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Università Ca’ Foscari di Venezia

Via Torino 155, 30172 Mestre (VE), Italy

e-mail:�glantz,pelillo�@dsi.unive.it
� Pattern Recognition and Image Processing Group 183/2

Institute for Computer Aided Automation, Vienna University of Technology

Favoritenstr. 9, A-1040 Vienna, Austria

e-mail:krw@prip.tuwien.ac.at

Abstract

We propose to match two hierarchies of segmentations by many-to-many mappings be-
tween the regions of the two hierarchies. The mappings preserve the order of the regions
(w.r.t. set inclusion) in both hierarchies. The matching involves weights for the signifi-
cance of individual regions within a hierarchy and similarity measures for the comparison
of regions from different hierarchies. Irregular pyramids, in which each level consists of an
attributed plane graph and an attributed dual graph are well suited to represent the hierar-
chies and to provide the information for computing the weights and the similarity measures.
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1 Introduction

Hierarchies of segmentations can be obtained from an image by a sequence of criteria for merg-
ing neighboring regions. When criterion � cannot be applied anymore, the �-th segmentation
is attained. Consider two hierarchies ����� and ����� of segmentations with respect to the
images �� and ��, respectively. We assume that the hierarchies have been constructed according
to the same sequence of criteria. In this paper the structural similarity of �� and �� is grasped
by a hierarchy-preserving many-to-many mapping between the regions of ����� and �����.

If we assume that the highest level of ����� (� � �� �) contains only one region, i.e. the
whole image, the partial order of the regions in each hierarchy may be described by a rooted
tree, the vertices of which represent the regions (the root represents the whole image), and
the edges of which represent set inclusion. Thus, we may focus on many-to-many mappings
between two rooted trees that preserve the orders imposed by the rooted trees.

We use a tree matching algorithm that is based on a maximum clique formulation in a
derived association graph [7]. Alterations of the region properties are taken into account by a
similarity measure between regions and structural alterations are balanced by means of weights
that indicate the relevance of the regions for the hierarchy.

The paper is organized as follows: In Sec. 2 we present a graph-based concept for calculating
and representing nested morphological segmentation. The tree matching algorithm is explained
in Sec. 3. Sec. 4 is devoted to the weights and the similarity measures for matching nested
morphological segmentations. Experimental results are presented in Sec. 5.

2 Nested Morphological Segmentation

Morphological segmentation methods rely on the intuitive idea of flooding a topographic surface
in order to find the watersheds and to determine the catchment basins [5]. The idea of flooding
is also used to derive hierarchies of catchment basins [6]. We will first sketch how to derive the
watersheds and the catchment basins by dual graph contraction [4]. Then we will construct the
hierarchy of the catchment basins.

Let the topographic surface be defined by the modulus of the gradient image as in [6].
We represent the topographic surface by a dual pair ���� ��� of graphs, �� being plane. The
vertices and edges of�� represent the pixels and the 4-neighborhood of the pixels, respectively.
For each vertex � of�� let ������ denote the altitude (modulus of the gradient) at �. The vertices
and the edges of the graphs�� � �	�� 
�� and�� � �	�� 
�� are equipped with attribute values
������ as follows [3] (Figure 1):



[a] [b]

Figure 1: (a) Representation of a topographic surface by means of pixels whose gray values
indicate the altitude. (b) Initial pair ���� ��� of attributed dual graphs restricted to the square
in (a). The circular and square vertices belong to �� and ��, respectively.

� ������ �� ������ �� � 	�,

� ������ �� ��������� � � is end vertex of �� �� � 
�,

� ������ �� ������ for all pairs of dual edges ��� �� � 
� 	 
�,

� ������� �� ��������� � � has �� as an end vertex� ��� � 	�.

A sequence of monotonic dual graph contractions [3] transforms the dual pair ���� ��� into
the dual pair ����� ����. The dual pair ����� ���� obtained from Figure 1a is depicted in Fig-
ure 2a. The vertices and the edges of ��� represent the catchment basins and the neighborhood
relations of the catchment basins, respectively. In accordance with [3] the contraction of � is
done in a way which ensures that ��� may be embedded on ��.

