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Abstract

When matching regions from “similar” images, one typ-
ically has the problem of missing counterparts due to local
or even global variations of segmentation fineness. Match-
ing segmentation hierarchies, however, not only increases
the chances of finding counterparts, but also allows us to ex-
ploit the manifold constraints coming from the topological
relations between the regions in a hierarchy. In this paper
we match hierarchies from panoramic images by construct-
ing an association graph �� whose vertices represent po-
tential matches and whose edges indicate topological con-
sistency. Specifically, a maximal [maximum] weight clique
of �� corresponds to a topologically consistent mapping
with maximal [maximum] total similarity. To find “heavy”
cliques, we adapt a greedy pivoting-based heuristic to the
weighted case. Experiments on pairs of panoramic images
demonstrate the reliability of the results.

1. Introduction

Vision tasks such as detection, recognition, and track-
ing usually involve segmentation. Although, in general, the
segmentation method must be chosen according to the ap-
plication (segmentation itself is an ill-defined problem), the
following situation is quite common.

� The segmentation method allows for various levels of
fineness.

� For selected levels of fineness the corresponding seg-
mentations form a hierarchy in the sense that a region
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from a coarser segmentation is the union of regions
from a finer segmentation.

� The optimal level of fineness, if any, is a local property.

� One-to-one correspondences between regions and real
world objects are rare. Often a region merely con-
tains or is contained in a region corresponding to a real
world object.

Hence, it is often a good idea to consider hierarchies of seg-
mentations instead of single segmentations determined by a
fixed level of fineness.

For recognition tasks, another reason to employ hier-
archies is that the objects are often also hierarchical. In
the following, our perspective is purely two-dimensional,
i.e. we do not address problems (like occlusion) coming
from the fact that three-dimensional objects in a three-
dimensional world are represented by two-dimensional re-
gions of two-dimensional images. Recognizing the same
hierarchical object in two segmentation hierarchies thus
means to find a one-to-one hierarchy-preserving mapping
between regions of one hierarchy and regions of the other
hierarchy. Besides preservation of the hierarchy, it is natu-
ral to require that topological relations as the (non-) neigh-
borhood relation and the (non-) enclosure relation are also
preserved. For an example see Figure 1.

To define all relations in a consistent way, we employ
a framework for hierarchical segmentation [5] in terms of
topological minors [4]. Specifically, a segmentation step
corresponds to taking a topological minor of a plane graph,
which, in turn, corresponds to coarsening a finite topol-
ogy [13]. In the experiments we employ a new hierar-
chical segmentation method motivated by the intuitive no-
tion of watersheds [5]. It avoids many problems associated



1

B1

A1

C
C

B

2

2
A2

Figure 1. The mapping �� � ��, �� � ��,
�� � �� is topologically consistent.

with classical watershed approaches [11]. In particular, the
basins are now separated by one-dimensional elements in-
stead of (two-dimensional) pixels and the topological rela-
tions between the basins are well-defined. Technically, seg-
mentation is done by dual graph contraction [8].

To find topologically consistent mappings with high to-
tal similarity between the matched regions, we propose to
construct an association graph whose vertices represent po-
tential matches and whose edges indicate topological con-
sistency. In particular, a consistent mapping with maxi-
mal [maximum] total similarity between the matched re-
gions corresponds to a clique with maximal [maximum] to-
tal weight in the association graph. To find “heavy” cliques
we employ a variant of the pivoting-based heuristic pre-
sented in [10].

The paper is organized as follows: In Section 2 we ex-
plain our hierarchical segmentation method for the special
case of panoramic images. The definitions of the topolog-
ical relations and the association graph are given in Sec-
tion 3. The heuristic to find consistent matches with a high
total similarity is sketched in Section 4 and experimental
results are presented in Section 5.

2. Segmentation of Panoramic Images

2.1. Graph-based representations

In our approach an image takes the form of an embed-
ded graph, the vertices, edges and regions of which play
the roles of the zero-, one-, and two-dimensional cells of
a cellular complex [7]. The cylindric nature of panoramic
images suggests to construct a graph � which is embed-
ded on a cylinder as illustrated in Figure 2. Specifically,
the pixel corners and pixel borders of the panoramic image
are represented by the vertices and edges of�, respectively.
Thus, each pixel corresponds to exactly one region of � on
the mantle of a cylinder in IR�. However, we also consider
the bottom and the top disk of the cylinder as regions of �.
A a consequence, � allows a spherical embedding and, by
stereographic projection [13], an embedding on IR �. In par-
ticular, we may encode panoramic images by plane graphs
as defined below.

