
Computer Vision and Image Understanding 115 (2011) 1011–1022
Contents lists available at ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier .com/ locate/cviu
Invariant representative cocycles of cohomology generators using irregular
graph pyramids

Rocio Gonzalez-Diaz a,⇑, Adrian Ion b,d, Mabel Iglesias-Ham b,c, Walter G. Kropatsch b

a Applied Math Department, School of Computer Engineering, University of Seville, Reina Mercedes Avenue, CP: 41012 Seville, Spain
b Pattern Recognition and Image Processing Group, Vienna University of Technology, Faculty of Informatics, Institute of Computer Aided Automation,
Favoritenstr. 9/1832, A-1040 Vienna, Austria
c Pattern Recognition Department, Advanced Technologies Application Center, 7th Avenue #21812 %218 and 222, Siboney Neighborhood, Playa, C.P. 12200, Havana City, Cuba
d Institute for Numerical Simulation, Faculty of Mathematics and Natural Sciences, University of Bonn, Wegelerstr. 6, 53115 Bonn, Germany

a r t i c l e i n f o
Article history:
Available online 16 March 2011

Keywords:
Graph pyramids
Representative cocycles of cohomology
generators
1077-3142/$ - see front matter � 2011 Elsevier Inc. A
doi:10.1016/j.cviu.2010.12.009

⇑ Corresponding author.
E-mail addresses: rogodi@us.es (R. Gonzalez-Dia

Ion), mabel@prip.tuwien.ac.at, miglesias@cenatav
krw@prip.tuwien.ac.at (W.G. Kropatsch).
a b s t r a c t

Structural pattern recognition describes and classifies data based on the relationships of features and
parts. Topological invariants, like the Euler number, characterize the structure of objects of any dimen-
sion. Cohomology can provide more refined algebraic invariants to a topological space than does homol-
ogy. It assigns ‘quantities’ to the chains used in homology to characterize holes of any dimension. Graph
pyramids can be used to describe subdivisions of the same object at multiple levels of detail. This paper
presents cohomology in the context of structural pattern recognition and introduces an algorithm to effi-
ciently compute representative cocycles (the basic elements of cohomology) in 2D using a graph pyramid.
An extension to obtain scanning and rotation invariant cocycles is given.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Image analysis deals with digital images as input to pattern rec-
ognition systems with the purpose to extract information about
their content, usually objects. Objects appear in images affected
by transformations (e.g. rotation, zoom, projection) and noise.
Topological features have the ability to ignore changes in the
geometry of objects by extracting object properties invariant to
elastic transformations. Simple topological features are for exam-
ple the number of connected components, the number of holes,
etc., while more refined ones, like homology and cohomology,
characterize holes and their relations.

An example application of topological features is topology sim-
plification, an active field in geometric modeling and medical
imaging where high-resolution surfaces are created through iso-
surface extraction from volumetric representations, obtained by
3D photography, CT, or MRI. Iso-surfaces often contain many topo-
logical errors in the form of tiny handles. These nearly invisible
artifacts hinder subsequent operations like mesh simplification,
re-meshing, and parametrization. See, for example [1]. Another
application is shape description and matching, where persistence
and homology of a function defined on a shape have been success-
fully applied to extract shape features [2].
ll rights reserved.
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A 2D image is the result of projecting a 3D scene into the image
plane. Often the precise camera parameters are not known and still
humans have no problem in correctly interpreting the displayed
objects in the image. A 3D object is surrounded by a reflecting sur-
face which itself may split into several smaller but connected
patches which can be characterized by their color, their texture
or other visual properties. The visible part of the object’s surface
maps into a region of the image which shows the same adjacencies
of patches as the original surface (because the camera sees the same
side of the surface) although the geometry of the patches may
change due to projection, due to camera or object movement or
due to deformations of the object. Sometimes a collection of
patches is completely surrounded by some other surface patches,
e.g. a fancy soccer ball on a Spanish T-shirt (see Fig. 1). Although
both the picture of the ball as well as the T-shirt may have a spe-
cific patch structure (stripes on shoulder and arms, logo) it is clear
which subset of regions forms the ball and which regions belong to
the remaining T-shirt. A simplified version could describe the pix-
els of the T-shirt 1’s and the ball’s pixels by 0 (see Fig. 1). Then the
ball is a hole in the T-shirt as long as the surrounding of the ball is
visible and not occluded by other objects. It may be highly difficult
to uniquely and reliably identify any of the involved small patches
individually under difficult geometric deformations while the
overall arrangement of patches forming the ball is mostly invariant
to these geometric deformations. How to segment patches into
meaningful aggregations has been dealt with in many other seg-
mentation methods and it is not the main emphasis of this paper.
We therefore restrict ourselves in the following on binary images
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Fig. 1. (a) Original image: ball on T-shirt of world champions 2010 in soccer; (b) a
segmentation of the original image using pyramids.
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with the understanding that each region may be the collection of
several subregions belonging together.

Considering 2D binary images, an object is defined by a con-
nected set (4-connectivity) of foreground pixels. A region adjacency
graph (RAG) encodes the adjacency of regions in a partition. The
holes in a RAG associated to an object of a 2D binary digital image
can be characterized by establishing an equivalence between all
the cycles as follows: two cycles are equivalent if one can be ob-
tained from the other by joining to it one or more degenerate cycles
(cycles with exactly four edges). For example, there is only one
equivalence class for the foreground (gray pixels) of the digital im-
age in Fig. 2, which represents the unique white hole. This is sim-
ilar to considering the digital image as a cell complex1 [3] (see
Fig. 2c). Unfortunately digital images are not ‘clean’, noise can create
many unwanted holes which complicate the correct interpretation.
One can ask for the edges we have to delete in order to ‘destroy’ a
hole. In the example in Fig. 2, it is not enough to delete only one
edge. The deletion of the bold edges in Fig. 2c together with the faces
that they bound produces the ‘disappearing’ of the hole. The set of
bold edges in Fig. 2c define a 1-cocycle, a topological invariant of
the respective object. Equivalence classes of such cocycles are the
elements of cohomology.

To cope with complexity issues that arise when highly complex
algorithms must be applied to huge amounts of data, graph pyra-
mids are used. These hierarchical data structures offer possibilities
to reduce the amount of data by local operations which can be ap-
plied in parallel and which have the enormous advantage to pre-
serve the topological properties of the data. Hence the search for
independent cocycles can be correctly done on a fraction of the
data at the top of the pyramid. The simplified geometry of these
cocycles can then be delineated top-down through the levels of
the pyramid by again local processes up to the high accuracy of
the base level.

