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graph pyramid. Extention to nD and future topics of interest are discussed.
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1 Introduction

A region adjacency graph (RAG) is defined for a partition by associating a vertex to each region
and by creating an edge between two vertices if the associated regions share a common boundary
i.e. if they are adjacent. Considering the RAG associated to a 2D binary digital image, the
number of maximal connected subgraphs having only vertices labeled as foreground is equal to
the number of independent pieces of the image (connected components of the foreground). Even
if the embedding of the RAG is known, computing the number of holes of the object is not
straightforward. One way would be to consider the cycles with exactly 4 edges as degenerate
cycles and establish an equivalence between all the cycles of the graph as follows: two cycles are
equivalent if one can be obtained from the other by joining to it one or more degenerate cycles.
There is only one equivalence class for the set of black pixels of the digital image of Figure 1,
which represents the unique hole. This is similar to consider the digital image as a cell complex1

[5]. One can ask for the edges we have to delete in order to ‘destroy’ the hole. In the example
in Figure 1 it is not enough to delete only one edge. The set of edges in blue in Figure 1 block
any cycle that surrounds the hole; the deletion of these edges together with the faces that they
bound produces the ‘disappearing’ of the hole. A 1-cocycle of a planar object can be seen as a set
of edges ‘blocking’ the creation of cycles of one homology class. The elements of cohomology are
equivalence classes of cocycles.

2 Irregular Graph Pyramids

Irregular graph pyramids [8, 9] are used within the segmentation framework to encode a hierarchy
of partitions. An irregular graph pyramid P is a stack of successively reduced planar graphs

∗Partially supported by the Austrian Science Fund under grants S9103-N13 and P18716-N13; Junta de Andalućıa
(grants FQM-296 and TIC-02268) and Spanish Ministry for Science and Education (grant MTM-2006-03722).

1Intuitively a cell complex is defined by a set of 0-cells (vertices) that bound a set of 1-cells (edges), that bound
a set of 2-cells (faces), etc.
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Figure 1: a) A 2D binary digital image I; b) its region adjacency graph; c) a cell complex associated
to I (in blue, a representative cocycle); and d) the cell complex without the hole.

P = {(G0, Ḡ0), . . . , (Gk, Ḡk)} where Gi are adjacency graphs and Ḡi are boundary graphs (their
dual), for 0 ≤ i ≤ k. The vertices of Gi represent the image regions on level i and its edges
represent the neighborhood relations. The edges of Ḡi represent the borders of the regions on
level i, including so called pseudo edges needed to represent neighborhood relations to a region
completely enclosed by other regions. Finally, the vertices of Ḡi represent junctions of border
segments of Ḡi.

In each level i, there exists a one-to-one correspondence between the edges of the primal and
the edges of the dual. This induces a one-to-one correspondences between the vertices of the
primal and the 2D cells obtained from the embedding of the dual graph (will be denoted by the
term faces2): if two vertices are connected by an edge, then the two corresponding faces of the
dual share an edge. Note that both Gi and Ḡi can play the role of primal and dual. Each Ḡi is
obtained by first removing edges of Ḡi−1 if they are in the common boundary of two faces with the
same label, and then contracting edges until all vertices have degree greater than 2. See Figure 2.
Note that a contraction in the primal is equivalent to a removal in the dual, and vice-versa. In all
graphs of level 0 ≤ i < k, contracted edges define trees called contraction kernels, whose vertices
are merged to a single vertex. One vertex of each contraction kernel is called the surviving vertex
and is considered to have been survived to the next level. For each boundary graph Ḡi, the cell
complex associated to the foreground object, called boundary cell complex, is obtained by taking
all faces corresponding to vertices of Gi whose receptive fields contain (only) foreground pixels,
and adding all edges and vertices needed to represent the faces.

Lemma 1 All the boundary cell complexes of a given irregular graph pyramid are cell subdivisions
of the same object. Therefore, all these cell complexes are homeomorphic.

3 Cohomology and Integral Operators

Starting from a cell decomposition of an object, its homology can be defined in an algebraic way
by studying incidence relations of its subdivision. A cell of dimension p is called a p-cell. A p-chain
is a formal sum of p-cells. The chains are considered over Z/2 coefficients. The set of p-chains
form an abelian group called the p-chain group and denoted by Cp. This group is generated by all

2Not to be confused with the vertices of the dual of a RAG (sometimes also denoted by the same term).

Figure 2: A digital image I, the boundary graphs of levels 6, 10, and the last one of an irregular
graph pyramid of I.
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the p-cells. The boundary operators are a set of homomorphisms {∂p : Cp → Cp−1}p≥0 connecting

two immediate dimensions: · · ·
∂p+1

→ Cp

∂p

→ Cp−1→· · ·
∂1→ C0

∂0→ 0.
By linearity, the boundary of any p-chain is the sum of the boundaries of each cell that appears

in the chain. The boundary of the 0-cells is always 0. For each p, ∂p−1∂p = 0. A p-chain σ is called
a p-cycle if ∂p(σ) = 0. If σ = ∂p+1µ for some (p+1)-chain µ then σ is called a p-boundary. Denote
the groups of p-cycles and p-boundaries by Zp and Bp respectively. It is true that Bp ⊆ Zp. Define
the pth homology group to be the quotient group Hp = Zp/Bp, for all p.

