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Abstract:

In many applications some parts of an image are of special interest. We present in this paper results

of the analysis of the vertical path lengths in stochastic graph image pyramids. Such path lengths

evaluate the efficiency of the pyramid structure needed e.g. for algorithms which derive object prop-

erties from the object pixels in the image. Our aim is to build stochastic image pyramid locally that

are optimal in the sense of bottom-up and top-down processes.

1 Introduction

In a regular image pyramid (for an overview see [16]) the number of pixels at any levell, is r times

higher than the number of pixels at the next reduced levell + 1. The so called reduction factorr is

greater than one and it is the same for all levelsl, moreover the reduction window is also of the same

size. Ifs denotes the number of pixels in an imageI, the number of new levels on top ofI amounts

to logr(s). Thus, the regular image pyramid may be an efficient structure to access image objects in

a top-down process.

However, regular image pyramids are confined to globally defined sampling grids and lack shift

invariance [2]. In [18, 12] it was shown how these drawbacks can be avoided by irregular image

pyramids, where the data partition the image into connected regions each of which is contracted

to a single vertex. Since data do not impose any particular internal structure of these regions there

are differences in efficiency. Irregular pyramids can perform most of the operations their regular

counterparts are employed for [20].

The construction of an irregular image pyramid is iteratively local [17, 11, 10, 1]:

• the cells have no information about their global position.
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(a)Graylevel image (b) Dual graphs (G, G)

Figure 1: Partition of pixel set into cells and representation of the cells and their neighborhood relations.

• the cells are connected only to (direct) neighbors.

• the cells cannot distinguish the spatial positions of the neighbors.

In some applications some parts of the image are of special interest, so we need to access data in

a top-down process very often [6]. Our aim is to build stochastic image pyramids locally that are

optimal in the sense of bottom-up and top-down processes.

We restrict ourselves to irregular stochastic image pyramids with an apex, i.e. the top of the pyramid,

levelh contains only one cell. We represent the levels as dual pairs(Gl, Gl) of plane graphsGl and

Gl [14]. Each level represents a partition of the pixel set into cells, i.e. connected subsets of pixels.

On the base level (level0) of an irregular image pyramid the cells represent single pixels and the

neighborhood of the cells is defined by the4-connectivity of the pixels. A cell on levell +1 (parent)

is a union of neighboring cells on levell (children), Fig. 2a. This union is controlled by so called

contraction kernels(CK). Every parent computes its values independently of other cells on the same

level. This lead to the property that an image pyramid is built inO[log(image diameter)] time. For

more in depth on the subject see the book of Jolion [13] and of Rosenfeld [19].

Neighborhoods on levell + 1 are derived from neighborhoods on levell. Two cellsc1 andc2 are

neighbors if there exist pixelsp1 in c1 andp2 in c2 such thatp1 andp2 are4-neighbors. We assume

that on each levell + 1 (l ≥ 0) there exists at least one cell not contained in levell. In particular,

there exists a highest levelh . Furthermore, we restrict ourselves to irregular pyramids with an apex,

i.e. levelh contains only one cell.

A level consists of dual pair(Gl, Gl) of plane graphsGl andGl, Fig. 1b. The planarity of graphs

restricts us in using only the4-connectivity of the pixels. The vertices ofGl represent the cells on

level l and the edges ofGl represent the neighborhood relations of the cells on levell, depicted with

square vertices and dashed edges in Fig. 1b. The edges ofGl represent the borders of the cells on

level l, solid lines in Fig. 1b, possibly including pseudo edges needed to represent neighborhood

relations to a cell completely enclosed by another cell [14]. Finally, the vertices ofGl, circles in

Fig. 1b, represent meeting points of at least three boundary segments ofGl, solid lines in Fig. 1b.



The sequence(Gl, Gl), 0 ≤ l ≤ h is called (dual) graph pyramid (Fig. 2c).

The plan of this paper is as follows. In Section 2 we will present shortly the algorithms used and in

Section 3 we will define the path lengths. Experimental results are given in Section 4.

2 Building Image Pyramids

In the following the iterated local construction of the stochastic irregular image pyramid in [17] and

[9] is described shortly in the language of graph pyramids. We use these algorithms in our tests.

The main idea of Meer’s stochastic decimation algorithm [17] is to first calculate a so calledmaximal

independent vertex set(MIS ) [4]. There are two conditions to be fulfilled in order to have MIS:

• two surviving vertices cannot be neighbors of each other, and

• every non-surviving vertex has in its neighborhood a surviving vertex.

See [17, 11, 8] for details how to build MIS.

MIS is built as follows: All the vertices of the graphGl(Vl, El) are marked ascandidateof MIS.