Maybe due to its more abstract nature, lacking a geometric
meaning and due to its computation complexity, cohomology has
not been yet widely applied to pattern recognition and image pro-
cessing. This paper is possibly the first attempt to use it in the con-
text of digital images. For this purpose, in this paper we consider
the best known environment which are 2D images whereas nD is
the ultimate goal. Concepts related to cohomology can have asso-
ciated interpretations in graph theory. Having these interpreta-
tions opens the door for applying classical efficient graph theory
algorithms to compute and manipulate these features. Besides,
for objects embedded in R3, homology – a wider used topological
invariant, and cohomology groups are isomorphic. But the ring
structure presented in cohomology characterizes the relations be-
tween 2-holes (cohomology generators of dimension 1), which
homology does not. Indeed, dealing with homology and cohomol-
ogy properties, representative cycles and cocycles, and their com-
1 Intuitively a cell complex is defined by a set of 0-cells (vertices) that bound a set
of 1-cells (edges), that bound a set of 2-cells (faces), etc.
putation is quite different and doing this study in 2D gives
important insights which should be relevant for extension to nD,
n > 2. Initial results regarding this work have been presented in
[4]. The current paper extends our earlier publication with detailed
insights and proofs, and a refinement of the previous method that
makes the obtained cocycles scanning and rotation invariant in the
case of an identical discretization.

The paper is organized as follows: Sections 2 and 3 recall graph
pyramids and cohomology, and make initial connections. In Section
4, preserving-topology properties in irregular graph pyramids are
given. Section 5 presents the proposed method. Section 6 uses the
properties of the proposed method to extend it and obtain scanning
and rotation invariant cocycles. Section 7 concludes the paper.

2. Irregular graph pyramids

A graph (see for example [5]) is an ordered pair G = (V,E) com-
prising a set V of vertices and a set E of edges. Each edge e 2 E is
incident to two not necessarily distinct vertices v,w 2 V, written
as e = (v,w). An edge e = (v,w) is said to be directed if the pair
(v,w) is an ordered pair. An edge is said to be a self-loop if v = w.
The edge e = (v,w) is called a parallel edge iff $e0 2 E, e0 – e s.t.
e0 = (v,w). A graph is called undirected if none if its edges is direc-
ted, and it is called planar if it can be drawn in a plane with no
edges crossing (vertices are drawn as points and edges as lines con-
necting their incident vertices). Given a graph G = (V,E) removing
an edge e 2 E will result in the graph G0 = (V,E n{e}), contracting
the edge e = (v,w) implies removing it and identifying its incident
vertices s.t any remaining edge previously incident to v or w is
now incident to the unique vertex v = w.

Given a decomposition of an object or image into regions a re-
gion adjacency graph (RAG) is an undirected graph that encodes
the adjacency of regions in a partition. A vertex is associated to
each region, vertices of neighboring regions are connected by an
undirected edge. Classical RAGs do not contain any self-loops or
parallel edges. An extended region adjacency graph (eRAG) is a
RAG that contains the so-called pseudo edges, which are self-loops
and parallel edges used to encode neighborhood relations to a cell
completely enclosed by one or more other cells [6]. The dual graph
of an eRAG G is called a boundary graph (BG) and is denoted by G (G
is said to be the primal graph of G). The edges of G represent the
boundaries (borders) of the regions encoded by G, and the vertices
of G represent points where boundary segments meet. G and G are
planar graphs. There is a one-to-one correspondence between the
edges of G and the edges of G, which induces a one-to-one corre-
spondence between the vertices of G and the 2D cells (will be de-
noted by faces2) of G. The dual of G is again G. The following
operations are equivalent: edge contraction in G with edge removal
in G, and edge removal in G with edge contraction in G.

A (dual) irregular graph pyramid [7,8,6,9] is a stack of successively
reduced planar graphs P ¼ fðG0;G0Þ; . . . ; ðGn;GnÞg. Each level ðGk;GkÞ,
0 < k 6 n, is obtained by first contracting edges in Gk�1 (removal in
Gk�1), if their end vertices have the same label (regions should be
merged), and then removing edges in Gk�1 (contraction in Gk�1)
to simplify the structure. The contracted and removed edges are
said to be contracted or removed (sometimes called removal edges)
in ðGk�1;Gk�1Þ. In each Gk�1 and Gk�1, contracted edges form trees
called contraction kernels. One vertex of each contraction kernel is
called a surviving vertex and is considered to have ‘survived’ to
ðGk;GkÞ. The vertices of a contraction kernel in level k � 1 form
the reduction window of the respective surviving vertex v in level
k. The receptive field of v is the (connected) set of vertices from level
0 that have been ‘merged’ to v over levels 0, . . . ,k. The equivalent
2 Not to be confused with the vertices of the dual of a RAG (sometimes also denoted
by the term faces).



Fig. 3. A digital image I, and boundary graphs G6, G10 and G15 of the pyramid of I.

Fig. 2. (a) A 2D digital image I; (b) its RAG; (c) a cell complex associated to I (with bold edges, a representative cocycle); and (d) the cell complex without the hole.
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contraction kernel (ECK) of a vertex v is the tree obtained by replac-
ing v and all is descendants with their corresponding contraction
kernels. The vertices of the ECK of v form the receptive field of v.

Algorithm 1 gives the main steps used to build a graph pyramid.
In Line 5 the operations are performed on both graphs (adjacency
and boundary) even if for simplicity only one of the graphs is men-
tioned in each step. Line 5 .ii removes self-loops bounding an
empty face in the adjacency graph. Line 5 .iii simplifies the region
boundaries in the boundary graph. Fig. 3 shows boundary graphs
for different levels of a dual irregular graph pyramid.

Algorithm 1. Build (dual) graph pyramid

Input: image I /⁄pixels labeled ‘object’ or ‘background’⁄/

1. ðG0;G0Þ ¼ ððV0; E0Þ; ðV0; E0ÞÞ

/⁄V0 associates a vertex to every pixel. E0 connects ver-
tices corresponding to 4-connected pixels. G0 and G0 are
dual.⁄/

2. k = 0

3. repeat

4. /⁄select edges to contract⁄/

T = ;
for all v 2 Gk do
i. select an edge (v,w) 2 Gk with v, w having the same label

ii. T T [ (v,w) ⁄add edge ⁄/
5. if T – ; then

/⁄region merging, easier described in the adjacency
graph:⁄/
i. ðG0;G0Þ  contract edges T of Gk (removal in Gk)
/⁄simplification, easier described in the boundary
graph:⁄/
ii. ðG00;G00Þ  contract pending trees in G0 (removal

in G0)
iii. ðGkþ1;Gkþ1Þ  contract one distinct edge incident

to each vertex of degree 2 in G00 (removal in G00)
6. k k + 1

7. until T = ;
Output: Graph pyramid P ¼ fðG0;G0Þ; . . . ; ðGk�1;Gk�1Þg.