Construct cohomology groups by turning chain groups into groups of homomorphisms and
boundary operators into their dual homomorphisms. Define a p-cochain as a homomorphism
c : Cp → Z/2, which is totally defined by the set of p-cell that evaluates to 1. The p-cochains form
the set Cp which is a group. The boundary operator defines a dual homomorphism, the coboundary
operator δp : Cp → Cp+1, such that δp(c) = c∂p+1 for any p-cochain c. Since the coboundary
operator runs in a direction opposite to the boundary operator, it raises the dimension. Its kernel
is the group of cocycles and its image is the group of coboundaries. Two cocycles c and c′ are
cohomologus if c + c′ is a coboundary. The p-th cohomology group is defined as the quotient of
p-cocycle modulo p-coboundary groups, Hp = Zp/Bp, for all p. If the object is embedded in R3,
then homology and cohomology groups are isomorphic. The elements from which we can deduce
all Hp elements are called cohomology generators of dimension p. We say that c is a representative
p-cocycle of a cohomology generator (or representative p-cocycle for short) β of dimension p if
β = c + Bp. Denote β = [c]. See [10].

Starting from a cell decomposition of an object and the chain complex associated to it, · · ·
∂2→

C1

∂1→ C0

∂0→ 0, take a q-cell σ and a (q + 1)-chain α. An integral operator [2] is defined as the
set of homomorphisms {φp : Cp → Cp+1}p≥0 such that φq(σ) = α and is 0 if it is evaluated over
all the other q-cells. It is extended to all q-chains by linearity. When p 6= q, then φp is the zero
homomorphism. Integral operators can be seen as a kind of boundary operator inverse. They
satisfy the condition φp+1φp = 0 for all p. If an integral operator {φp : Cp → Cp+1}p≥0 satisfies
the chain-homotopy property, that is, φp∂p+1φp = φp for each p, then define the set {πp : Cp →

imπp}p≥0 where πp = idp + φp−1∂p + ∂p+1φp is a homomorphism, · · ·
∂2→ imπ1

∂1→ imπ0

∂0→ 0
is a chain complex and {idp : Cp → Cp}p≥0 is the identity. Then π is a chain equivalence (its
chain-homotopy inverse is the inclusion).

Lemma 2 The two operations used to construct an irregular graph pyramid: edge removal and
edge contraction, are integral operators satisfying the chain-homotopy property.

Consider the cell complex K of Figure 3. The integral operator associated to the removal of
the edge e is given by φ1(e) = B and φp maps the other p-cells of K to 0, for p = 0, 1, 2. Then,
π1(e) = a + f + d, π2(B) = 0, π2(A) = A + B (renamed as A′ in K ′) and πp is the identity over
the other p-cells of K, p = 0, 1, 2,. Now, K ′′ is obtained from K ′ contracting the edges a and d.
The set of homomorphism defined by φ′

0((1)) = a, φ′
0((3)) = d and φ′

p over the other p-cells of
K ′ is 0, p = 0, 1, 2, is a composition of two integral operators [2] representing these contractions.
Then, π′

0((1)) = (2), π′
0((3)) = 4, π′

1(c) = c + a (renamed as c′ in K ′′), π′
1(d) = d + b (renamed as

d′ in K ′′) and π′
p is the identity over the other p-cells of K ′, for p = 0, 1, 2.

Figure 3: a) A cell complex K; b) K after removing e; and c) after contracting a and b.
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Reconstructing the equivalent integral operators for a given graph pyramid is straight forward,
as all information is contained in the horizontal (in-level) and vertical (between levels) relations.

Lemma 3 Let {φp : Cp → Cp+1}p≥0 be an integral operator satisfying the chain-homotopy prop-

erty. The chain complexes · · ·
∂2→ C1

∂1→ C0

∂0→ 0 and · · ·
∂2→ imπ1

∂1→ imπ0

∂0→ 0 have isomorphic
cohomology groups. If c : imπp → Z/2 is a representative p-cocycle of a cohomology generator,
then cπ : Cp → Z/2 is a representative p-cocycle of the same generator.

For example, consider the cell complex K ′′ of Figure 3. The 1-cochain α, defined by the set
{c′, d′} of edges of K ′′, is a 1-cocycle which ‘represents’ the white hole C (in the sense that all the
cycles representing the hole must contain at least one of the edges of the set). Then β = απ′ is
defined by the set {c, d} of edges of K ′. Let γ = βπ. Then γ is defined by the set {c, d, e} of edges
of K. β and γ are both 1-cocycles representing the white hole C.