Figure 2. A panoramic image (left) and the
corresponding spherical graph (right) with 26
regions.

Throughout the paper a graph � � ����� �� is given by
a finite set � of elements called vertices, a finite set � of
elements called edges with � � � � �, and an incidence
relation � which associates with each edge � � � a subset
of � with one or two elements. The vertices in ���� are
called the end vertices of �. Note that the definition includes
graphs with self-loops (i.e. edges with only one end vertex)
and multiple edges (i.e. several edges with identical sets of
end vertices). A graph is called simple, if it has neither self-
loops nor multiple edges.

In the following, we restrict ourselves to a special class
of plane graphs, i.e. plane graphs defined in terms of arcs
and closed polygons. Arcs and closed polygons are con-
catenations of finitely many straight line segments in IR�.
While an arc is homeomorphic to the closed unit interval
��� ��, a closed polygon is homeomorphic to the unit circle
in IR� [4]. On one hand, the restriction to this special class
of plane graphs allows us to adopt the approach towards the
definition of plane graphs chosen in [4]. On the other hand,
the special class is general enough to deal with pixel-based
images, Voronoi- and Delaunay-diagrams. In this paper a
plane graph is a graph � � ����� �� such that

� � � IR�.

� For all � � � the set �� ���� is either an arc or a closed
polygon. The set � � ���� is a closed polygon, if and
only if � is a self-loop.

� For each � � � such that the set � � ���� is an arc and
for each homeomorphism	� � ��� �� �� ������ it holds
that 	�	�� �
 � ����.

� �� � �� � � for all �� �� �� � �.

In contrast to [4] the end vertices of an edge do not be-
long to the edge. Thus, � partitions IR� into points from
� , piecewise linear elements from �, and regions, i.e. the
connected components of IR� � �� � ��. The set of all re-
gions is denoted by � . If 
 is a mapping from � to IR�

� ,
the triple ��� � � 
� is called plane image (with gray values

�
��. Note that the “gray values” may also reflect geomet-
ric region properties.



2.2. Segmentation hierarchies

Intuitively speaking, an edge from � always separates at
most two elements from � . Formally, the elements sepa-
rated by � are the unique (and possibly identical) elements
�� � � � such that � � � � � is an open subset of IR�. This
defines a mapping ��
� from � to the one- or two-element
subsets of � and thus a graph � � �� ��� ��. The graph
� is the dual of the graph � [4]. Note that the edge sets of
� and � are identical. Thus, a (one-dimensional) element
of � serves to relate a pair of zero-dimensional elements
from � and a pair of two-dimensional elements from � . In
terms of cellular complexes [7] the elements of � , �, and
� play the roles of zero-, one-, and two-dimensional cells,
respectively. Formally, set

� �� � � � � � and 
����� ��

��
�

� if � � ��
� if � � ��

� if � � � �

Special neighborhoods of cells, so called stars, serve (1)
to equip � with a finite topology, the so called star-
topology [1], and (2) to define the topological relations in
Section 3.

The star of a cell � is a set of cells containing � and the
higher-dimensional cells adjacent to � [1].

������� ��

��
�

	�
 if � � � �
	�
 � ����
 if � � ���
�������� : � � ����� if � � ��

As shown in [5], segmenting ��� � � 
� corresponds to
coarsening the star topology derived from�, which, in turn,
corresponds to taking a topological minor �� of � (i.e.
�� has a subdivision which is a subgraph of �). Thus, any
segmentation of ��� � � 
� can be written as ��� � �� � 
��,
where �� is a topological minor of �. Conversely, each
��� � �� � 
��, where �� is a topological minor of �, is a
segmentation of ��� � � 
�. In particular, we may define hi-
erarchies of segmentations in terms of topological minors.

Definition 2.1 (Hierarchy of segmentations) Let ����� �
���� ��� 
��

�
��� be a sequence of plane images such that

���� is a topological minor of ��, � � � � �. Then,
the sequence ����� is called a hierarchy of segmentations.

