Equivalent Contraction Kernels Using Dynamic
Trees *

R. Glantz, Y. Haxhimusa, M. Saib, W.G. Kropatsch

Pattern Recognition and Image Processing Group 183/2
Institute for Computer Aided Automation
Vienna University of Technology
Favoritenstr. 9
A-1040 Vienna
Austria
e-mail:{glz,yll saib,krw}@prip.tuwien.ac.at
phone ++43-(0)1-58801-18351
fax ++43-(0)-1-58801-1839

Abstract. itGraphs are useful tools for modeling problems that occur
in a variety of fields. In machine vision graph based solutions have been
successfully applied to many image processing problems e.g. region adja-
cency graphs for segmentation. Dual graph contraction (DGC) reduces
the number of vertices and edges of a pair of dual image graphs while,
at the same time, the topological relations among the ’surviving’ com-
ponents are preserved. Repeated application produces a stack of succes-
sively smaller graphs. The process is controlled by selected decimation
parameters which consist of a subset of surviving vertices and associated
contraction kernels. Equivalent contraction kernels (ECKs) combine two
or more contraction kernels into one single contraction kernel which gen-
erates the same result in one single dual contraction. We present an
implementation under LEDA (Library of Efficient Data structures and
Algorithms) of ECKs using Dynamic Trees. In the first section we de-
scribe ECKs and in the second an implementation of ECKs under LEDA
is given.

1 Equivalent Contraction Kernels

Dual graph contraction is the basic process [2] that builds an irregular ’graph’
pyramid by successively contracting a dual image graph of one level into the
smaller dual image graph of the next level. First we repeat the basic terms of
dual graph contraction as presented in [3]. Dual graph contraction proceeds in
two basic steps: dual edge contraction and dual face contraction. The base of the
pyramid consists of the dual image graphs (Gg, Go). The following decimation
parameters (S;, Nj i+1) determine the structure of an irregular pyramid [2][Def.5]:

* This paper has been supported by the Austrian Science Fund (FWF) under grant
P14445-MAT.

a subset of surviving vertices S; = V11 C V;, and a subset of primary non-
surviving edges' N;.i+1 C E;. Every non-surviving vertex, v € V; \ S;, must be
connected to one surviving vertex in a unique way. The relation between the two
pairs of dual graphs, (G;,G;) and (Gy1,Giv1), as established by dual graph
contraction with decimation parameters (S;, N;;+1) is expressed by function

Cl., .

(Gi,G;) = C[(Gi,Gy), (Si, Niiy1))- (1)

The contraction of a primary non-surviving edge consists in the identification
of its endpoints and the removal of both the contracted edge and its dual edge.
Dual face contraction simplifies most of the multiple edges and self-loops, but
not those including any surviving parts of the graph (see [2]). One step of the
dual graph contraction is illustrated in Fig. 1. To define the parameters that
control the process of dual graph contraction we observe that the subgraphs
in our example graph (Fig. 1) form small tree structures T'(s) that collapse
into surviving vertex s of the contracted graph. T'(s) is spanning tree of the
connected component of the surviving root vertex, or equivalently, (V,N) is a
spanning forest of the graph G(V, E).

Definition 1. A decimation of a graph G(V, E) is specified by a selection of the
surviving vertices S C V and selection of primary non-surviving edges N C E
such that following two conditions are fulfilled:

1. Graph (V,N) is a spanning forest of graph G(V, E).
2. The surviving vertices S C V are the roots of the forest (V,N)

The trees T'(v) of the forest (V,N) with the root v € V are called contraction
kernels.

The connectivity of the contracted graph is established by paths connecting
two surviving vertices:

Definition 2. Let G(V,N) be a graph with decimation parameters (S,N). A
path in G(V,N) is called a connecting path between two surviving vertices v,w €
S, denoted CP(v,w), if it consists of the three subsets of edges E (Fig. 2):

1. The first part is a possibly empty branch of contracted kernel T'(s).

2. The middle part is an edge e € E\ N that bridges the gap between the two
contraction kernels T(v) and T(w). We call e the bridge of the connecting
path CP(v,w)

3. The third part is a possibly empty branch of contraction kernel T (v).

Connected paths CP(v,w) in G(V, E) are strongly related to the edges in the
contracted graph G'(V', E'): Two different surviving vertices that are connected
by a contracted path in G are connected by an edge in E’. For every edge
e' = (v,w) € E' there exists a connecting path CP(v,w) in G.