After which a random number is assigned to every vertex ofVl. A vertex is marked asmember(of

MIS) if it is a local maximum in its neighborhood1), i.e. having the largest random number. The

memberand all its neighboring vertices are marked asnon-candidates. In general some iteration for

correction must be done to complete the maximal independent vertex set (three iterations in [17, 9]).

Themembersof MIS determine the vertices that will survive in the next level.

The assignment of the non-survivors to their survivors determines a collection ofcontraction kernels

C (CK): each non-survivor is contracted towards its survivor (e.g. the one with the largest random

number) and all contractions can be done in a single parallel step . This collection of CKs are used

by dual graph contraction (DGC) algorithm [14] to build the next level of the graph pyramid. The

CKs are required to form spanning forests of maximally depth two. Equivalent contraction kernels

(ECKs) combine two or more CKs into a single CK which generates the same results in one single

dual contraction. Contraction parameters of any individual pyramid level can be reconstructed from

ECK of the pyramid’s apex [15]. ECK is a rooted spanning tree. Because the constant reduction

factor in MIS cannot be guaranteed, a new method is proposed in [7, 9] to overcome this problem.

The main difference of the data driven decimation process (D3P) proposed in [11] w.r.t to the MIS

algorithm is that no iteration for correction is performed. A vertex inGl survives if it is a local

maximum or if it does not have any survivors in its neighborhood. Leaving out the iteration is

motivated by the fact that the iteration is used only for completing the maximal independent set. It

1)The neighborhoodΓl(v) of a vertexv ∈ Vl is defined byΓl(v) = {v} ∪ {{w} ∈ Vl | ∃e = (v, w) ∈ El}.



is assumed that being a local maximum is of importance [11]. As for the MIS also the D3P cannot

guarantee a constant reduction factor [9].

Maximal independent edge set algorithm (MIES ) [8] aims at a collectionC of CK in a plane graph

Gl such that each vertex ofGl is contained in exactly one kernel ofC, and each kernelC contains

at least two vertices. We assume thatGl is connected and this is preserved by the DGC algorithm.

This is achieved by transforming the graphG to the line graph2) G and applying the MIS algorithm

onG. After this we eliminate all the isolated surviving vertices (CKs of depth zero) by augmenting

them with one of the CK in the neighborhood. If the resulting CK is of depth three we split it into

two CKs of depth one. Clearly, the contraction of all kernels inC will reduce the number of vertices

to half or less, i.e. the constant reduction of at least2 can be guaranteed. The MIES algorithm is

only applicable where there are no constraints on direction of contraction [7, 9].

In many graph pyramid applications such as line image analysis [3] and the description of image

structure [5] a directed edgee with sourceu and targetv 6= u must be contracted (fromu to v), only

if the attributes ofe, u, andv fulfill a certain condition. This means that the graphG is directed. The

edges that fulfill the condition are calledpreselectededges, and only these edges are considered as

candidates for contraction. On this set of preselected edges a maximal independent directed edge

set is found (MIDES ) analogously to MIS. All edges ofG are marked ascandidate. The edge with

the largest random number in its neighborhood (edgee in Fig. 2b) is marked asmemberand asnon-

candidate. All edges in the neighborhood of thememberare marked asnon-candidate(all edges

shown in Fig. 2b, excepte) . Some iteration are needed to mark all the edges asnon-candidate. The

collection of thememberedges determine the CKs. After which we can proceed with the DGC to

build the graph pyramid. This algorithm showed the best reduction factor [9, 8].

3 Path Lengths in Image Pyramids

Path length shows steps to bring an attribute from every vertex in the base (bottom-up) to the top of

the pyramid, and from a top to a vertex in the base (top-down). We call this vertical path length. This

information is important for quickly analyzing distinct objects in a top-down/bottom-up process. We

are not interested in comparing the vertex complexity and the height of the pyramid, but to be able

to compare the internal structure of image pyramids of the same height, i.e. structural complexity.

In the following we define the vertical path lengths and the way they are determined. First we build

a graph pyramid bottom-up using one of the algorithms MIS, MIES, MIDES or D3P to find CKs

(decimation parameters). Graphs are reduced using the dual graph contraction algorithm [14]. Since

we are building stochastic image pyramids the top of a pyramid is always a single vertex.

2)The vertices ofG becomes edges inG and vice versa.
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Figure 2: Oriented Graph Pyramid built using DGC.

Fig. 2a shows a rooted tree on levelGl (the sons) and their relation (dashed lines) with the vertex on

Gl+1 (the father); white vertices onGl are the non-surviving sons, and they are contracted (arrows)

towards the surviving son, depicted with black.