Technically, the generation of topological minors can be
done by the iteratively parallel method dual graph contrac-
tion [8]. In particular, it suffices to specify the conditions
for edge contractions in � and in �.

2.3. Morphological segmentation

Morphological segmentation methods rely on the intu-
itive idea of flooding a topographic surface in order to find

the watersheds and to determine the catchment basins [11].
The topographic surface, in turn, is often derived from
the original image by means of an edge filter [12]. Our
graph-based concept allows to employ edge filters whose
responses refer to (one-dimensional) edges instead of (two-
dimensional) pixels. If ��� � � 
� is a plane image and if� is
the edge set of �, an edge filter is a mapping � � � �� IR�

� .
For the experiments in this paper we chose the absolute gray
value difference

���� �� �
���� 
���� , where ���� � 	�
 � 	�
� (1)

if both 	�
 and 	�
 are not background regions. Otherwise,
���� is set to a value exceeding all responses that do not in-
volve the background regions. The following is invariant to
strictly monotonic variations of ��
�. Merging regions in the
classical watershed approach now corresponds to removing
weak edges, i.e. edges � � � such that ���� is minimal
with respect to all edges bounding the same region. For-
mally, � is weak, if there exists � � � , � � ���� such that
���� � ����� for all �� with � � ��������. Let �� denote
the subgraph of � induced by the non-weak non-bridges.
Then the morphological segmentation of ��� � � 
� is the
plane image ��� � �� � 
� �, where

� �� is the plane graph obtained from �� by concate-
nating all edges separated by vertices of degree �,

� �� are the regions of �� , and

� 
� ��� � is the size-weighted mean gray value of the
regions merged into �� .

Another application of the edge filter � , this time on
��� � �� � 
� �, brings us back to the initial situation, and
so on. The result of this procedure is a hierarchy of segmen-
tations (see Definition 2.1).

Note that the number of regions from �� is at most half
the number of regions from �. Thus, the topological minor
obtained after at most ��
���� �� steps (after each step ��
�
is updated) will have but one bounded region. This not only
guarantees to arrive at segmentations with a small number
of regions, as is indispensable for the methods introduced in
the next sections. It also guarantees that the whole hierarchy
of segmentations can be computed in ����
��� ��� parallel
steps [6].

In the experiments (see Section 5), however, we ob-
served that merging via small regions may yield non-robust
results. Specifically, let ��, ��, and �� be three regions of �
such that ��, �� are large, �� is small, and the gray value of
�� lies in between those of �� and ��. Then, it may happen
that �� and �� are merged via ��. To prevent merging via
small regions, we introduce directions of contractions in �
and



1. set the attribute of a directed edge to the product of the
� -value of the corresponding undirected edge and the
size of the region at the source of �,

2. contracting an edge only if it points from a smaller to
a larger region,

3. never contract two edges with the same source.

The result of this procedure is a segmentation hierarchy as
defined at the end of Section 2. For an example see Figure 4.

3. A new association graph

The plan of the section is as follows. A subset relation, a
neighborhood relation, an enclosure relation, and combina-
tions thereof (see Figure 3) are defined for pairs of regions
from possibly different topological minors in a segmenta-
tion hierarchy. Then, the topological association graph is
defined via topological consistency of potential matches be-
tween regions from different hierarchies.

In the following, let ���� ��� 
��
�
��� be a segmentation

hierarchy with �� � ���� ��� ��� for all �. Furthermore, let
� � �� for some � and let � �� �, � � �� for some �.
Besides � � � or � � � the regions � and � potentially
fulfill the relations defined below.

� The regions � and � are said to be neighbors: � � �,
if there exists an edge �� � �� such that �� � � �� �
for some �� in ������ and �� � � �� � for some �� in
������.

� The region � is said to enclose �: � � �, if there exists
a closed polygon � � �� for some � such that � is
contained in the exterior of � and � is contained in the
interior of �.

