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Abstract
This paper provides a theoretical characterization of monotonically connected image
surface regions, called slope regions. The characterization is given by several topolog-
ical properties described in terms of critical points relative to the region. We formally
prove the necessary and sufficient conditions that a region needs to satisfy to be a slope
region. We also provide a prototype of slope regions which is general and contains, as
particular cases, the prototypes studied and published in previous conference papers.

Keywords Slope regions · Topological characterization · Critical points · Height
maps · Cellular decomposition · Slope complex

1 Introduction

Adigital image can be visualized as a 2.5Dcontinuous surface by defining a continuous
height (intensity) map h : R

2 → R. The set of points in the surface with same height
are called level sets (Osher and Fedkiw 2003). The critical sets (local minima, local
maxima and saddles) of the surface can be just points but, in general, they are connected
level sets. Intuitively, preserving critical sets and their connectivity will preserve the
structure of the space because, extrema (i.e., local minima and local maxima) are
surrounded by closed level curves if not artificially interrupted by the boundary of the
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data. Level curves intersect exclusively at saddles. In terms of earth topography, the
configuration of critical points connected by monotonic curves in the surface were
discussed a long time ago in Cayley (1859), Maxwell (1870).

The monotonic curves delineate surface patches, called slope regions, with the
property that every pair of points inside such a patch can be connected by a monotonic
curve. This way, slope regions may be seen as filling the space between the critical
sets of the surface (see Kropatsch 2019b). A planar triangle is a simple example of a
slope region and any triangular mesh partitions the surface into a set of slope regions.
The space between critical sets of the surface can always be partitioned into slope
regions. The corresponding decomposition of the surface with minimal number of
slope regions preserving critical sets is called a minimal slope complex. In general,
this partition is not unique and allows certain task and data-specific adaptations but
every element of such a partition satisfies the requirements of the general prototype
of slope regions given in this paper. First, such general prototype allows to check if
a region-based partition (e.g. an image segmentation) is a valid slope complex (i.e.,
a cell decomposition of the surface where each 2-cell is a slope region) as we will
see later. Second, it opens the door to set the grounds to construct a “slope grammar”
describing all possible combinations of valid slope regions.

Regarding related works, the concepts of integral lines and Morse-Smale (MS)
complexes were previously defined in Edelsbrunner et al. (2003b), Edelsbrunner et al.
(2003a) and Edelsbrunner and Harer (2009), with the intention to build a hierarchy
of increasingly coarse MS complexes. In that case, the decomposition is made into
regions of uniformflowusing integral lines. Specifically,MS complexes are built using
a real-valued smooth map over the surface, with non-degenerated critical points. We
will see later that the concept of integral line has great similarity to the monotonic
curves of our approach although monotonic curves are geometrically less constrained.

Many efficient algorithms can be found in the literature to compute consistent
MS complexes. For example, in Gyulassy et al. (2014), the authors presented an
efficient algorithm to compute consistent MS complexes using a divide-and-conquer
strategy for dealing with large data. In Sorgente et al. (2018), the authors introduced a
novel algorithm using discrete gradient flow paths to decompose a 3D object into an
atlas of disk-like charts. In Comic et al. (2010), the authors computed maximal cells
of the ascending and descending Morse complexes through a watershed approach.
Nevertheless, since the computation of slope complexes is not the goal of the paper,
we only introduce here a first step to it and the comparison of slope complexes and
MS-like complexes is left as future work.

With respect to other closely related technique such as Reeb graphs and complexes,
in Marzantowicz et al. (2015), the authors characterized the Reeb graphs for functions
f onmanifoldsMwith concrete properties. For example, ifM has finite fundamental
group, then the Reeb graph of f is a tree.