3. Homology, cohomology and integral operators

We refer to [10] for an introduction to homology and
cohomology.

Intuitively, homology characterizes the holes of any dimension
(i.e. connected components, 1-dimensional holes, etc.) of an n-
dimensional object. It defines the concept of generators which, for
example for 2D objects are similar to closed paths of edges sur-
rounding holes. More general, k-dimensional manifolds surround-
ing (k + 1)-dimensional holes are generators [10], and define
equivalence classes of (k + 1)-holes. Cohomology arises from the
algebraic dualization of the construction of homology. It manipu-
lates groups of homomorphisms to define equivalence classes.
Intuitively, cocycles (the invariants computed by cohomology),
represent the sets of elements (e.g. edges) to be removed to destroy
certain holes. See Fig. 2c for an example cocycle.

A homeomorphism is a bijective continuous function between
two spaces, that has a continuous inverse function. They are the
mappings which preserve all the topological properties of a given
space. Two spaces with a homeomorphism between them are
called homeomorphic, and from a topological viewpoint they are
the same.

Two continuous functions from one topological space to an-
other are called homotopic if one can be ‘continuously deformed’
into the other. Two spaces X and Y are homotopy equivalent if there
are maps f: X ? Y and g:Y ? X such that gf is homotopic to idX and
fg is homotopic to idY. Observe that if two spaces are homeomor-
phic then they are homotopic. A homotopy invariant is a topological
property which is invariant under homotopy.

A p-dimensional cell (or p-cell, for short) is a topological space
that is homeomorphic to the p-dimensional ball Bp. A 0-cell is
homeomorphic to a point, a 1-cell to an arc and a 2-cell to a disk.
Roughly speaking, a cell- (or CW-) complex is built by gluing to-
gether the basic building blocks called cells.

Figs. 4 and 5 illustrate the following abstract concepts.



Fig. 4. Example of cell, chain, boundary and cycle.

Fig. 5. Example of cochain, cocycle and coboundary.
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3.1. Homology

The notion of p-chain is defined as a formal sum of p-cells. The
chains are considered over Z=2 coefficients i.e. a p-cell is either
present in a p-chain (coefficient 1) or absent (coefficient 0) – any
cell that appears twice vanishes. The set of p-chains form an abe-
lian group called the p-chain group Cp. This group is generated
by all the p-cells. The boundary operator is a set of homomorphisms
{@p: Cp ? Cp�1}pP0 connecting two consecutive dimensions. By lin-
earity, the boundary of any p-chain is defined as the formal sum of
the boundaries of each p-cell that appears in the chain. The bound-
ary of 0-cells (i.e. points) is always 0. A chain complex is the set of
all the chain groups connected by the boundary operator:
� � � !

@pþ1
Cp!

@p
Cp�1 ! � � �!

@1 C0!
@0 0.

A p-chain r is called a p-cycle if @p (r) = 0. If r = @p+1(l) for some
(p + 1)-chain l then r is called a p-boundary. Two p-cycles a and a0

are homologous if there exists a p-boundary b such that a = a0 + b.
Denote the groups of p-cycles and p-boundaries by Zp and Bp

respectively. For each p, @p�1@p = 0. In other words, all p-boundaries
are p-cycles (Bp # Zp). Define the pth homology group to be the
quotient group Hp = Zp/Bp, for all p.

Each element of Hp is a class obtained by adding each p-bound-
ary to a given p-cycle a. Then a is a representative p-cycle of the
homology class a + Bp.

Since the chains are considered over Z=2 coefficients, the chain
groups are vector spaces and the boundary operators are linear
operators. The cycle and boundary groups are just the kernel and
image of such operator. The homology group is a quotient space.

3.2. Cohomology

Cohomology groups are constructed by turning chain groups into
groups of homomorphisms and boundary operators into their dual
homomorphisms. Define a p-cochain as a homomorphism
c : Cp ! Z=2. We can see a p-cochain as a binary mask of the set
of p-cells: imagine you order all p-cells in the complex. (let’s say
we have n p-cells, and call this ordered set Sp). Then a p-cochain
c is a binary mask of n values in {0,1}n, where n is the number of
p-cells in the complex. When no confusion can arise, we will iden-
tify the p-cochain c with the set S of p-cells that are evaluated to 1
by c.

The p-cochains form the set Cp which is a group. The boundary
operator defines a dual set of homomorphisms, the coboundary
operator {dp: Cp ? Cp+1}pP0, such that dp(c) = c@p+1 for any p-cochain
c. Since the coboundary operator runs in a direction opposite to the
boundary operator, it raises the dimension. Its kernel is the group
of cocycles and its image is the group of coboundaries. A p-cochain c
is a p-cocycle if dpcð¼ c@pþ1Þ : Cpþ1 ! Z=2 is the null homomor-
phism. A p-cochain d is a p-coboundary if there exists a (p � 1)-co-
chain e such that d = dp�1e(=e@p). Two p-cocycles c and c0 are
cohomologous if there exists a p-coboundary d such that c = c0 + d.
The pth cohomology group is defined as the quotient of p-cocycle
modulo p-coboundary groups, Hp = Zp/Bp, for all p. Each element
of Hp is a class obtained by adding each p-coboundary to a given
p-cocycle c. Then c is a representative p-cocycle of the cohomology
class c + Bp, denoted by [c].

Definition 3.1. A set of p-cocycles {c1, . . . ,cn} is a basis of repre-
sentative p-cocycles if:
� Any other p-cocycle c can be written as a linear combination of
the p-cocycles of the set plus a p-coboundary, that is:
c ¼
Xn

i¼1

kici þ dp�1e
where ki = 0, 1 and e is a (p � 1)-cochain.
� None of the p-cocycles in the set can be written as a linear com-

bination of the rest plus a p-coboundary (minimality).
Remark 3.1. If {c1, . . . ,cn} is a basis of representative p-cocycles
then {[c1], . . . , [cn]} is a basis of the pth cohomology group of the
object. Each [ci] is a cohomology generator.

3.3. Integral operator

Starting from a chain complex, � � �!@2 C1!
@1 C0!