� The region � is said to be apart from the region �:
� � �, if

�� �� �� � �� �� �� � �� ��	� � �
 ��	�� (2)

From � �� � it follows that the five relations � � �, � � �,
� ��, � ��, and � � � exclude each other and cover all pos-
sibilities. Moreover, each of the five relations may occur
together with the neighborhood relation and together with
the complement of the neighborhood relation. Thus, there
are ten combinations of the (non-) neighborhood relation
with the other five relations and these ten relations cover
all possibilities (see Figure 3). In the following, a combi-
nation of the (non-) neighborhood relation with one of the
other five relations is denoted by the symbol of the (non-)
neighborhood-relation followed by the symbol for the other
relation. Examples of the topological relations are given
in Table 1. The following is a straight forward definition
of an association graph, whose vertices represent potential
matches and whose edges indicate topological consistency.
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Figure 3. The 10 topological relations. The
thick lines indicate the edges defining the
neighborhood relations. (a) � �� �, � ��
�. (b) � �� �. (c) � �� �, � �� �. (d) � ���
�, � ��� �. (e) � ��� �. (f) � ��� �, � ��� �.

Definition 3.1 (Topological association graph)
Let ���

�� �
�
� � 


�
��
��
��� and ���

�� �
�
� � 


�
��
��
��� be two hierar-

chies of segmentations. Furthermore, let �� � �
�

� for some

�, �� � �
�

� for some �, �� � � �
�

� for some �, and �� � �
�

�

for some �. The pair ���� ��� is said to be topologically
consistent with the pair ���� ���, if the topological relation
between �� and �� (one out of ten) is the same as the topo-
logical relation between �� and ��. The topological asso-

ciation graph of ���
�� �

�

� � 

�
��
��
��� and ���

�� �
�

� � 

�
��
��
��� is

the simple graph (see Section 2) �� � ���� ��� ��� de-
fined by

� �� � �
���
��� �

�

� �� �
���
��� �

�

� �,

� �� � 		�� �
 � � �� � � ��� � is topologically
consistent with �, and

� ����� � � �� � ��.

Table 1. Topological relations from Figure 3b.
Merging � with � results in �.

� � � � IR�

� � �� ��� ��� ���
� �� � �� �� ���
� ��� �� � �� ���
� ��� �� �� � ���
IR� ��� ��� ��� ��� �

4. Heuristic for finding “heavy” cliques

Let � be a simple graph (see Section 2) with vertex set
� and edge set �. A subset �	 of � is called a clique of �,



if for all  �� � � �	 there exists � � � with ���� � 	 � �
.
Furthermore, let ����� and � 


��� be two hierarchies of seg-
mentations and let �� � ���� ��� ��� be the topological
association graph of ����� and � 


���. By construction, a
clique of �� corresponds to a topologically consistent one-
to-one mapping between the regions of ����� and those of
� 

���. In the following, let ! � �� � IR� be a simi-

larity measure between regions, where one region is from
����� and the other is from � 


���. Finding a topologically
consistent one-to-one mapping with a “high” total !-value
between the regions of ����� and those of � 


��� corresponds
to finding “heavy” cliques of ��, if the weight of a vertex
� � �� (i.e. of a potential match) is again given by !���.
Unfortunately, the problem of finding a clique with maxi-
mum total weight (corresponding to a consistent mapping
with maximum total consistency) is NP-hard [2]. In the fol-
lowing we can only guarantee to find a clique with maximal
weight, i.e. one that cannot be enlarged without loosing the
property of being a clique. Note that a maximal clique in
�� corresponds to a consistent mapping that cannot be ex-
tended without loosing consistency.

The rest of this section is devoted to a heuristic for find-
ing “heavy” cliques of ��. The plan is to start with a
small clique of the association graph and iteratively enlarge
it by single vertices in a greedy way. The enlargements
are done so as to create favorable conditions for further en-
largements. We propose a look ahead-rule for the enlarge-
ments that stems from a look-ahead rule formulated within
a pivoting-based heuristic to the maximum weight clique
problem [10]. Specifically, the pivoting-based heuristic was
used to solve a linear complementarity formulation [3] of a
standard quadratic program which, in turn, is equivalent to
the maximum weight clique problem. For the unweighted
case Marco Locatelli [9] gave the following combinatorial
interpretation of the look-ahead rule in [10].
For enlarging the current clique, always take a candidate
whose degree is maximal in the subgraph induced by all
candidates.