Critical sets can appear in many different configurations. A catalogue of different
configurations of the critical points and slope districts was discussed in Lee (1984).
The author also provided visualizations of the “slope districts” (a simpler version
of slope regions) using Critical Point Configuration Graphs constructed using peaks
(local maxima), dales (local minima) and passes (saddle points). In Rosin (1995), the
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authors described a technique for extracting the slope districts from smooth discrete
images and produce a hierarchical description in terms of linked slope districts.
Related conference publications published: In Kropatsch (2019a), given a 2D con-
tinuous surface, not necessarily being piecewise linear or smooth, we defined slope
regions as simply connected components such that any two points in them are con-
nected by a monotonic path, where the intersection between them are allowed. We
introduced the concept of slope complexes which are particular cases of 2-dimensional
(2D) CW-complexes in which each 2-cell is a slope region. From this start point, we
proposed a prototype of slope regions with the constraint that their outer boundary is
composed by exactly two monotonic curves. We explored how to create and reduce
slope complexes, by describing a basic process to reduce the number of slope regions
without affecting the bounding critical points, obtaining a simplified slope complex.
The computation of slope complexes was made in Kropatsch (2019a) only in the case
in which the height map is piecewise linear and slope regions are planar triangles
obtained from a triangulation of a 2D continuous surface. In Cerman et al. (2016), we
produced superpixel hierarchies (combinatorial graph pyramids) that are multiresolu-
tion segmentations of the given picture and where critical points are preserved along
the pyramid. In Kropatsch (2019b), we approached the study of slope complexes from
the point of view of the neighborhood graph of a digital picture. Its vertices can be
interpolated to form a 2-manifold with critical points, where slopes and plateaus being
the ones recognized by local binary patterns (LBPs). Neighborhood graph produces a
cell decomposition of the manifold, where each 2-cell is a slope region. In Kropatsch
(2019b), we showed that each level of the pyramid produces a slope complex. Slope
complexes in different levels of the pyramid are always homeomorphic to disks. We
also addressed the question whether there is a minimal number of slope regions that
completely cover the 2.5D surface between a given set of critical points. We also pro-
vided a formula to count the minimum number of slope regions required to represent
the surface, given the number of critical points. In Batavia et al. (2019b), we used
the representation of a surface by a neighborhood (primal) graph and its dual, where
the modifications in the primal graph are reflected in the dual. The vertices of such
graphs are categorized into maximum, minimum, slope or saddle depending on the
orientation of their incident edges. We introduced the orientation of the edges in the
dual graph and showed that the LBP category of the dual vertex is consistent with the
corresponding face in the primal graph, by providing an interpretation in the image
context. Besides,we introduced a technique to orientmonotonic pathswith level curves
in the primal graph and provided necessary and sufficient conditions for both primal
and dual graph to merge two slope regions. In Batavia et al. (2019a), we introduced
a second prototype with the aim of characterizing slope regions with the constraint
that the outer boundary is a level curve. We provided necessary conditions for their
existence and we showed that a well-composed 2D digital image can be partitioned
into slope regions categorized into one of the two previously described prototypes.
Finally, in Batavia et al. (2021), we proposed a Topology-preserving Irregular Image
Pyramid (TIIP) algorithm including a hierarchical method to build an irregular image
pyramid that preserves slopes regions. The algorithm operates on combinatorial maps
which implicitly encode the structure of the image on the higher level of the pyramid
with a compact representation. The use of combinatorial maps supports parallel pro-
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Fig. 1 Example of an image A and its reconstruction F using the TIIP algorithm introduced in Batavia
et al. (2021). Observe that the reconstruction D of the original background B lost information while the
original fine details C are preserved in E after the reconstruction

cessing with time complexity of O(log(d)), where d is the diameter (in pixels) of the
largest region after the simplification is made. With the TIIP algorithm, we were able
to reconstruct images using as few as 30% of the color values and the information
stored on top of the pyramid, although preserving fine details including the texture of
the image. An example of an original and reconstructed image is showed in Fig. 1.

In this paper, necessary and sufficient conditions for a region to be slope are for-
mally provided for the first time, obtaining a simple and complete characterization of
slope regions and, as a consequence, a prototype for slope regions, which is general
and complete. We also prove that prototypes described in previous papers are partic-
ular cases of our general prototype described here. Each result (Theorem, Lemma,
Corollary) presented in this paper without a previous reference is original and new.

From the application point of view, Cerman et al. (2016) provided an algorithm
where the neighborhood graphs were used to represent a digital image. By a sequence
of edge contraction and edge removal operations, we reduced the graph and stack
them to form an irregular graph pyramid. Later, irregular graph pyramids were used
for multi-resolution image segmentation. Similar approaches were used in Wei et al.
(2018) for multi-resolution image segmentation using a super pixel hierarchy. The
characterization of slope regions presented in this paper opens a door to design robust
algorithms to compute slope regions that could be used for image processing tasks such
as geometric modeling, or filtering on segments with particular topological properties.

The paper is organized as follows. Section 2 is devoted to present the main defi-
nitions and basic tools that will be used throughout this paper. We also introduce the
concept of monotonic curves, which will be the key point and reference of our work.
Section 3 contains the theoretical results of the paper. We introduce the notion of slope
regions, for which we use the concept of monotonic curves, and prove preliminary
results which will lead us to obtain a complete characterization of the slope regions at
the end of the section.

In Sect. 4, we approach the study of cell decomposition through the use of slope
regions and prove that there is a natural way to move from a slope region to a 2-cell.
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Fig. 2 Level curves as part of a
monotonic curve

Section 5 focuses on the general prototype of slope regions presented here for the first
time, containing the prototypes published in previous conference papers as particular
cases, with the aim of giving a combinatorial representation for such regions. Finally,
Sect. 6 concludes the paper.

2 Preliminaries

Let us introduce several definitions based on a map h : R
2 �→ R with the only

requirement of h being continuous but not necessarily smooth.
A curve π : [0, 1] → R

2 is a continuous map. It is simple if π |(0,1) is one-to-one.
Otherwise, it is folded. It is monotonic if there is no interval [a, b] ⊂ (0, 1) being a
1-extremum. Let imπ be the set {p ∈ R

2 : p = π(t) for some t ∈ [0, 1]}.
Definition 1 (1-extrema) Let π : [0, 1] → R

2 be a curve and let [a, b] ⊂ [0, 1].
Suppose that h(π(t)) = c for some c ∈ R and for all t ∈ [a, b]. Then, [a, b] is a 1-
minimum (1-min) if there exists ε > 0 such that c < h(π(s)) for all s in a neighborhood
((a−ε, b+ε)\[a, b])∩[0, 1]. Similarly, [a, b] is a 1-maximum (1-max) if c > h(π(s))
for all s ∈ ((a − ε, b + ε) \ [a, b]) ∩ [0, 1]. Finally, [a, b] is a 1-extremum if it is a
1-max or a 1-min. If a = b, then [a, a] is a 1-extremum point.

