Fig. 5a).

5 A New Hierarchical Representation for Shapes

The new hierarchy is build on top of the skeleton graph. Besides pruning we also
apply generalization of paths between branchings by single edges, as proposed
in [BK99b].

In order to asses the prominence of an edge e in the skeleton of a shape S,
Ogniewicz [OK95]

1. defines a measure m for boundary parts b of S, i.e. the length of b,

2. for each edge e determines the boundary part b. of S associated with e (this
is formulated within the concept of Voronoi Skeletons),

3. sets the prominence of e to m(be).

In our approach we also measure boundary parts by their lengths. However, we
associate the boundary parts with vertices and thus define prominence measures
for vertices. The initial prominence measure prom(v) of v indicates the number
of boundary vertices (vertices representing boundary pixels) contracted into v
including v itself, if v is a boundary vertex. (Fig. 5a). This can already be
accomplished during the contraction of the neighborhood graph (Section 4) by

1. setting prom(v) to 1, if v is a boundary vertex, 0 otherwise (before the
contraction),

2. incrementing the prominence measure of w by the prominence measure of v,
if v is contracted into w.

Prominence measures will only be calculated for vertices that do not belong to
a cycle of the skeleton graph. In the following, the calculation of the prominence
measures from the initial prominence measures is combined with the calculation
of the skeleton pyramid.

Let the degree of a vertex v in a graph be written as deg(v) and let P denote a
maximal path without branchings in the skeleton graph, i.e. P = (vy,vs,...,v,)
such that

— v; is connected to v;+1 by an edge e; for all 1 <+¢ < n and
— deg(v;) =2forall 1 < i< nand

— deg(v1) # 2, deg(vy) # 2.
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(a) Before concatenation. (b) After concatenation.

Fig. 4. Concatenation of edges.

Let e; = (u,v;) be an edge of P with u; # v; and deg(v;) = 2 (Fig. 4a). Since
deg(v;) = 2, there is a unique edge €} # e; in P with e} = (v;, w;), w; # vi. We
assume that e; does not belong to a cycle, i.e. w; # u;. If deg(w;) # 1, we allow
that v; may be contracted into u;. The contraction of e; can be described by the
replacement of the two edges e; and e} by a new edge ef (Fig. 4b).

The prominence measure of u; is updated by

prom(u;) := prom(u;) + prom(v;). (4)

This contraction process is referred to as concatenation. Due to the requirement
deg(w;) # 1 the prominence measures are successively collected at the vertices
with degree 1. The result of concatenation on the skeleton graph in Fig. 5a is
depicted in Fig. 5b.
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Fig.5. (a) Extended skeleton graph. The vertices of the skeleton graph are given by
the filled circles. The numbers indicate the initial prominence measures > 1. (b) After
concatenation of the skeleton graph in Fig. 5a. The numbers indicate the prominence
measures > 1.
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Fig. 6. (a) Contraction of vertices with degree 1. The numbers indicate the prominence
measures > 1. (b) Ranks: bold 1, medium 2, thin 3.

After concatenation there are no vertices with degree 2. We focus on the set
of junctions with dead ends, i.e. the set U of all vertices u with

— deg(u) > 2 and
— there exists an edge e and a vertex v with e = (u, v) and deg(v) = 1.

The set of all edges that connect a vertex v € U with a vertex v of degree 1 is
denoted by Ends(u). Note, that for each edge e there is at most one u € U with
e € Ends(u). For each u € U let epin(uw) denote an edge in Ends(u), whose end
vertex with degree 1 has a minimal prominence measure.

The prominence measures of the vertices with degree 1 induce an order in
Ends(u), emin(u) being the least element. In case of | Ends(u) |> 1 we allow
emin(u) to be contracted. Analogous to concatenation the prominence measure
of u is updated to prom(u) := prom(u) + prom(v).

In Fig. 6 the contraction is indicated by arrows: a white vertex at the source
of an arrow is contracted into the black vertex at the head of the arrow. The
new prominence measures are emphasized.

For each set Ends(u) the operation of contraction followed by updating the
prominence measure takes constant time. These operations can be performed
in parallel, since the sets Ends(u), u € U are disjoint. Generalization of the
skeleton graph consists of iterating concatenation followed by contraction (both
include updating).

In [OK95] a hierarchy of skeleton branches is established by a skeleton traver-
sal algorithm. The traversal starts at the most prominent edge and follows the
two least steep descents (starting at each end vertex of the most prominent
edge). The highest rank skeleton branch consists of all edges that have been
traversed by this procedure. Skeleton branches of second highest rank originate
from the highest rank branch and are also least steep descent (ignoring the edges



of the highest rank branch). Skeleton branches of third highest rank and so on
are defined analogously. The edges of the skeleton are labelled according to the
rank of the skeleton branch they belong to.

Analogous ranks can be determined by imposing a restriction on the gener-
alization described above: for each vertex u € U only one edge in Ends(u) may
be contracted. This is achieved by initializing all vertices as vacant. Once an
edge from Ends(u) was contracted, u is marked as occupied. The generalization
up to the state, in which no further generalization can be done is summarized
as first step. Thereafter, all vertices are marked as wvacant again. The second
step is finished, when occupation again forbids further generalization and so on.
Thus, each edge of the concatenated skeleton graph that does not belong to a
cycle is contracted. If n denotes the number of the last step, the rank of an edge
contracted in step k, (1 < k < n) is set to 2+ n — k. Edges that belong to at
least one cycle of the extended skeleton graph receive rank 1.

The set of edges with rank smaller or equal to k, (1 < k < n + 1) always
forms a connected graph. As in [OK95] these graphs can be derived by a simple
threshold operation on the concatenated skeleton graph according to the ranks
of the edges. The ranks of the extended skeleton graph in Fig. 5b are shown in
Fig. 6c¢.

6 Conclusion

In this paper we have introduced a graph based hierarchical representation of
shapes that comprises the skeleton pyramid as proposed by Ogniewicz. The new
representation relies on the concept of graph pyramids by dual graph contraction.
It allows to represent paths without branchings by single edges. This additional
hierarchical feature is suggested for the hierarchical matching of shapes by means
of their skeletons.
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