Coarser segmentations are derived from the catchment basins by unifying the basins. The
unification of neighboring basins �� and �� is achieved by contracting the edge in ��� that
connects the vertices represented by �� and ��. As pointed out in [6], a variety of criteria can
be used for the choice of the basins to be unified first. The criteria are usually formulated by
means of the basin sizes, their depths or the minimal altitude on the common border of the
basins. In [3] it is proven that the altitude of the deepest point in basin � is given by the attribute
of the vertex representing � in ���. It is also shown that the attribute of each edge � with end
vertices representing �� and �� indicates the minimal altitude along that part of the border line
between �� and �� which is represented by � (� and � being a dual pair of edges).

Contracting the edges of ��� according to increasing values of �������� (��� edge of ���)
yields a hierarchy of regions as the one depicted in Figure 2b, where unification of �� and �� is
denoted by �� ��� .

The graph ��� is contracted in subsequent parallel steps, until there exists but one vertex.
The hierarchy of the regions obtained forms a so called irregular pyramid [4]

����� ����� ������� ������� � � � � �������� �������� (1)
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Figure 2: (a) The dual pair ����� ����. The circular vertices belong to ��� and the square
vertices belong to���. (b) The hierarchy of the regions from the pyramid on top of ����� ����.

The vertices of ������ represent the regions of the nested morphological segmentation. The
order of these regions with respect to set inclusion defines the hierarchy of the regions.

3 Many-to-many Matching of Attributed Trees

To match hierarchies of segmentations we used a framework recently introduced in [8], which
expands on previous work developed in [7]. The basic idea behind this approach is to cast
the tree matching problem as an equivalent maximum weight clique problem. This is in turn
mapped onto an equivalent quadratic program which is then (approximately) solved by simple
dynamics arising in evolutionary game theory and related fields.

Formally, an attributed tree is a triple � � �	�
� ��, where �	�
� is the “underlying”
rooted tree and � � 	 
 � is a function which assigns an attribute vector ���� to each node
� � 	 . Two nodes �� � � 	 are said to be adjacent (denoted � � �) if they are connected by
an edge. We shall also consider a function Æ � � 
 IR� which assigns to each set of attributes
(and therefore to each node in the tree) a real positive number. This will be interpreted as
the negligibility of the corresponding node in the tree. Specifically, a node will be declared
“negligible” if the value of the function Æ corresponding to its attributes is smaller than a fixed
threshold �. Clusters of nodes that contain only one non-negligible node (w.r.t. �) are called �-
clusters. For a formal definition see [7]. We associate an �-cluster of negligible nodes in the first
subtree to an �-cluster of negligible nodes in the second tree, thereby defining a many-to-many
mapping from the first to the second tree.

A relation�  	� 	 	� is called a subtree �-morphism if it preserves the hierarchies of the
�-clusters in each of the trees. A formal definition is given in [8].

Clearly, in realistic applications, it would be desirable to find a subtree �-morphism which
pairs nodes having “similar” attributes. To this end, let � be any similarity measure on the
attribute space, i.e. any (symmetric) function which assigns a positive number to any pair of



attribute vectors.
If � is a subtree �-morphism between two attributed trees �� � �	�� 
�� ��� and �� �

�	�� 
�� ���, the overall similarity between the matched structures can be defined as follows:

���� �
�

�������

�������� ������

The �-morphism� is called a maximal similarity subtree �-morphism if we cannot add further
matchings to � , while retaining the morphism property. It is called a maximum similarity
subtree �-morphism if ���� is the largest among all �-morphisms between �� and ��.

The weighted �-tree association graph (�-TAG) of two attributed trees �� � �	�� 
�� ���
and �� � �	�� 
�� ��� is the graph �� � �	�
� �� where 	 � 	� 	 	� such that for any two
nodes ��� �� and ��� �� in 	 the level of � in the hierarchy of �� equals the level of � in the
hierarchy of �� and the same applies to the vertices � and �. Again, the levels are the levels
of the corresponding clusters [7]. The following result establishes a one-to-one correspondence
between the attributed tree morphism problem and the maximum weight clique problem.

Proposition 3.1 Any maximal (maximum) similarity subtree �-morphism between two attributed
trees induces a maximal (maximum) weight clique in the corresponding weighted �-TAG, and
vice versa.