Definition 2 (level curve) A level curve γ : [0, 1] → R
2 is a curve satisfying that

there exists a constant c ∈ R such that h(γ (t)) = c, for all t ∈ [0, 1].
Observe that a level curve is a particular case of monotonic curve. A level curve

can also be part of a monotonic curve. Observe that all curves considered in this paper
(including level curves) are connected.

Remark 1 A strictly monotonic curve, excluding level curves, is either increasing or
decreasing. It is always bounded by a 1-max and a 1-min. This allows us to consider
monotonic curves with a natural orientation. In our illustrations: an arrow from point a
to point b represents a monotonic curve with endpoints a and b such that h(a) > h(b).
When the curve is exactly a level curve, no arrow is pictured. See Fig. 2.

An example of monotonic curve is shown in Fig. 2. The intervals [0, x] and [y, 1]
are level-curve 1-extrema (1-max and 1-min respectively). Observe that no closed
sub-interval of (0, 1) can be a 1-extremum.
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A disk D of radius r > 0 centered at a point p ∈ R
2 is the set D = {q ∈ R

2 such
that d(p, q) ≤ r}. The interior of D is int(D) = {q ∈ R

2 such that d(p, q) < r} and
the boundary of D is ∂D = {q ∈ R

2 such that d(p, q) = r}.
A set X ⊆ R

2 is disconnected if there exist two open sets U1 ⊆ R
2 and U2 ⊆ R

2

such that X1 ⊆ U1, X2 ⊆ U2, X = X1 ∪ X2 and U1 ∩ U2 = ∅. Otherwise, X is
connected. The set X is bounded if it is contained in a disk.

Aholeof X is a bounded connected component ofR2\X . The set X ismonotonically
connected if it is connected and for any two different points p and q of X there exists
a monotonic curve π : [0, 1] → X , with π(0) = p and π(1) = q. The topological
interior of X , denoted as topint(X), is defined as the largest open subset of X . The
frontier of X , denoted as fr(X), is defined as X \ topint(X).

Definition 3 (plateau) A plateau Pc is a bounded closed connected subset of R
2

satisfying that h(p) = c for all p ∈ Pc.

Observe that a plateau Pc can be, for example, just a point in R
2, a level curve or even

the union of a set of level curves. A plateau may also contain holes.

Definition 4 (categories of plateaus) Let Pc be a plateau.

– Pc is a 2-minimum (2-min) if there exists a monotonically connected open set
U ⊆ R

2 satisfying that Pc ⊂ U and h(q) > c for every q ∈ U \ Pc.
– Pc is a 2-maximum (2-max) if there exists a monotonically connected open set
U ⊆ R

2 satisfying that Pc ⊂ U and h(q) < c for every q ∈ U \ Pc.
– Pc is a 2-saddle if for all open set U ⊆ R

2 satisfying that Pc ⊂ U then U is not
monotonically connected.

A 2-extremum is either a 2-min or a 2-max. A 2-critical plateau is either a 2-extremum
or a 2-saddle.

Let us recall that a homeomorphism is a bicontinuous bijective map. Now, let us
introduce the concept of region.

Definition 5 (region) Let R be a subset of R
2 and let D be a disk. The subset R is

a region if it can be obtained as the image of a continuous surjective map f : D →
R (that is, R = im f ) satisfying that f |∂D is a continuous curve and f |int(D) is a
homeomorphism.

Observe that the same region R could be obtained using different continuous sur-
jective maps f : D → R.

Definition 6 (boundary, outer boundary and interior of a region) Let R be a region
obtained as the image of a continuous surjective map f : D → R. The set of points in
im f |int(D), denoted as int f (R), is called the interior of R. Similarly, the set of points
in im f |∂D , denoted by ∂ f R, is called the boundary of R. See Fig. 3.
The outer boundary of R is the image of a simple curve π : [0, 1] → ∂ f R, which
divides the plane R

2 in two connected components, one, containing R, bounded by
imπ and one unbounded.
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Fig. 3 A pictorial example of a
continuous surjective map f
from a disk D to a region R. a
The map f restricted to the
boundary of D. b The map f
restricted to the interior of D

(a) ∂R (b) int(R) (c) fr(R) (d) topint(R)

Fig. 4 The boundary, the interior, the frontier, and the topological interior of a region R

For the sake of simplicity, the interior and boundary of R will be denoted, respectively,
as int(R) and ∂R, when it is not considered relevant to explicitly mention the function
f . Besides, as we will see later, folded curves are needed for connecting the holes to
the outer boundary.

Definition 7 (plateau region) A region being a plateau is called a plateau region.

Remark 2 Let R be a region. Then, int(R) lies in topint(R) and fr(R) lies in ∂R.
Besides, int(R) is homeomorphic to a disk whereas topint(R) does not need to be.
Finally, ∂R is necessarily connected, whereas fr(R) is not. See Fig. 4.

Definition 8 (categories of plateaus relative to a region) Let R be a region and Pc ⊂ R
a plateau then:

– Pc is an R-minimum (R-min) if there exists an open set U ⊆ R
2 satisfying that

U ∩ R is monotonically connected, Pc ⊂ U ∩ R and h(q) > c for every q ∈
U ∩ R \ Pc.