@0 0, take a q-cell r
and a (q + 1)-chain a. An integral operator [11] is defined as the set
of homomorphisms {/p: Cp ? Cp+1}pP0 such that /q(r) = a,
/q(l) = 0 if l is a q-cell different to r, and for all p – q and any
p-cell c we have /p(c) = 0. It is extended to all p-chains by linearity.

An integral operator {/p: Cp ? Cp+1}pP0 satisfies the chain-
homotopy property iff /p@p+1/p = /p for each p. For /p satisfying
the chain-homotopy property, define pp = idp + /p�1@p + @p+1/p

where {idp: Cp ? Cp}pP0 is the identity. Define
impp = {b 2 Cpj$a 2 Cps.t.pp(a) = b}. Then, � � �!@2 imp1!

@1 imp0!
@0 0 is

a chain complex and {pp: Cp ? impp}pP0 is a chain equivalence



Fig. 6. The cell complex K, K0 and K00; and the homomorphisms /r
p;pr

p; ir
p and /s

p;ps
p; is

p .

R. Gonzalez-Diaz et al. / Computer Vision and Image Understanding 115 (2011) 1011–1022 1015
[10]. Its chain-homotopy inverse is the inclusion map {ip: im-
pp ? Cp}pP0. Integral operators satisfying the chain-homotopy
property can be seen as a kind of inverse boundary operator: they
raise the dimension and satisfy the nilpotent condition /p+1/p = 0
for all p. Although, in general, /p�1@p – idp and @p+1/p – idp, what
happens is /p@p+1/p = /p for all p (which would be equivalent to
x � 1

x � x ¼ x for x 2 R n f0g). Consider, for example, the cell complex
K in Fig. 6 on the left. The integral operator associated to the re-
moval of the edge e is given by /r

1ðeÞ ¼ A. Then, pr
1ðeÞ ¼ ðid1þ

/r
0@1 þ @2/

r
1ÞðeÞ ¼ eþ aþ f þ dþ e ¼ aþ f þ d, pr

2ðAÞ ¼ 0;pr
2ðBÞ ¼

A (A + B is renamed as A in K0) and pr
p is the identity over the other

p-cells of K, p = 0, 1, 2. The removal of edge e decreases the degree
of vertex v allowing for further simplification.

The following lemma guarantees the correctness of the down
projection procedure for computing cocycles given in Section 5.
Since graph pyramids offer possibilities to reduce the amount of
data by local operations, then the search for independent cocycles
can be done on the top of the pyramid. Hence, the following lemma
guarantees that these cocycles can be correctly delineated top-
down through the levels of the pyramid.

Lemma 3.2. Let {/p: Cp ? Cp+1}pP0 be an integral operator satisfying
the chain-homotopy property. The chain complexes
� � �!@2 ! C1!

@1 C0!
@0 0 and � � �!@2 imp1!

@1 imp0!
@0 0 have isomorphic

homology and cohomology groups. If c : impp ! Z=2 is a represen-
tative p-cocycle of a cohomology generator, then cp : Cp ! Z=2 is a
representative p-cocycle of the same generator.
Fig. 7. The homomorphisms /r
p ;pr

p and /s
p;ps

p .
Proof. An integral operator that satisfies the chain homotopy
property, is a chain homotopy of the identity {idp: Cp ? Cp}pP0 to
{ippp: Cp ? Cp}pP0. Therefore, {pp: Cp ? impp}pP0 is a chain equiv-
alence and chain equivalences induce isomorphisms on homology
and cohomology (see [10]). h

For example, consider the cell complex K0 of Fig. 6. The 1-co-
chain a⁄, defined by the set {b, f} of edges of K0, is a 1-cocycle which
‘blocks’ the white hole H (in the sense that all the cycles represent-
ing the hole must contain an odd number of edges of a⁄). Then
b ¼ a�pr

1 is defined by the set {b, f,e} of edges of K. a and b are both
1-cocycles representing the same white hole H.

4. Preserving topology in irregular graph pyramids

Considering binary images, an object is defined by a connected
set (4-connectivity) of foreground pixels. A partition of the whole
space (foreground and background) in cells is called a cell subdivi-
sion. The referred partition could be obtained from any of the pla-
nar graphs in every level of the pyramid.

Fix a level ðGi;GiÞ, the cell complex associated to the foreground
object, called boundary cell complex, denoted by Ki, is obtained from
ðGi;GiÞ by taking all faces of Gi corresponding to vertices of Gi,
whose receptive fields contain (only) foreground pixels, and adding
all edges and vertices needed to represent the faces. The p-chain
group generated by the p-cells of Ki is denoted by Cp(Ki).

The following lemma guarantees that the local operations ap-
plied to build a graph pyramid preserve the topological properties
of the initial data.
Lemma 4.1. The boundary cell complex is well-defined. All the
boundary cell complexes of a given irregular dual graph pyramid are
cell subdivisions of the same object. Therefore, all these cell complexes
are homeomorphic.
Proof. Our input is a binarized 2D digital image. An object is the 4-
connected set of foreground pixels. Since we only remove an edge
in Gk when it is in the boundary of two different regions that have
the same label (region merging), and contract an edge in Gk when it
is incident to a vertex of degree 2 or it is a pendant edge (simplifi-
cation), all the new p-cells created are homeomorphic to p-dimen-
sional balls, p = 0, 1, 2. h

As a result of Lemma 4.1, topological invariants computed on
different levels of the pyramid are equivalent.

For the purpose of this paper, a new cell complex called homol-
ogy-generator level, is added over the boundary cell complex ob-
tained from the top (last) level of the pyramid (see Fig. 8). This
new cell complex is denoted by KH and it is a set of regions sur-
rounded by a set of self-loops incident to a single vertex. To obtain
this cell complex, on the top of the computed pyramid, we com-
pute a spanning tree of the boundary graph of the top level of
the pyramid, and contract all the edges that belong to it. Note that
KH is no longer homeomorphic to any Ki, but homotopic.

Lemma 4.2. The two operations used to construct an irregular graph
pyramid: edge removal and edge contraction, are integral operators
satisfying the chain-homotopy property.
Proof. Fix a level ðGi;GiÞ, suppose an edge e in Gi is removed. Since
Gi is planar, then e is in the boundary of two 2-cells (or regions) A
and B (see Fig. 6). The integral operator /r associated to this edge
removal is given by /r

1ðeÞ ¼ B (see Fig. 7). Now, suppose that an
edge d of Gi, with a vertex v of degree 2 in its boundary, is con-
tracted (see Fig. 6). The integral operator /s associated to this edge
contraction is given by /s

0ðvÞ ¼ d (see Fig. 7). h

Starting from a cell decomposition of an object, its homology
studies incidence relations of its subdivision. Cohomology arises
from the algebraic dualization of the construction of homology.
Both homology and cohomology are homotopy invariants.