Vertical paths connect the apex with the base of the pyramid followingfather-sonrelations from

level to level. Path lengthsp ∈ N of vertices atG0 (level 0) can be found in a top-down process as

follows:

Path Length Algorithm:

1. Let the vertexv ∈ Gh at the top of the pyramid have path length0, p(v) = 0.

2. Iterate until base level,l = h− 1, .., 0.

∀v ∈ Gl+1: downpropagate the path lengthp(v) of the vertices of the vertexv at level

l + 1 to its surviving sonss at levell below, so the path length ofss is p(ss) = p(v). All

non-surviving sonsns ∈ Vl of v at levell have path lengthp(ns) = p(v) + 1.

An example of vertical path is shown in Fig. 2c. We start at the top of the pyramid. For stochastic

image pyramid there is only one vertex at the top of the pyramid, vertexh at the top has path length

0. An one-to-one relationship between sons (vertices atl) and fathers (vertices atl + 1) is created

during construction of the image pyramid [14].

The number of vertices|Vl+1| in level l + 1 is the same as the number of surviving vertices in

|Vl| (surviving sons) in levell. Costs for inheritance from fathers to surviving sons is kept zero



since it involves a simple copy of the attributes. Costs for contracting an edge are set to1 since

reduction involves the merging operation for the attributes of the two end vertices. This means that

the surviving son will have the path length of the father and non-surviving sons the incremented path

length of the father by one. In Fig. 2c atG2 a vertex has the same length as its father (black vertex

with path length0), and all non-surviving sons (white vertices) have the path length0 + 1 = 1. To

arrive to the top of the pyramid from the edge with path length3, three edges must be contracted.

Note that there is a vertex in the base level, the representative of the apex, which has a0 path length.

The path length shows costs to arrive to the top of the pyramid from every vertex in the base. This

information is important for quickly analyzing distinct objects in a top-down process.

4 Experimental Results and Discussion

Uniformly distributed random numbers are assigned to the vertices in the base level grid graphs. By

changing the seed of the uniformly distributed random generator we generated 100 graphs, on top

of which we built stochastic graph pyramids using one of the algorithms MIS, MIES, MIDES or

D3P to compute the path lengths. We contract these graphs using DGC [14] until we reach on top of

the pyramid. In our experiments we used grid graphs of size10000 and40000 vertices respectively,

which correspond to image sizes of100× 100 and200× 200 pixels.

The result of the mean value of number of vertices per path length over 100 pyramids are given in

Fig. 3, (a) for100 × 100 and (b)200 × 200 image size. The two diagrams of Fig. 3 show on the

x-axis in a logarithmic scale the length of the vertical paths and on they-axis the number of vertices

of the base level. Each base vertex has a certain ’vertical distance’ to the apex, the number of vertices

having the same vertical distance can be accumulated in the histogram of vertical path lengths. Every

pyramid generates such a histogram using thepath length algorithm. Histograms generated by a

particular selection strategy can be averaged and are shown for the MIS, MIES, MIDES and D3P

strategies in Fig.3.

Path lengths i.e. costs for MIES and MIDES are smaller, even when the image size were4 times

larger. MIS and D3P have tendency to have longer path lengths. The Table 1 shows the maximal path

length and in brackets the most frequent path length. For MIES and MIDES almost50% of vertices

have path length of 6, 7, and 8 for100×100, and 7, 8, and 9 for200×200 image, respectively. These

values are comparable with thelog(diameter), which would be the height of the regular pyramid, a

property we are trying to achieve.

To summarize, MIS and D3P path lengths are longer in both cases. MIES and MIDES tend to find

shorter path length. Longer path lengths imply bigger costs to access a vertex in the base from the

apex of the pyramid.
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Figure 3: µ of path lengths.x axis the path lengths, andy-axis number of vertices.

Image size

100× 100 200× 200

MIS 20 (10) 39 (13)

MIES 12 (7) 13 (8)

MIDES 11 (7) 12 (8)

D3P 84 (27) 160 (109)

diameter 200 400

log(diameter) 8 9

Table 1: The maximum path length.

5 Conclusion

The path length algorithm measures the structural complexity in irregular image pyramids and gives

costs to arrive to the top of the pyramid (vertical path length) from every vertex in the base. The

experiment showed that MIES and MIDES have shown shorter path lengths and better reduction

factors [9, 8]. These algorithms are used to build stochastic image pyramids optimally, i.e. faster

access to vertices at the base level from the top and with the smallest height and vice versa. This

information is important for quickly analyzing distinct objects in an iterated top-down/bottom-up

process.
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