– Pc is an R-maximum (R-max) if there exists an open set U ⊆ R
2 satisfying

that U ∩ R is monotonically connected, Pc ⊂ U ∩ R and h(q) < c for every
q ∈ U ∩ R \ Pc. An R-extremum is either an R-min or an R-max.

Observe that an R-extremum that lies in the topological interior of R is, in fact, a
2-extremum. Conversely, a 2-extremum lying in the frontier of R is an R-extremum.

3 Slope regions

In this section we formally introduce the concept of slope region and study several
preliminary results required to prove the necessary and sufficient conditions that any
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slope region needs to satisfy. As a main result, we provide and prove a complete and
general characterization of slope regions.

Definition 9 (slope region) A slope region S is a monotonically connected region.

Notice that a plateau region is a trivial and particular case of slope regions, due to
all points in the plateau region are connected by level curves, which are monotonic
curves.

3.1 Necessary conditions of slope regions

Let us study properties that any slope region must satisfy.

Theorem 1 If S is a slope region then S does not contain any 2-saddle in its topological
interior and it is either a plateau region or it is a region with maximally one R-max
and one R-min.

Proof By definition of slope regions there exists a monotonic curve between any two
points in S, which directly implies that S cannot contain 2-saddles in its topological
interior. Since S is not a plateau and it is closed and bounded, then S contains, at
least, one R-max and one R-min. Neither two R-maxima nor two R-minima can be
connected by a monotonic curve in S, then S cannot contain neither two or more
R-maxima, nor two or more R-minima. ��
Lemma 1 The boundary of a slope region S is always either a level curve or it contains
exactly one 1-max and one 1-min.

Proof If for all p ∈ ∂S we have that h(p) = c, for some c ∈ R, then the proof is
complete. Otherwise, ∂S is a continuous non-level curve. Then, it has at least one
1-max I and one 1-min J (recall that I and J could be closed intervals or just points).
Let us prove that ∂S has exactly one 1-max and one 1-min. By contradiction, suppose
that ∂S has, for instance, another 1-max, denoted by I ′. Consider two points p ∈ I
and p′ ∈ I ′. Assume that h(p) ≤ h(p′).

Since S is a slope region then there exists a monotonic curve π : [0, 1] → S joining
p and p′.

Now, since I is a 1-max, p ∈ I with h(p) ≤ h(p′) and π is monotonic then,
necessarily, there exist s, s′ ∈ [0, 1] such that π(s), π(s′) ∈ ∂S, h(p) ≤ h(π(s)) ≤
h(π(s′)) ≤ h(p′) and π((s, s′)) lies in int(S). Therefore, π |[s,s′] divides S in, at least,
two disjoint sets S1 and S2, and hence, ∂S can be divided in two different continuous
curves π1 : [0, 1] → ∂S and π2 : [0, 1] → ∂S, one lying in S1 and the other
lying in S2. Suppose that the 1-min J lies in π1. Then, there exists another one 1-
min J ′ lying in π2 since π2 is a continuous curve. Consider q ∈ J and q ′ ∈ J ′.
Assume that h(q) ≤ h(q ′). Then, there exists a monotonic curve π̂ : [0, 1] → S
between q and q ′. By similar reasoning as before, π̂ crosses the interior of S and, then,
there exists a point r ∈ int(S) such that r ∈ imπ∩ im π̂ . For such point r , we have
h(q) ≤ h(r) ≤ h(q ′) < h(p) ≤ h(r) ≤ h(p′) which is a contradiction. ��

123



Journal of Combinatorial Optimization

3.2 Sufficient conditions of slope regions

Let us prove that sufficient conditions for a region R to be a slope region are: (a)
R does not contain any 2-saddle in its topological interior, (b) R is either a plateau
region or it contains one R-max and one R-min, and (c) ∂R is either a level curve or
it contains one 1-max and one 1-min.

From now on, let c be a value between the lowest and the highest h-values for the
given continuous map h. Let Lc = {p ∈ R such that h(p) = c}, being R a given
region. The level set1 Lc could be non-connected, so it might not be a plateau.

Lemma 2 Let R be a region with no 2-saddle in its topological interior, and with,
exactly, one R-max and one R-min. Let X = R \ Lc. Then X �= ∅ is composed by at
most two connected components.

Proof First, R is not a plateau then X �= ∅. Let X̄ be the closure2 of X . Then, X̄ is a
subset of R, since R is closed. Moreover, since R = X ∪ Lc then X̄ \ X is a subset
of Lc. By contradiction, suppose that X is composed by more than two connected
components, for instance, three connected components X1, X2 and X3. Let X̄i be
the closure of Xi for i = 1, 2, 3. Since X̄i \ Xi is a subset of Lc and X̄i � Lc,
for i = 1, 2, 3, then X̄i cannot be a plateau. An R-max (resp. R-min) relative to
region X̄i will be denoted by X̄i -max (resp. X̄i -min), for i = 1, 2, 3. Now, since
each X̄i is closed and bounded, then there is at least one X̄i -min and one X̄i -max, for
i = 1, 2, 3. Without loss of generality, suppose that an X̄1-max coincides with the
R-max. Then the rest of the X̄i -maxima cannot lie in Xi , for any i = 1, 2, 3, since R
only contains one R-max. Consequently, the rest of the X̄i -maxima lie in X̄i \Xi ⊆ Lc,
for i = 1, 2, 3. Similarly, the R-min can coincide with an X̄1-min, an X̄2-min or an
X̄3-min. Without loss of generality, suppose that the R-min coincides with an X̄2-min.
Then, by the same reason as above, the rest of the X̄i -minima lie in Lc, for i = 1, 2, 3.
We conclude that one X̄3-max and one X̄3-min lie in Lc and no X̄3-extremum lies in
X3. Then, necessarily, X̄3 ⊆ Lc, which is a contradiction. ��

The previous lemma is used to prove that a level set contained in a region with
specific constraints is always connected.