Corollary 4.3. The boundary cell complex of any level of the pyramid
and the homology-generator level have isomorphic homology and
cohomology groups.

As a consequence of Lemmas 3.2 and 4.2 we have:

Lemma 4.4. Fix a level ðGi;GiÞ, suppose an edge e in Gi, which is in the
boundary of a region B, is removed. Let /r

1ðeÞ ¼ B be the integral
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operator associated to this removal. Let a⁄ be a 1-cocycle defined by a
set of edges S in Gi n feg. If an odd number of edges of a⁄ is in B, then
S [ {e} defines a 1-cocycle in Ki; otherwise, it is S which defines a 1-
cocycle in Ki.

In terms of embedded graphs, an integral operator maps a ver-
tex/point to exactly one of its incident edges and an edge to ex-
actly one of its incident faces. In every level of a graph
pyramid, the contraction kernels make up a spanning forest. A
forest composed of k connected components, spanning a
graph with n vertices, has k root vertices, n � k other vertices,
and also n � k edges. These edges can be oriented toward the
respective root such that each edge has a unique starting vertex.
Then, integral operators mapping the starting vertices to the
corresponding edge of the spanning forest can be defined as
follows: /0(vi) = ej, where ej is the edge incident to vi, oriented
away from it.

The following lemma guarantees that all integral operators that
create homeomorphisms are in fact a combination of the two oper-
ations used to construct irregular graph pyramids.

Lemma 4.5. All integral operators that create homeomorphisms can
be represented in a dual graph pyramid. This is equivalent to: given an
input image ðG0;G0Þ and its associated cell complex Z = {C0,C1,C2}, a
cell complex Z0 ¼ fC00;C

0
1;C

0
2g with Z, Z0 homeomorphic, and Z a

refinement of Z0 i.e. C00 # C0; C01 # C1; and C02 # C2, then there exists a
pyramid P s.t. Z0 is the cell complex associated to some level
ðGk;GkÞ; k P 0; of P.
5. Representative cocycles in irregular graph pyramids

A method for efficiently computing representative cycles of
homology generators using an irregular graph pyramid is given
in [12]. In [13] a novel algorithm for correctly visualizing graph
pyramids, including multiple edges and self-loops is given. This
algorithm preserves the geometry and the topology of the original
image and has been used to produce the images throughout the pa-
per (see Fig. 9).

In this paper, representative cocycles are computed and drawn
in the boundary graph of any level of a given irregular graph pyr-
amid. They are computed in the top level and down projected
using the described process.

In the homology-generator level (see Fig. 8c), each self-loop a
that surrounds a region of the background (hole of a region R of
the foreground) is a representative 1-cycle of a homology
generator.

Let KH be the homology-generator level. Without loss of gener-
ality, we can suppose that KH is connected. If not, repeat the follow-
ing reasoning for each connected component (region) of KH. Let
{a1, . . . ,an} be the set of the self-loops surrounding a face of the
background. Therefore, there are n white holes: O1, . . ., On (see
Fig. 8d). Fix i, i = 1, . . ., n, ai is a representative 1-cycle of the homol-
ogy generator associated to the white hole Oi. Let b be a self-loop
surrounding the face f of the foreground (recall that we suppose
that KH is connected) such that ai is in the boundary of f in KH. Form
the sets {a1,b}, . . ., {an,b}. Let K0 denote the boundary cell complex
associated to the foreground in G0. Let {/p: Cp(K0) ? Cp+1(K0)}pP0 be
the composition of all integral operators associated with all remo-
vals and contractions of edges of the foreground of the boundary
graphs of a given irregular graph pyramid. Let {pp = idp + /p�1@p +
@p+1/p: Cp(K0) ? Cp(KH)}pP0 where {ip: Cp(KH) ? Cp(K0)}pP0 is the
inclusion map.

Proposition 5.1. The 1-cochain a�i defined by the set {ai,b} in KH is a
1-cocycle. Moreover, the set fa�1; . . . ;a�ng is a basis of representative
1-cocycles.
Proof. The set of edges of KH is the set of the self-loops {a1, . . . ,an}
surrounding a region of the background together with the self-loop
b, renamed by an+1, surrounding the face f.

The 1-cochain a�i is a cocycle in KH iff d1ða�i Þ ¼ 0. Since we work
with objects embedded in R2 then ai can only be in the boundary of
two faces. In this case, one face belongs to the background and the
other face is f in KH . Then d1ða�i Þðf Þ ¼ a�i ð@2ðf ÞÞ
¼ a�i ðai þ bþ � � �Þ ¼ a�i ðaiÞ þa�i ðbÞ þ a�i ð� � �Þ ¼ 1þ 1þ 0 ¼ 0.

Let us prove minimality. Suppose, for example, that
a�1 ¼ a�j1

þ � � � þ a�js
where 1 < j1 < � � � < js 6 n, s P 1. Then a�1 is

defined by the set faj1
; . . . ;ajs

g if s even, and faj1
; . . . ;ajs

; bg if s
odd, which is a contradiction. h

We will say that a�i is a representative 1-cocycle of the cohomol-
ogy generator associated to the white hole Oi.

Algorithm 2. Down project cocycle

For each connected component (region) of KH. Let Ak, k > 0,
denote the set of edges that define a cocycle in Gk (the
boundary graph in level k).
The down projection of Ak to Gk�1 is the set of edges Ak�1 # Gk�1

that corresponds to Ak i.e. represents the same cocycle. Ak�1 is
computed as Ak�1 ¼ As

k�1 [ Ar
k�1, where As

k�1 denotes the set of
surviving edges in Gk�1 that correspond to Ak, and Ar

k�1 is a
subset of removed edges in Gk�1. The following steps show
how to obtain Ar

k�1:
1. Consider the contraction kernels of Gk�1 (RAG) whose ver-

tices are labeled with ‘(the region for which cocycles are
computed). The edges of each contraction kernel are ori-
ented toward the respective root – each edge has a unique
starting vertex.

2. For each contraction kernel T, from the leaves of T to the
root, let e be an edge of T, v its starting point, and Ev the
edges in the boundary of the face associated to v: label v
with the sum of the number of edges that are in both
As

k�1 and in Ev, plus the labels of the children nodes of v.
3. A removal edge of Gk�1 is in Ar

k�1 if the starting point of
the corresponding edge of Gk�1 is labeled with an odd
number.