Once the tree morphism problem has been formulated as a maximum weight clique problem,
any clique finding algorithm can be employed to solve it (see [1] for a recent review). In
the work reported in this paper, we used an approach recently introduced in [7, 2], which is
summarized below.

3.1 Matching via game dynamics

Let � � �	�
� �� be an arbitrary weighted graph of order �, and let �� denote the standard
simplex of IR�:

�� � � � � IR� � ��� � � and �� � ��  � � � � � � �

where � is the vector whose components equal 1, and a prime denotes transposition. Given a
subset of vertices � of �, we will denote by �	 its characteristic vector which is the point in
�� defined as

�	� �

�
����������� if �� � �
�� otherwise

where ���� �
�

���

����� is the total weight on �.

Now, consider the following quadratic function

����� � �
������ �  ��� (2)



where  � � ����� is the �	 � symmetric matrix defined as follows:

��� �

��
�

�
������

if  � � �

� if  �� � and �� � �� �
�

������
� �

������
otherwise

(3)

and � � 	
� ��� . The following result allows us to formulate the maximum weight clique
problem as a quadratic program, thereby switching from the discrete to the continuous domain
(see [2] for proof).

Proposition 3.2 Let � be a subset of vertices of a weighted graph � � �	�
� ��, and let  �

be defined as in (3). Then, � is a maximum (maximal) weight clique of � if and only if �
���
is a global (local) maximizer of �� in ��. Moreover, all local (and hence global) maximizers of
�� on �� are strict.

We now turn our attention to a class of simple dynamical systems that we use for solving our
quadratic optimization problem. Let! be a non-negative real-valued �	�matrix, and consider
the following dynamical system:

������ � ����� �!������ � �����!����� �  � � � � � � (4)

where a dot signifies derivative w.r.t. time �, and its discrete-time counterpart

���� � �� � �����
�!������
�����!����

�  � � � � � � � (5)

It is readily seen that the simplex �� is invariant under these dynamics, which means that every
trajectory starting in �� will remain in �� for all future times. Both (4) and (5) are called
replicator equations in evolutionary game theory, since they are used to model evolution over
time of relative frequencies of interacting, self-replicating agents [9].

If ! � ! � then the function �����!���� is strictly increasing with increasing � along any
non-stationary trajectory ���� under both continuous-time (4) and discrete-time (5) replicator
dynamics. Furthermore, any such trajectory converges to a stationary point. Finally, a vector
� � �� is asymptotically stable under (4) and (5) if and only if � is a strict local maximizer of
�
�!� on ��.

The previous result is known in mathematical biology as the fundamental theorem of natural
selection [9] and, in its original form, traces back to R. A. Fisher. Motivated by this result,
we use (as in [7, 8]) replicator equations as a simple heuristic for solving our attributed tree
matching problem. Let �� � �	�� 
�� ��� and �� � �	�� 
�� ��� be two attributed trees, and let
� � �	�
� �� be the corresponding association graph. By letting

! � ���� �  � (6)

we know that the replicator dynamical systems (4) and (5), starting from an arbitrary initial
state, which is usually taken to be the simplex barycenter, will iteratively maximize the function
�
�!� over the simplex and will eventually converge to a strict local optimizer which will then

correspond to the characteristic vector of a maximal weight clique in the association graph. This
will in turn induce a maximal similarity subtree �-morphism between �� and ��.



4 Weights and Similarity Measures

Matching nested morphological segmentations in a robust way we have to take into account
that there are catchment basins which are sensitive to changes of the topography and others that
are more stable. The same distinction makes sense for regions obtained by unifying catchment
basins. In the following we will define weights for regions that reflect the reliability of the
regions for the matching. Due to the one-to-one correspondence between the regions of the
hierarchical segmentation and the vertices in all ������, we may identify the regions with the
vertices. The minimal attribute  ������"� of all edges incident to region�vertex ", i.e.