Lemma 3 Let R be a region with exactly one R-max, one R-min and without any 2-
saddle in its topological interior. Assume that the boundary of R, ∂R, is either a level
curve or it contains exactly one 1-max and one 1-min. Then Lc is connected, where
Lc = {p ∈ R such that h(p) = c}.
Proof Let X = R \ Lc. By Lemma 2, we know that X is composed by at most two
connected components. First, observe that both, the R-max and the R-min, cannot
belong to a same connected component of X , named Y , otherwise, there would exist
a curve in Y between the R-max and the R-min and a point p in the curve satisfying
that h(p) = c which is not possible since X ∩ Lc = ∅. Now, the next two cases can
be distinguished:

1 Properties of level sets can be found in Sethian (1999).
2 The closure of a set X ⊆ R

2, denoted by X̄ , is the smallest closed subset of R
2 containing X .
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– X is connected. Since both the R-max and the R-min cannot belong to X , then Lc

must be the R-max or the R-min. Therefore, by definition of R-extremum, Lc is
connected.

– X is composed by two connected components X1 and X2. By contradiction, sup-
pose that Lc is disconnected. Similar to what was done in the proof of Lemma 2,
we can assume that the R-max lies in X1 and the R-min lies in X2. Then, h(x1) > c
for all x1 ∈ X1 and h(x2) < c for all x2 ∈ X2.

Now, suppose that for some connected component L of Lc, we have that L ∩ X̄1 = ∅.
In that case, we could find an open set U ⊂ R

2 such that: L ⊂ U ∩ R ⊂ R \ X̄1;
U∩(Lc\L) = ∅ (since L is a connected component of Lc); andU∩R ismonotonically
connected (since R has no 2-saddles in its topological interior). ThenU ∩ R ⊂ L∪ X2
and, in that case, we conclude that L is an R-max (since h(x2) < c for all x2 ∈ X2),
which is a contradiction. A similar case occurs when L ∩ X̄2 = ∅.
Let us prove then that if Lc is disconnected then there always exists a connected
component L of Lc such that L ∩ X̄1 = ∅ or L ∩ X̄2 = ∅, leading to the previous
contradiction.

The different possibilities that can occur are the following:

– ∂R ⊆ Lc (in such case, ∂R is a level curve). Since ∂R is connected, then ∂R ⊆ L
for some connected component L of Lc. Now, if L ∩ X̄1 = ∅ or L ∩ X̄2 = ∅,
the proof has finished. Otherwise, assume that L ∩ X̄1 �= ∅ and L ∩ X̄2 �= ∅
and suppose that X̄1 ∩ ∂R �= ∅. Let L ′ be another connected component of Lc.
Then, in particular, L ∩ L ′ = ∅. Since ∂R ⊆ L then L ′ ⊂ int(R) and necessarily
L ′ ∩ X̄1 = ∅.

– ∂R ⊆ X . Since ∂R is connected, assume, without loss of generality, that ∂R ⊆ X1.
Then Lc and X̄2 lie in int(R). Therefore, X̄2 \ X2 ⊆ Lc. Let L and L ′ be two
different connected components of Lc. Since ∂R ⊆ X1, X1 is connected and
X = X1 ∪ X2 then X2 has no holes (otherwise, either X1 is not connected or
X̄2 ∩ ∂R �= ∅), then X̄2 \ X2 is connected and lies in one connected component
of Lc, for example, L . Therefore, L ′ ∩ X̄2 = ∅.

– If ∂R � Lc and ∂R � X then, necessarily, ∂R is not a level-curve. Then, ∂R has
exactly one 1-max and one 1-min. Two cases may arise: (1) One 1-extremum of
∂R lies in Lc and the other lies in X . Suppose, without loss of generality that the
1-min lies in Lc and the 1-max lies in X1. Then, ∂R ⊆ L ∪ X1 for some connected
component L of Lc. Now, if L∩ X̄2 = ∅, the proof has finished. Otherwise, X̄2 lies
in int(R) and following a reasoning similar than above, X̄2 \ X2 ⊆ L , concluding
that L ′ ∩ X̄2 = ∅. (2) The two 1-extrema of ∂R lie in X . Then, necessarily, the
1-max lies in X1 and the 1-min lies in X2. Then ∂R ⊆ X ∪ Lc. Now, if there is
a connected component L of Lc such that ∂R ∩ L �= ∅ and either L ∩ X̄1 = ∅
or L ∩ X̄2 = ∅, the proof has finished. Otherwise, as before, there would exist
another connected component L ′ inside int(R) satisfying that L ′ ∩ X̄1 = ∅ or
L ′ ∩ X̄2 = ∅, concluding the proof.