Algorithm 2 gives the proposed method to downproject a
cocycle a⁄ from level k to level k � 1. Informally, in the homol-
ogy-generator level, there is only one face representing the object.
Based on the geometric interpretation of cocycles (Section 3), if
we remove the edges and the face in-between, we destroy the
hole. Then, there is no need to add any other edge to the cocycle
to remove the hole. However, when going down in the pyramid,
this face is partitioned. A connection among all the new regions
is determined by the contraction kernels of the RAG. When the
first partitioning occurs, the contraction kernel will contain one
or two nodes corresponding to faces with one surviving cocycle
edge in its boundary, and the rest of the nodes will have none.
What Algorithm 2 does is to find the unique path in the contraction
kernel joining these two nodes, and take the set of boundary edges
between consecutive faces as part of the new cocycle (see Proposi-
tions 6.2, 6.3, and their proofs). Lower levels will update the con-
nections in subsections of the cocycle path. Every subsection
will correspond to a partitioned region between two consecutive
cocycle edges.

Consider the example in Fig. 8. In the homology-generator level
we have A5 = {a,b} the representative 1-cocycle of a cohomology
generator (self-loops in Fig. 8d). For down projection in level 4,
A4 ¼ As

4 [ Ar
4. We have that As

4 is the surviving edges in bold of



Fig. 9. Top row, from left to right: boundary graphs for all levels of the pyramid. Vertices surviving to the next level are drawn with a square. Middle row, in bold: contracted
edges in the respective levels. Bottom row: removed edges in the boundary graph, equivalent to contracted edges in the adjacency graph.

Fig. 10. Top row: removed edges in boundary graph. Bottom row, from right to left: the down-projected cocycles in bold. Filled circles on faces, represent surviving vertices
from the adjacency graph in foreground regions.

Fig. 8. (a) Boundary cell complex K4 obtained from the top level of the pyramid, ðG4;G4Þ; (b) in bold, spanning tree edges of G4; (c) homology-generator level, KH; (d) in bold,
the self-loops representing the cocycle edges in KH; (e) in bold, the cocycle edges in top level.
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top level in Fig. 8e. In this case, Ar
4 ¼ ; because there is no merging

of foreground regions from the boundary cell complex obtained
from the top level to the homology-generator level.

In the example in Fig. 10, the cocycle a⁄ in level 4 is the set of
the two edges in bold (see Fig. 10, bottom row, column d). The
down projection from level 4 to 3 are the surviving edges of the
cocycle in level 4. This is because there was no contraction in the
foreground region. The contractions of the adjacency graph can
be seen in the top row of the figure.

In level 2 (Fig. 10, bottom row, column c), the first contraction of
foreground in the adjacency graph with a single edge appears. In
this case, the leaf node represents a face with an even number
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(2) of surviving cocycle edges in its boundary, which leads to not
adding any other edge to the down-projected cocycle. Only in
the base level (column a), one contraction kernel has a leaf node
with an odd number (1) of surviving cocycle edges in the bound-
ary. In this case, the corresponding edge in the boundary graph,
for the edge connecting the respective node with its father, is
added to the cocycle.

Any edge G0 that has survived to a higher level k, and was se-
lected as part of the cocycle in Gk, will belong to the down-pro-
jected cocycle in G0. In particular, the edges in G0 that have
survived to be the edges a, b of the cocycle in the homology-gen-
erator level, are going to be the entry and exit point of the cocycle
path through the foreground region.

In Fig. 11, the space between the outside boundary of the object
and the hole is bigger, allowing for more possibilities for the paths
of the cocycle. The cocycle path in the base is going to converge to
the unique path connecting the surviving edges a, b through the
ECK (see Fig. 11c).

In Fig. 11d the cocycle is made of the surviving cocycle edges
from the homology-generator level in Fig. 11b. The first partition
of the foreground is connected by the contraction kernel in
Fig. 11e. Here, one of the regions in the partition contains in its
boundary the two surviving cocycle edges, so there is no path to
find and no new cocycle edge to add. In Fig. 11f there is only one
edge to add to the cocycle to connect the path of edges, which is
identified with the leaf node with label 1.

Notice that from level Fig. 11f to the one in Fig. 11g also the se-
lected ‘surviving’ edges play a role, as edges to be removed at high-
er levels had to have been ‘surviving’ ones at levels below. In this
case, the edge we add to the cocycle in level 1 (Fig. 11f), was a sur-
viving edge in level below that was connecting two contraction
kernels. Therefore, the selection of the surviving edges also deter-
mine the delineation of the down-projected cocycle together with
the contracted ones. The ECK contains the decision of which edges
were contracted but also which ones were simplified, determining
the unique path.
Fig. 11. (a) Boundary cell complex obtained from the top level of the pyramid, ðG4;G4Þ; (b
RAG, drawn over G0 with cocycle edges in bold; (d)–(g) shows removed edges in bold f
Proposition 5.2.
1. The down projection of a�i is a set of edges ‘blocking’ the creation of
the hole Oi, i.e., given a cycle g homologous to the down projection
of the cycle ai, the down projection of a�i contains an odd number of
edges of g.

2. The down projection of a�i is always a cocycle. Moreover, the down
projection of fa�1; . . . ;a�ng is a basis of representative 1-cocycles.
Proof.

1. The down projection of a�i , which is a�i p1, contains an odd num-
ber of edges of g iff a�i ðgÞ ¼ 1. First, if g is homologous to the
down projection of ai, which is i1(ai), then there exists a 2-chain
b in K0 such that g = i1(ai) + @2(b). Second, a�i p1ðgÞ ¼ a�i p1

ði1ðaiÞ þ @1ðbÞÞ ¼ 1, since a�i i1ðaiÞ ¼ a�i ðaiÞ ¼ 1, and a�i
p1@2ðbÞ ¼ 0 because a�i is a cocycle and p1@2 = @1p2 (since {pp:
Cp(K0) ? Cp(K⁄H)}pP0 is a chain equivalence [10]). So g must
contain an odd number of edges of the set that defines a�i .

2. Proof of correctness of the down projection algorithm: it is a
consequence of Lemma 4.4. h

Example down projections are shown in Fig. 9–11.