4 Representative Cocycles on Irregular Graph Pyramids

In [6], the authors present a novel algorithm for correctly visualizing graph pyramids, including
multiple edges and self loops, which preserves the geometry and the topology of the original image.
A method for homology computation on irregular graph pyramids is given in [11].

In this paper, representative cocycles are computed and drawn in the boundary graph of any
level of a given irregular graph pyramid. Representative cocycles are computed in the top (the last
level) and down projected to the bottom (level 0) using the process described in this section. For
this purpose, a new level, called homology-generator level, is added over the boundary graph of
the last level of the pyramid. We compute a spanning tree of the boundary graph of the last level
and contract the edges that belong to it, to a common point (the root of the tree). The boundary
graph in the homology-generator level is a set of regions surrounded by a set of self loops incident
in a common point. The composition of the integral operators associated with the contraction of
edges of the spanning tree, defines a chain equivalence between the boundary cell complex of the
last level of the pyramid and the boundary cell complex of the homology-generator level.

Lemma 4 The boundary cell complex of any level of the pyramid and the one of the homology-
generator level have isomorphic (co)homology groups.

For example, in the boundary graph of the homology-generator level (see Figure 5) each self
loop that surrounds a region of the background is a representative 1-cycle of a homology generator.
In the same graph, the representative 1-cocycle of each cohomology generator is defined by exactly
two self loops. One of them is the self loop α representing one homology generator, which also
belongs to the boundary of a region R of the foreground of the homology-generator level. Let β be
the self loop surrounding the region R. Then, {α, β} is a representative 1-cocycle of a cohomology
generator.

Let Ak denote the set of edges that define a cocycle in Ḡk (the boundary graph in level k).
The down projection of Ak in Ḡk−1 is Ak−1 = As

k−1
∪ Ar

k−1
, where As

k−1
denotes the set of

surviving edges in Ḡk−1 that correspond to Ak, and Ar
k−1

is a subset of removal edges in Ḡk−1.
The following steps show how to obtain Ar

k−1
:

1. Consider only the contraction kernels of Gk−1 (the adjacency graph) whose vertices are
labeled with label ℓ. The edges of each contraction kernel are oriented toward the respective
root such that each edge has a unique starting vertex.

2. For each contraction kernel T . From the leaves of T to the root. Let e be an edge of T and
v its starting point: label e with the number of edges that are in both As

k−1
and the set of

edges that are in the boundary of the face associated to v, plus the sum of the labels of the
edges of T which are incident to e.

3. A removal edge of Ḡk−1 is in Ar
k−1

if the corresponding edge of Gk−1 is labeled with an odd
number.
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Figure 4: The boundary graphs of all the levels of an irregular graph pyramid (level 0 on the top-
left) and the homology-generator level (on the bottom-right). Removed edges in black, contracted
edges in red and surviving edges in green.

The proof of the correctness of the algorithm is done using the homomorphisms {πp}. These
maps are defined from the integral operators associated to the removal and contracted edges made
in the boundary graph of level k − 1 to obtain level k. An example of the down projection of a
representative 1-cocycle is shown in Figure 5.

Figure 5: a) The boundary graph of the homology-generator level; in blue, the edges that define a
representative 1-cocycle c. b) and c) The boundary graphs of levels 3 and 2 with the contraction
kernels drawn in orange (the roots of the trees are drawn in black). d) In blue, the edges that
represent the down projection of the representative 1-cocycle c in the boundary graph of level 2.

It is worth to be mentioned that the obtained generators by this method will be as good or
bad as the choices of edge removal which have been made at every step.

5 Discussion

It is expected that the algorithm presented in Section 4 is also valid in 3D, using for example
combinatorial [7, 1] or generalized map pyramids [4]. Lemma 1 has to be valid for the pyramid
building process, and Lemma 2 has to be extended for the used operations (e.g. face contraction,
face removal, etc.). The method can also be used to compute finer invariants such as the coho-
mology ring or cohomology operations in the same way as it is done in [3]. For dimensions higher
than three, the homology and cohomology groups are no longer isomorphic and the extension of
the method to these dimensions is no longer straight forward.

Having interpretations in graph theory of concepts related to cohomology opens the door for
applying classical graph theory algorithms. For example, any set of foreground edges in the
boundary graph Ḡi associated to a path in the adjacency graph Gi connecting a hole of the
object with the (outside) background face is a representative 1-cocycle, and this can be computed
efficiently. If additional constrains are added, like minimal length, the 1-cocycle is a good candidate
for pattern recognition tasks as it is invariant to the scanning of the cells, the processing order,
rotation, etc. The interpretation of cocycles with graph theory concepts, has to cover also higher
dimensions (e.g. what are 1-cocycles of a 3D object? what would be a minimal 1-cocycle?).
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