��
The next result establishes sufficient conditions for a region R to be a slope region.

Briefly, the next result shows that if R satisfies some constraints, it is always possible
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to construct a monotonic curve between any two points in R concatenating certain
monotonic curves and level curves contained in R.

Theorem 2 If R is a region with no 2-saddles in its topological interior, with exactly
one R-max and one R-min, and such that the boundary of R is either a level curve or
it contains exactly one 1-max and one 1-min, then R is a slope region.

Proof Let us prove that any two different points p, q ∈ R can be joined by amonotonic
curve in R.

First, suppose that h(p) = h(q) = c. In this case, p, q ∈ Lc and, since Lc is
connected by Lemma 3, then there is a level curve (which is a particular case of
monotonic curve) between p and q in R. Now, assume, without loss of generality, that
h(p) < h(q). Since R is connected, there is a curve π : [0, 1] → R from p to q. If π

is monotonic then the proof is complete. Otherwise, since π is continuous and [0, 1] is
a bounded and closed set and due to h(p) < h(q), there exists n ≥ 1 (n can be infinite)
such that there are subsets [ti , si ], for 1 ≤ i ≤ n, with 0 ≤ t1 < s1 ≤ t2 < s2 ≤ · · · ≤
tn < sn ≤ 1 for which, every π |[ti ,si ], for 1 ≤ i ≤ n, is a monotonic increasing curve,
that is, h(π(ti )) < h(π(si )) for 1 ≤ i ≤ n and satisfying that h(π(ti )) ≤ h(π(ti+1))

and h(π(si )) ≤ h(π(si+1)) for 1 ≤ i < n; h(π(si )) = h(π(ti+1)) for 1 ≤ i < n; and
related to p and q, it must verify that h(p) = h(π(t1)) and h(π(sn)) = h(q).

Besides, since h(π(si )) = h(π(ti+1)), for 1 ≤ i < n, by Lemma 3, there exists a
level curve between si and ti+1, for 1 ≤ i < n, named γi . Moreover, since h(p) =
h(π(t1)) and h(π(sn)) = h(q), there are also two level curves, one between p and
t1, denoted by γp, and other between sn and q, named γq . Then, a monotonic curve
πpq can be constructed from p to q by the union of the monotonic curves π |[ti ,si ], for
1 ≤ i ≤ n, the level curves γi , for 1 ≤ i < n, γp, and γq , as follows:

πpq = γp ∪ π |[p,s1] ∪ γ1 ∪ π |[t2,s2] ∪ γ2 ∪ . . . ∪ γn−1 ∪ π |[tn ,sn ] ∪ γq .

Hence, there always exists a monotonic curve between any two different points in R,
and therefore, R is a slope region. ��

As an immediate consequence of Theorems 1 and 2, we conclude this section with
the characterization of slope regions.

Corollary 1 A region S is a slope region if and only if S satisfies the following condi-
tions:

– S does not contain 2-saddles in its topological interior.
– S is either a plateau region (possibly with holes) or it contains exactly one R-max
and one R-min.

– The boundary of S is either a level curve or it contains exactly one 1-max and one
1-min.

As a consequence, a slope region contains at most one 2-max and one 2-min.
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4 Slope complexes

In this section we define a slope complex as a cell decomposition of the plane R
2 such

that the 2-cells are slope regions and the 1-cells are monotonic curves.
Using our approach, critical points can be degenerated, and monotonic curves do

not necessarily follow the steepest slope, as used in Edelsbrunner et al. (2003b). Table 1
summarizes the different constraints to build MS complexes and slope complexes.

A detailed definition of cell complexes can be found, for example, in Chapter 1 of
Hatcher (2000).

Briefly, to construct a cell decomposition of the plane R
2 begin with a discrete

space T0 ⊂ R
2 whose elements are called 0-cells or vertices. The space T1 ⊂ R

2 is
obtained by attaching simple curves with endpoints in T0. Such curves are also called
1-cells or edges. To obtain T2, attach regions (also called 2-cells or faces) in a way
such that the boundary of each region is the union of a finite number of edges of T1.
If T2 = R

2, then T0 ⊂ T1 ⊂ T2 is a cell decomposition of R
2.

In order to capture, in a cell decomposition of the plane, the behaviour of the
continuous map h : R

2 → R, the cell decomposition and the map h need to satisfy
several constraints.

First, we need the extra-condition for the continuous map h of not having accumu-
lation points of 2-critical plateaus.

Remark 3 Let p ∈ R
2. Let Dε be the disk centered at a point p ∈ R

2 with radius ε.
If, for any ε > 0, Dε contains an infinite number of 2-critical plateaus then p cannot
be contained in any slope region.

The next definition provides the structure of a cell decomposition formed by slope
regions.

Definition 10 (slope complex) A slope complex K is a cell decomposition of R
2

satisfying the following conditions:

1. Each region of K is a slope region.
2. For each 2-critical plateau P , there is a vertex of K which is a point of P .
3. For each slope region S and each R-extremum P , there is a vertex of K which is

a point of P .

To end this section, the following result guarantees that we can always compute a
slope complex from a decomposition in slope regions.