! Secondary non-surviving edges are removed during dual face contraction.

() (f)

Fig.1. Example of dual irregular pyramid: (a) (Go,Go), (b) (G1,Gi) =
C[(Go,G_o), (Sl,No,l)], (C) (Gz,G_z) = C[(Go,G_o), (SQ,NO,Q); and equivalent contrac-
tion kernel: (d) (So, No,1), (€) (S2,No2), (f) (S3,Noz3) and (G3,G3) = ({},{}) =
C[(Go, Go), (S5, No,s)]

Fig. 2. Decomposition of connecting path C'P (v, w)

(Sks N kt1) (Sk+1, Met1,k42)

(G, Gr) (Ght1,Gry) (Gra2, Gri2)

| I

(Sk+1, Niht2)

Fig. 3. Equivalent contraction kernel

The combination of two (and more) successive reductions in an equivalent
weighting function allowed Burt [1] to calculate any level of the pyramid di-
rectly from th base. Similarly we combine two (and more) dual graph con-
tractions (see Fig. 3) of graph G} with decimation parameters (Sk, Ng k+1)
and (Sk+1, Nk+1,k+2) into one single equivalent contraction kernel Ny jyo =
Nk,k+1 o N]H_L]H_Q (for Simplicity Gl stands for (Gl,a)

C[C[Gk, (Sk, Nk.k+1)], (Sk+1, Nk+1,k+2] = C[Gk, (Sk+1, Nig+2] = Gre2. (2)

Definition 3. Ej; — Ej assigns to each edge ey = (vgt1,wk + 1) € Epqq
one of the bridges ey, € Ey, of the connecting paths C Py (Vg41,Wkt1):

bridge(eg+1) := eg. (3)
Equivalent contraction kernels (see Fig.1) are constructed in this way:

1. Assume that the dual irregular pyramid ((Go,Go), ..., (Gris,Gri2)), k > 1
is the result of k£ + 2 dual graph contractions. The structure of Gy is
fully determined by the structure of G411 and the decimation parameters
Sk+1, Net1,k+2-

2. Furthermore, the structure of Gj41 is determined by G} and the decima-
tion parameters Sy, Nk g+1. Sk+1 = Vite are the vertices surviving from
G to Ggyz2. The searched contraction kernels must be formed by edges
Ni,k+2 C Ej. This is true for Ng p+1 but not for Nyjq pre C Ept1, if we
would simply overlay the two sets of decimation parameters. An edge ey =
(Vk+1, Wk41) € Niy1 kg+2 corresponds to a connecting path CPy(vk+1, W+1)
in Gy,. (If there are more than one connecting paths, one must be selected).
By definition 2, CPy(vgt1,wkt2) consists of one branch of Ty (vk+1), one
branch of Ty (wg+1), and one surviving edge er € Ej connecting two con-
traction kernels Ty (v+1), Th(Wrt1)

Two disjoint tree structures connected by a single edge become a new struc-
ture. The result of connecting all contraction kernels T}, by bridges fulfills
the condition of the contraction kernel:

Ni g2 = Np g1 U U bridge(egs1)- (4)

ert+1ENR41, kt2

3. The above process can be repeated on the remaining contraction kernel until
the base level 0 contracts in one step onto the apex V;, = {v,}. The edge of
the corresponding spanning tree are contained in Ny, (Np 3 in Fig. 1).

2 Implementation of Equivalent Contraction Kernels
Using Dynamic Trees

LEDA (Library for Efficient Data and Algorithms) [6] is a C++ library of combi-
natorial and geometric data types and algorithms implementing many abstract
data types e.g. trees, graphs, and lists. LEDA includes iterators like ”forall-
adj-node” and ”forall-edges” as well as basic operations like ”delete node” and
”delete edge”. An instance G of the data type graph consists of a list V' of nodes
and a list F of edges, where node and edge are LEDA classes. A pair of nodes
(v,w) € (V x V) is associated with every edge e € E, v is called the source of
e, w the target of e, and v and w are the endpoints of e. DGC (Dual Graph
Contraction) has been implemented using templates so that the process can be
applied to a wide variety of attributed graphs [4]. In [4], to reach the higher levels
of the image pyramid (G,,G,), the dual graph contraction process has to be
iteratively repeated form the base of the image pyramid (G, Gp) until the level
below the higher level (Gn,l,én,l). But in these processes we lose the ECKs.
Using dynamic trees under LEDA allows us to built ECKs, which are useful in
extracting the higher levels of the image pyramid directly from the base level
in one step. Knowing the ECKs we can determine the dual irregular pyramid
completely [2]. An instance D of the data type ”dynamic-tree” is a set of dy-
namically changing rooted trees. Each edge is directed towards the root and has
a weight. Optionally, user defined information can be stored at the vertices and
the edges. Dynamic Trees have operations like evert (vertex v) that makes v
the new root of its tree, and the operation 1ink (vertex v, vertex w, double
X, void* e-inf=nil) that links the tree v to the vertex w in a different tree.
The edge e = (v, w) gets a weight x, and the additional user defined information
e —inf is stored at e. Equivalent Contraction Kernels has been implemented
using the data type dynamic trees. In our implementation the following parts
are used:

Contraction of edge in dual graph
old-root = root-target-vertex;
dsf.evert(source-vertex);
dsf.evert(target-vertex);
dsf.link (target-vertex, source-vertex, 0.0, nil);

dsf.evert(old-root);

In this part we use an instance dsf (dynamic spanning forest) of the dynamic
trees. In the code above the vertex ”root-target-vertex” is assigned to the ”old-
root” vertex, then the vertex ”source-vertex” is made as new root of its tree and
the vertex ”target-vertex” is made as new root of its tree too. After that, the
tree root ”target-vertex” is linked to the tree root ”source-vertex” with the op-
eration dsf.link(target-vert, source-vertex,0.0,nil) creating new edge
e = (target-vertex, source-vertex).

Deletion of dual edges in graph g
dual-eh = dg2gleh];
rev-dual-eh = g.reversal(dual-eh);
g.del-edge(dual-eh);
g.del-edge (rev-dual-eh);

In this part we make the edge ”eh” as dual edge from the edge list of dual
graph, we call it ”dual-h”. After that the reversal edge of the ”dual-eh” is found
in the graph g using the method reversal that exists in the class graph, we call
the reversal edge "rev-dual-eh”. These two edges, ”dual-eh” and "rev-dual-eh”
are deleted from the graph g with the method del-edge, which exists in the
class graph. Dynamic Trees use binary trees with randomized balancing scheme.
Each operation takes O(log® n) amortized expected time for make which takes
constant time. n is the current number of nodes [7].

-
-
-

(a) (b)

Fig. 4. Example of DGC using dynamic tree: (a) Original picture [5]. (b) ECK of
dynamic tree of level 3.

3 Conclusions

In dual graph contraction, the decimation parameters control the process that
iteratively builds an irregular (graph) pyramid. To specify these parameters the
concept of contraction kernel was introduced. Dynamic trees permit us to build
ECKs which allow to skip the construction of intermediate pyramid levels. If
we know ECKs we can determine the dual irregular pyramid completely from
the base level. In the previous version of DGC [4] binary labels identifying the
contraction kernel were distributed among vertices and edges. The new version
of DGC uses Dynamic Trees which are a separate entity for storage and recon-
struction of ECKs. The dynamic trees do not change the complexity of the DGC
algorithm. Dynamic Trees use binary trees with randomized balancing scheme.
Each operation takes O(log”n) amortized expected time for building the data
structure which takes constant time. n is the current number of nodes [7].

References

1. Burt, P.J.,Adelson, E.Huthor B.: The Laplacian pyramid as a compact image
code.JEEE Trans. Communic.31:pp.523-540, 1983.

2. Kropatsch, W.G.: Building Irregular Pyramids by Dual Graph Contraction.IEFE-
Proc. Vision, Image and Signal Processing Vol.142(No.6):pp.366-347, December
1995. Vol. 99, No. 1, pp.9-99, June 1994.

3. Kropatsch, W.G.: From Equivalent Weighting Functions To Equivalent Contrac-
tion Kernels. Czeck Pattern Recognition Workshop 1997.

4. Kropatsch, W.G., Burge, M., Ben Yacoub, S., Selmaoui, N.: Dual Graph Contrac-
tion with LEDA. 1997

5. Glantz, R., Kropatsch W.G.: Plane Embedding of Dual Contracted Graphs.DGCI
2000 Proceedings Vol.1953:pp.348-357, Uppsala, Sweden.

6. Mehlhorn, K., Naeher, S.: LEDA:A Platform for Combinatorial and Geomertric
Computing. Cambrige University Press, Cambrige U.K., 1999.

7. Melhorn, K., Naeher, S., Seel, M., Uhrig, Ch.: The LEDA User Manual. Version
4.2