5.1. Complexity

Let n be the height of the pyramid (number of levels) and v0, e0

the number of vertices, respectively edges in the base level, with
n � logv0 (logarithmic height). An upper bound for the computa-
tion complexity is: O(v0n) to build the pyramid; for each fore-
ground component, O(h) in the number of holes h to choose the
representative cocycles in the top level; O(e0n) to down project
each cocycle. The overall computation complexity is then below
O(v0n + c(he0n)), where c is the number of cocycles that are com-
puted and down projected.
) homology-generator level with cocycles edges in bold; (c) ECK of the foreground in
or levels from 3 to 0. Cocycle edges are marked with two small parallel lines.
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Actually not all edges are part of cocycles and not all levels have e0

number of edges. When building Ak�1 one can go in linear time over
the edges of Ak and consider only the contraction kernels in Gk�1 for
which the surviving vertices in Gk correspond to one of the two faces
to which an edge of Ak is incident to. Then, computing Ak�1 actually
takes jAkj þ

P
ijT

i
k�1j number of steps, where Ti

k�1 2 Gk�1 are the con-
traction kernels mentioned before. Thus in practice the complexity
of down projecting a cocycle is below O(e0n).

6. A first step towards stable cocycles

If topology is considered in the context of recognition, or a joint
extraction of both topological and geometrical features is required,
then the location and shape of the extracted topological invariants
becomes relevant and is an important way to ensure stability/
repeatability. A relevant example is the work in [14] where handle
and tunnel loops are made geometry aware by placing them on
‘‘geometrically relevant’’ positions.

In this section we make a first stept towards obtaining stable
cocycles andconsider invariance with respect to scanning and rota-
tion of the object. Because we start with a pixel grid and the four
neighborhood, only rotations with multiple of 90� produce identi-
cal discretizations allowing for identical cocycles.

The following properties are required for Proposition 6.4 which
gives the parts of the pyramid that the computed cocycles depend on.

Proposition 6.1. The down-projected cocycles contain only removal
edges in the boundary graphs, corresponding to edges in the ECK of the
top vertex representing the object in Gn, and the two edges a, b that
have survived to Gn and where selected as the cocycle a⁄ = {a,b}.
Proof. Algorithm 2 starts with two edges {a,b} in Gn, and for each
level k = n � 1,. . .,0 it adds only removal edges from Gk i.e. edges
that where contracted in Gk to merge neighboring regions belong-
ing to the object. h
Proposition 6.2. The result of down projection (Algorithm 2) does
not depend on the selected surviving vertices in Gk.
Proof. Consider the function q : T # Gk�1 ! N, qðTÞ ¼
P

v2T jA
s
k�1\

Ev j (see Algorithm 2 for the used notation). Every cocycle Ak has
an even number of edges from the boundary of any face in Gk (Sec-
tion 3). Then q(T) is also even and the number of vertices v for
which jAs

k�1 \ Ev j is odd, is even. For any edge e 2 T = (V,E) consider
the two connected components (trees) T1, T2 of the subgraph (V,
En{e}) (e is a cut edge of T because T is a tree). The removal edge
of Gk�1 corresponding to the edge e is added to the cocycle if
q(T1) and q(T2) are even, which is independent of the originally
chosen surviving vertex, the root of T. h
Proposition 6.3. A down-projected cocycle does not depend on the
order in which edges are removed in the boundary graphs (region
merging).
Proof. Consider the proof of Proposition 6.2. What Algorithm 2
does is to select additional edges from the contraction kernel T,
to connect the vertices v with odd jAs

k�1 \ Ev j. In a tree, there is a
unique path connecting any two vertices. Denote by K the ECK of
the vertex in Gn corresponding to the object. Algorithm 2 returns
a and b, plus the set of edges of G0 corresponding to the path in
K that connects the two vertices whose corresponding faces in G0

have a and b in their boundary. The ECK of a vertex does not
depend on the order of the intermediate steps [15]. h
The following property is an immediate result of Properties 6.1,
6.2 and 6.3.

Proposition 6.4. The cocycles computed by Algorithm 2 depend only
on the cocycle {a,b} chosen in the top level, ðGn;GnÞ, and on the ECK of
the vertex in Gn corresponding to the face describing the object in Gn.

The following property results from Proposition 6.4 and moti-
vates the modification proposed in the rest of this section.

Proposition 6.5. If the ECK of the vertex representing the object in
the adjacency graph of the homology-generator level, and the edges
that survive to be in the boundary of the corresponding face in the
boundary graph, are scanning and rotation invariant, we will obtain
scanning and rotation invariant cocycles.

In the following we will consider the necessary additions to the
pyramid building process, to ensure that computed cocycles do not
depend on the scanning and rotation of the object. We follow Prop-
osition 6.5 and consider the ECK and the boundary edges of the top
level.

6.1. Invariant ECK and surviving edges

As the edges to be removed in Gk are ‘locally’ chosen, in a binary
image like the ones used to represent our objects, there is no local
structure and a random or scanning/orientation dependent direc-
tion is taken (Line 4 of Algorithm 1).

To ‘add structure’ and create an ordering for selecting edges to
be removed and contracted:

1. Compute a spanning tree of the subgraph O � G0 correspond-
ing to our object in the base level. Mark the edges of G0

corresponding to the edges of the spanning tree to be the removed
ones.

2. Create a strict ordering between any two edges. This ordering
is used to select surviving edges during simplification, and
thus controls the choice of edges in the homology-generator
level.

The tree Given the graph O corresponding to our object, and a
vertex s 2 O, we define dðvÞ : O! N to be the number of edges
of the shortest path connecting v and s in O i.e. the geodesic dis-
tance between the two pixels corresponding to v and s, using the
four neighborhood. Note that a vertex s can be obtained in a rota-
tion invariant manner for example by using an automatic shape
orientation method [16] and then selecting the top, left-most
vertex.

Stable ECK (in G0) Every vertex v 2 G0, v – s, labels the edge
(v,v0) 2 G0 with d(v0) = d(v) � 1 as ‘to contract’. If v has more than
one neighbor v0 with d(v0) = d(v) � 1 the neighbor that minimizes
the angle dSVV 0 , and in case of angle equality, the one that has a
clockwise orientation of SVV0 is chosen. S, V, and V0 are the points
in Z2 corresponding to the centers of the pixels represented by s,
v, and v0. The edges in G0 corresponding to the edges of G0 labeled
as ‘to contract’, are marked as ‘to remove’.

Region boundary simplification (in Gk) In Line 5(iii) of Algorithm
1, from any chain of edges bounded by at least one vertex of degree
2, one edge will survive and all others will be contracted. To choose
to surviving edge, assign to each edge e 2 G0 bounding a cell of the
object, the value f(e) = min{d(v1),d(v2)} where v1, v2 are the vertices
of G0 corresponding to the two faces of G0 to which e is incident to.
Faces not part of the object are ignored.