Proposition 1 The boundary ∂S of a slope region S can always be decomposed into
a finite set of vertices and edges. If ∂S is a continuous curve with exactly one 1-max
and one 1-min, then ∂S can be decomposed in two different sets of edges and vertices
satisfying that each of these sets corresponds to a monotonic curve from a vertex being
a point of the R-max to a vertex being a point of the R-min.

Proof By Lemma 1, ∂S can only be a level curve or a continuous curve with exactly
one 1-max and one 1-min. Firstly, if ∂S is a level curve then it can be decomposed
in a finite set of simple level curves, and each of these curves can be decomposed in
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Fig. 5 General prototype of slope regions. The possibility of the existence of more holes is illustrated by
dashed lines: Extra holes can be connected by paths to the three holes represented in the picture or to the
outer boundary with the only constraint that all the paths can be joined together connecting ⊕ and � by
exactly two different monotonic paths

Fig. 6 A 2.5D mesh plot illustrating an “inclined slope region” and its prototype representation

one or two vertices and one edge. Secondly, if ∂S is a continuous curve with exactly
one 1-max and one 1-min, then it can be decomposed in two different monotonic
curves between the 1-max and the 1-min. Each monotonic curve can be decomposed
in simple monotonic curves being edges with endpoints being vertices. If the 1-max
(resp. the 1-min) is a vertex of the R-max (resp. the R-min), then the proof is complete.
Otherwise, there exists a monotonic curve πmax (resp. πmin) between any point of the
R-max and the 1-max (resp. the R-min and the 1-min). Besides, such curves do not
intersect ∂S, since the h-values of the points of ∂S are lower (resp. higher) than the
h-values of the points in πmax (resp. πmin). For a similar reason, they do not intersect
each other. Finally, decomposing such monotonic curves πmax and πmin in simple
curves being edges, with endpoints being vertices, and joining them to the previous
sets of vertices and edges, we obtain two finite sets of edges ∂S that correspond to
exactly two monotonic curves between one vertex of the R-max and one vertex of the
R-min. ��
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5 Prototype of slope regions

As we have shown in Sect. 3, the slope regions have been univocally characterized,
but they may have different arrangements, and then, different appearances. Hence it
becomes necessary to sum up the common properties of all slope regions in a simple
representation called “prototype”. A prototype is the combinatorial structure of a slope
region. Therefore, prototypes show all the features that a corresponding slope region
will exhibit. The prototypes are flexible and it is possible to remove certain elements
(e.g., holes) which will result in different configurations of slope regions, but always
keeping the same properties provided in Corollary 1. In this section, we first recall two
already known prototypes of slope regions. Later, we sum up the two prototypes into a
complete and general one, in terms of the elements provided by the characterization of
slope regions: the two extrema relative to the region together with the boundary of the
region, with the assurance that it represents any slope region. We end up the section
with some examples of slope-region decomposition of a given gray-level image.

Figure 5 is the graphical representation through graphs of the general prototype
representing all the possible configurations of slope regions. Paths represent the cor-
responding curves on the surface. Similarly, closed paths represent curves with same
endpoint. An arrow on a path indicates that the corresponding curve is monotonic. An
arrow from point a to point b indicates that h(a) ≥ h(b). The absence of arrows on
a path indicates that the path represents a level curve. Observe that due to the charac-
terization of slope regions given in this paper, all the possible configurations of slope
regions have similar elements: there is the region R bounded by the outer boundary
connecting the 1-max m1 and the 1-min m2.

In the topological interior of the region we could have an R-max ⊕ and the R-
min �. Each R-extremum is a vertex of the prototype, with possibly closed paths
(representing level curves) attached (see Fig. 7). The R-max ⊕ and the R-min � are
connected to m1 and m2 respectively by a monotonic path. The orientation of the
path is from ⊕ to m1 and from m2 to � since h(⊕) ≥ h(m1) and h(m2) ≥ h(�).
Intuitively, each hole represents a bounded connected set of points in R

2 that cannot
be connected to the points in R by a monotonic curve. Therefore, a hole cannot be a
part of the slope region because it contradicts Definition 9. Intuitively, all the holes
are connected to the boundary such that the interior of the region is homeomorphic
to a disk. Holes can be further classified depending on their occurrence. Namely, (a)
“inclined” holes surrounded by the monotonic paths (⊕,m1) and (m2,�) (example:
Hole1 and Hole2 in Fig. 5); and (b) “horizontal” holes attached to such monotonic
paths (example: Hole3 in Fig. 5). More holes can be connected by paths to the holes
represented in Fig. 5 or to the outer boundary with the constraint that all the paths
can be joined together connecting ⊕ and � by exactly two different monotonic paths.
The possibility of the existence of more holes is illustrated in Fig. 5) by dashed
lines. Observe that horizontal holes can appear attached to other holes or to the outer
boundary by level paths (see, for example, Fig. 6).