To arrive at high total !-values, we adapt the above rule.
If �� � ���� ��� ��� is the topological association graph,
� � � denotes the set of candidates to enlarge the current
clique, "���� denotes the neighborhood of a vertex � in the
subgraph of �� induced by �, i.e.

"���� � � �
�

����� : � � ������ (3)

then the adapted look-ahead rule says the following.
For enlarging the current clique, always take a candidate �
such that �

	�����	�

!���� is maximal. (4)

5. Results

The aim of the experiments is to see whether the re-
quirement of topological consistency in conjunction with
an ad-hoc similarity measure is sufficient to yield plausible
matches between “similar” panoramic images.

For the experiments we used a sequence of panoramic
images provided by the Cognitive Vision Group at the
Computer Vision Laboratory, University of Ljubljana
and the Center for Machine Perception, CTU, Prague
(http://lrv.fri.uni-lj.si/ matjazj/backyard/testimgs/). The se-
quence simulates a path of a mobile robot through a lab
(Figures 4 and 5).

All images were scaled to approximately 15.000 pixels
and the hierarchy was always calculated as specified in Sec-
tion 2.3. Moreover, to reduce memory requirements, we re-
stricted each hierarchy to its upper 14 levels. The weight of
a vertex in the association graph corresponding to the po-
tential match �#�� #�� was always set to

!�#�� #�� � ���� 
$���� 
%���� 

���� 
����� (5)

where 
$ and 
% stand for the normalized absolute devi-
ation of the barycenters in $ and in %, 

 stands for the
normalized absolute difference of the mean gray values,


� �
��&������#��� �����#���

��$������#��� �����#���
� (6)

and ' � ��� is an empirical value. Typically, the topolog-
ical association graph is very dense. To save memory, we
neglect an edge � between potential matches �#�� #�� and
�(�� (��, if the relative location of #� with respect to (�
deviates significantly from the relative location of #� with
respect to (�. Formally, � is neglected, if

�)�#��� )�(�� � �)�#��� )�(����� * ���� (7)

where )�#� � IR� stands for the barycenter of region # and
��� is a threshold (set to ��).

To evaluate the advantages of fully hierarchical match-
ing over flat matching between the base levels only, we per-
formed both kinds of experiments. In all experiments the
total similarity from fully hierarchical matching was about
twice of that from flat matching.

A typical example is the pair cmppath.23 and cmp-
path.25 (Figure 4). Also the results of the matching (Fig-
ure 5) are typical.

Performing the fully-hierarchical method as described
in Sections 3 and 4 yields the result shown in Figure 5a.
Constraining the matches to base level regions, however,
the result is poorer (see Figure 5b). Indeed, there are less
matches, the matched regions are more isolated, and the
similarities of the matched regions are lower. Note also that
match � is not plausible.



a)

b)

Figure 4. a) Panoramic images cmppath.23 (left)
and cmppath.25 (right). b) Base level of hier-
archy on cmppath.23 (left) and on cmppath.25
(right).
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Figure 5. Matching the hierarchies on the
base levels shown in the Figure 4b. The
columns refer to cmppath.23 (left) and cmp-
path.25 (right). a) Fully hierarchical match. (b)
Non-hierarchical match of the base levels.

6. Conclusions and outlook

We showed how to build an association graph, the max-
imal [maximum] weight cliques of which correspond to
topologically consistent matches with maximal [maximum]
total similarity between the regions of two segmentation hi-
erarchies. The experiments demonstrate that using hierar-
chies increases the number and the quality of the matches.
The very strict requirement that all topological relations are
preserved by the match has a negative and a positive effect.
On the negative side, one has to live with considerable holes
between matched regions. On the positive side, the strict
topological constraints make the match more reliable.
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September 2002. Springer.

[7] V. A. Kovalevsky. Finite topology as applied to im-
age analysis. Computer Vision, Graphics, and Image
Processing, Vol. 46:pp.141–161, 1989.

[8] W. G. Kropatsch. Building Irregular Pyramids by Dual
Graph Contraction. IEE-Proc. Vision, Image and Sig-
nal Proc., 142(6):366 – 374, 1995.

[9] M. Locatelli, I. M. Bomze, and M. Pelillo. Swaps,
diversification, and the combinatorics of pivoting for
the maximum weight clique. Technical Report CS-
2002-12, Dipartimento di Informatica, Università Ca’
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