When choosing the edge to survive i.e. not contract, the edges
are sorted using the following (transitive) relation between any
two edges e and e0:



Fig. 12. Example showing (top) normal and (bottom) rotation invariant cocycles. The cocycles are down-projected starting with the surviving edge of the outer boundary and
the surviving edge of the (a) large and (b) small holes.

Fig. 13. (a) Original image; (b) in bold, the paths in the RAG G0 associated to the down-projected cocycles related to the holes representing the top-left and top-right
windows.
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� f(e) vs. f(e0);
� if f(e) = f(e0) then use the orientation of c(e)Sc(e0) vs. the orienta-

tion of c(e0)S c(e), where cðeÞ; cðe0Þ 2 R2 are the centers of the
edges e and e0, and S 2 Z2 is the center of the pixel used to define
the rotation invariant tree;
� if c(e)S c(e0) are collinear, the Euclidean distance between c(e)

and S vs. the Euclidean distance between c(e0) and S.

Homology-generator level When building the homology-genera-
tor level, all edges of Gn�1 bounding the face of the object are sorted
based on the criteria above. Edges are selected in inverse order and
used to create the spanning tree to be contracted. Edges not bound-
ing the face corresponding to the object are added in random order.

Fig. 12 shows an example object and its computed cocycles with
and without the rotation invariant pyramid. Figs. 13 and 14 show
the paths in the RAG associated to the down-projected cocycles
of the test images in [12]. Fig. 15 is another example showing
the path in the RAG G0 associated to the down-projected cocycle
related to the hole associated to the ball. Finally, Fig 16 shows
the down-projected cocycles computed on a image from the
2010 World Cup final in South Africa.
3 Would give Euclidean rotation robust cocycles.
6.2. Discussion

Besides stability with respect to geometric transformations, one
could consider additional criteria like the minimality of the
obtained cocycles w.r.t. additional measures, like for example the
number of edges of each cocycle, the sum of the number of edges
of a basis of representative cocycles, the length of the path in R2

passing through the support squares of the pixels having at least
one cocycle in their boundary,3 etc.

It has been shown for homology generators [17] that in general
the problem of computing minimal representative cycles is NP-
hard. Nevertheless, in certain cases, like computing (n � 1)-cycles
for n dimensional objects, finding minimal cycles is not NP-hard.
For cocycles such a study does not exist yet, but considering the
relation between homology and cohomology, similar results can
be expected. In the case of 2D objects, the problem of finding cocy-
cles with minimal number of edges can be related to the problem
of finding in the RAG shortest paths that connect vertices adjacent
to different holes – this problem can be solved in nlogn if using
Dijkstra’s algorithm [18].

Real life objects are typically obtained by using scanning de-
vices of different type: 3D scanners, video cameras, CT, MRI, etc.
One common issue in all these cases is the presence of noise and
being robust w.r.t. the possible deformations of a real object. A pos-
sible solution could be to define a robust basis of cocycles based on
a function like the eccentricity transform [19] which is known to
be robust w.r.t. noise and deformations. The eccentricity transform
associates to each point of a shape the geodesic distance to the
point furthest away. For a given starting point the geodesic
distance function defines behind holes a set of points called the



Fig. 14. (a) Original image; (b) in bold, the paths in the RAG G0 associated to the down-projected cocycles.

Fig. 15. In bold, the path in the RAG G0 associated to the down-projected cocycle.
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cut locus which can be reached in the same distance on multiple
paths (going on both sides of the hole). In many cases, cutting a
shape along these sets can produce a shape with less holes, which
gives the same geodesic distance function for the same starting
point. The eccentricity transform can be interpreted as the maxi-
mum over multiple geodesic distance propagations initiated at
Fig. 16. On the top-left, original image (a image from the 2010 Wor
each point of the shape. As cocycles can be seen as ‘cuts into the
object’ that ‘kill’ a hole, a cut which has the minimum effect on
the eccentricity transform, could provide an avenue for selecting
robust cocycles.

Finding associations between concepts in cohomology and
graph theory will open the door for applying existing efficient algo-
rithms (e.g. shortest path). The following lemma can be seen as a
first step in this direction.

Lemma 6.6. Any set of foreground edges in the boundary graph G0,
associated to a path in the RAG G0, connecting a hole Oi of the object
with the (outside) background face, is a representative 1-cocycle
cohomologous to the down projection of the 1-cocycle a�i . It blocks any
generator that would surround the hole.

In other words, consider the down projection [12] of ai and b in G0:
the 1-cycles i1(ai) = a and i1(b) = b, respectively. Take any edge ea 2 a
and eb 2 b. Let fa, fb be faces of K0, the boundary cell complex
associated to the foreground in G0 having ea, respectively eb, in their
boundary. Let v0, v1, . . ., vn be a simple path of vertices in G0 s.t. all
vertices are labeled as foreground. v0 is the vertex associated to fa, and
ld Cup final in South Africa); in bold, down-projected cocycles.
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vn to fb.Consider the set of edges c = {e0, . . . , en+1} of G0, where e0 = ea,
en+1 = eb, and e‘, ‘ = 1, . . ., n, is the common edge of the regions in G0

associated with the vertices vi�1 and vi. c defines a 1-cocycle
cohomologous to the down projection of the 1-cocycle a�i .
Proof. c is a 1-cocycle iff c@2 is the null homomorphism. First,
c@2(f‘) = c(e‘ + e‘+1) = 1 + 1 = 0. Second, if f is a 2-cell of K0, f – f‘,
‘ = 0, . . . ,n, then, c@(f) = 0. To prove that the cocycles c and a�i p1

(the down projection of a�i to the base level of the pyramid) are
cohomologous, is equivalent to prove that ci1 ¼ a�i . We have that
ci1(a) = c(eb) = 1 and ci1(b) = c(ea) = 1. Finally, ci1 over the remain-
ing self-loops of the boundary graph of the homology-generator
level is null. Therefore, ci1 ¼ a�i . h
7. Conclusion

This paper considers cohomology in the context of graph pyra-
mids. Representative cocycles are computed at the reduced top le-
vel and down projected to the base level corresponding to the
original image. Connections between cohomology and graph the-
ory are proposed, considering the application of cohomology in
the context of classification and recognition. The current paper ex-
tends the previous work with detailed insights and proofs, and a
refinement of the previous method that makes the obtained cocy-
cles scanning and rotation invariant. Extension to higher dimen-
sions, where cohomology has a richer algebraic structure than
homology, and complete cohomology – graph theory associations
are proposed for future work. For this last task, we could consider
nD generalized map pyramids [20].
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