Observe that the two monotonic paths â and ǎ connecting ⊕ and p1 in Fig. 5
are the same: they represent that there is a monotonic curve in the region which
is obtained as the identification of both of them, â and ǎ. Similar observation
can be made for paths b̂, b̌, ĉ, č, d̂ , ď, or even for h5 and h6, which represent
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Fig. 7 A 2.5D mesh plot illustrating a “crater” and its prototype representation

the same curve and, in that case, it must be a level curve. Otherwise, the result-
ing curve from the R-min to the R-max is not monotonic which is a necessary
condition for the boundary of a slope region, as we proved in Sect. 3. The com-
plete traversal along the boundary of the general prototype can be described as
follows: (⊕, â, h1, b̂,m1, e,m2, d̂, h4, ĉ,�, č, h3, ď,m2, ĝ, p5, h5, p, h, p, h6, p5,
f̂ ,m1, b̌, h2, ǎ,⊕). The paths responsible for connecting the elements⊕,� and holes
to the outer boundary are a subset of the complete boundary of the slope region, and
they are intuitively called as “the folding of the boundary”. “Folding” and“unfolding”
has also been used in Edelsbrunner et al. (2003b) for treating degenerated saddle
points.

The general prototype presented in Fig. 5 is a generalized version of Prototype 1
(“inclined slope region”)mentioned inKropatsch (2019a). An example of a 2.5Dmesh
plot and its graphical representation corresponding to Prototype 1 is given in Fig. 6.
Observe that there can be many holes (as mentioned above) inside the slope region and
that the outer boundary of the region is surrounded by exactly two monotonic paths
connecting the 1-max m1 and the 1-min m2. Prototype 2 (“horizontal slope region”)
mentioned in Batavia et al. (2019a) can also be obtained from the general prototype
presented in Fig. 5, by replacing the monotonic paths in the outer boundary by paths
representing level curves.

In the general prototype, if the R-max⊕ (resp. R-min�) is absent, vertexm1 (resp.
m2) will become the R-max (resp. R-min). Besides, the absence of the R-max and
the R-min together with the outer boundary of R being a level curve, will result in a
plateau region.

To end up this part of the section, observe that the “crater” in Fig. 7 is an example
of a slope region that is not a MS manifold. The R-max and the R-min in Fig. 7 are
represented by one vertex and a closed level path attached. Intuitively, the R-max
surrounds the crater and the R-min surrounds the foothill and coincides with the outer
boundary of the region. Besides, the R-max and the R-min are connected by two
monotonic paths in its prototype representation, being the complete boundary of the
region described by the closed path (�, b, â,⊕, h, ǎ,�).

5.1 Slopes in an image landscape

Let us now consider the digital image pictured in Fig. 8 and a 2.5D surface obtained by
defining a continuous “height” (intensity) map h : R

2 → R by interpolating the gray
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Fig. 8 a A digital image and, with the local minima, local maxima and saddle plateaus surrounded, respec-
tively, by blue, red and green closed curves. b–d Different slope-region decomposition of the same image

level of the pixels. In the picture, the local minima, local maxima and saddle plateaus
are surrounded, respectively, by a blue, red and green closed curve.

The following examples of slope-region decomposition show both plateau regions
and non-plateau slope regions S connecting R-max to R-min with folded boundaries
forming monotonic paths. As per Corollary 1, a non-plateau slope region S contains
exactly one R-max and one R-min. Therefore, the minimum number of slope regions
required to decompose the image is three (see, for example, Fig. 8b).Also for any slope-
region decomposition, either the saddle plateau is one region of the decomposition, or
the saddle plateau is divided into respective slope regions (as shown by dashed lines
in Fig. 8d).

The main advantage of slope decomposition over watershed or MS decomposition
is the flexibility to choose the size of the slope region and the receptive field of the local
extrema. Also, unlike MS decomposition algorithms, we allow holes inside the slope
region. Depending on the constraints for optimization, following are a few examples
of slope-region decompositions:

– Figure 8b. No holes.
– Figure 8c. A slope region as large as possible (the yellow slope region surrounding
the whole image with holes which indeed are slope regions).

– Figure 8d. The local maximum has larger receptive field.
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6 Conclusions and future work

In this paper, we have provided a complete characterization of monotonically con-
nected regions, so-called slope regions, in terms of their main topological elements,
namely, their critical points and the critical points on their boundary.

Moreover, a decomposition of a 2.5D surface in slope regions preserves the arrange-
ments between critical points of the surface.We have also provided a general prototype
of slope regions, in terms of graphs, that fulfills the characterization presented here.

For future work, we plan to extend the theory of slope regions to slope volumes and
slope manifolds embedded in R

3 to exploit the topological properties of 3D spaces.
The work can very well be compared with the concept of dyads and dendrites

mentioned in Bertrand (2013) and Bertrand (2014).
We also plan to work on persistence measures which will be useful to eliminate

the insignificant critical points. Besides, we plan to prove that MS complexes can
be seen as particular cases of slopes complexes. Finally, Cerman et al. (2016) can
be considered as a first step in the computation of slope complexes and we plan to
continue this work in the very near future.

Regarding future applications, with the complete characterization of slope regions
at hand, we could compute minimal slope complexes (slope complexes with minimal
number of slope regions preserving critical points) and theseminimal slope complexes
could be used for robust image classification tasks, for example. Besides, notice that
any hill-climbing optimization (such as back-propagation in neural networks) inside a
slope region reaches the 2-max (if contained in the interior of the slope region). Con-
sequently, iterative optimization on a given surface converges whenever the starting
point is inside the slope region having the global maximum, even if there are other
local maxima in the surface.

Besides, since a decomposition of a 2.5D surface into slope regions endows topo-
logical and structural properties, such decomposition could be used for applications
such as segmentation, object recognition or geometric modeling.
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