 ������"� �� ��������� � " � #���� (7)

indicates the next higher level of the flood that unifies " with a neighboring region. The max-
imal attribute  ���� of all edges � � " (� and " both are subsets of IR�), i.e.  �����"� ��
���������� � � � "� indicates the lowest level of the flood at which all sons of " were merged.
Let $���"� denote the size of region ", i.e. the number of pixels in ". We define the weight of a
region " to be

��%&��"� � � ������"��  �����"�� � $���"�� (8)

The similarity measure will depend on the application. It can be derived from topological
measurements (genus of the regions), geometric measurements of the regions (area, shape) or
of the boundaries (perimeter, curvature), or the colors (gray values) of the regions.

5 Experimental Results

To check the algorithms we generated the test images depicted in Fig. 3a-c. The images are
composed such that there are different pairs of neighboring regions with the same contrast.
Thus, the unification of neighboring basins as defined in Sec. 2 is not unique. In these cases
the choice is made by using a random generator. However, each ambiguous unification yields a
region of zero weight (Sec. 4) and after contracting the negligible edges (with respect to � � �)
the hierarchies of the images in Fig. 3a-c should be pairwise isomorphic (trees) again. Indeed,
we obtained perfect matches between the contracted hierarchies.

We also performed tests on real images. The hierarchies computed from the subimages
l-eye, r-eye, mouth, and nose in Fig. 3d had 27, 31, 37, and 41 vertices, respectively. Since
there is no preferred value for �, we covered a wide range by choosing � such that the number
of clusters in the hierarchy of l-eye amounted to 24 (all regions with weight greater than 0),
20, 15, and 10, respectively. The corresponding values for � are between � and ���. We did
not want unreliable regions to contribute to the weights of the cliques in the �-TAG. Hence,
we set the weight of a vertex ��� �� in the �-TAG to zero whenever the weight of � or � was
smaller or equal to �. In general, the number of clusters for the same � is different in hierarchies
from different images. Thus, we have to compensate for the different numbers of clusters if



(a) (b)

(c) (d)

Figure 3: (a-c) Perfectly matched images. (d) The four images l-eye, r-eye, mouth, nose.

quantifying the quality of the matches. We calculated the normalized distance 1

'$������ ��� �� ��
!������

� ����������� �������
� where (9)

� �� and �� are the attributed trees of the subimages,

� !������ is the weight of the maximal weight clique ��� in the �-TAG of �� and ��,

� ������ denotes the number of �-clusters in ��, and

� � denotes the upper bound of the similarity function �.

The similarity function is a linear function on the mean gray levels (normalized to �� ��). Tab. 5
shows the results for � � �. As for all other �-values tested, the two eyes are most similar,
followed by the pair l-eye and mouth.

Analogous experiments were performed with the images in Fig. 4. For �-values between
3000 and 5000 (see Tab. 5) the two images pot-0 and pot-180 have been the most similar ones.
Note that the light intensities of the two images are distributed differently and that our method
does not make use of shapes.

1without proof that the metric axioms are fulfilled.



Table 1: Normalized distances of graphs from subimages of Fig. 3d for � � �.

� � � l-eye r-eye mouth nose
l-eye 0.00 0.27 0.42 0.58
r-eye 0.27 0.00 0.45 0.52
mouth 0.42 0.45 0.00 0.51
nose 0.58 0.52 0.51 0.00

(a) pot-0 (b) pot-90 (c) pot-180 (d) pot-270

Figure 4: Images of a pot from the COIL-database.

Table 2: Normalized distances of graphs from pots in Fig. 4 for � � ����.

� � ���� pot-0 pot-90 pot-180 pot-270
pot-0 0.00 0.32 0.21 0.57
pot-90 0.32 0.00 0.44 0.53
pot-180 0.21 0.44 0.00 0.61
pot-270 0.57 0.53 0.61 0.00



6 Conclusions and Outlook

We proposed a combination of hierarchical segmentation followed by a many-to-many matching
of the regions. This combination is well suited to detect structural similarities between images.
Robustness is achieved through a weight function and a similarity function for the regions.
Our method is invariant to geometrical transformations of homogeneous regions as long as
the topological relations between the regions are unchanged. First experiments on real images
showed that the matching results correspond to human intuition. In the future we will extend
the concept such that the calculation of the hierarchy, as well as the weight and the similarity
function may depend on the shape of the regions.
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