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Abstract:

We present a hierarchical partitioning of images using a pairwise similarity function on a
graph-based representation of an image. This function measures the difference along the
boundary of two components relative to a measure of differences of the components’ inter-
nal differences. This definition tries to encapsulate the intuitive notion of contrast. Two
components are merged if there is a low-cost connection between them. FEach component’s
internal difference is represented by the mazimum edge weight of its minimum spanning tree.
External differences are the smallest weight of edges connecting components. We use this
tdea for building a minimum spanning tree to find region borders quickly and effortlessly in a

bottom-up way, based on local differences in a specific feature.

1 Introduction

Wertheimer [17] has formulated the importance of wholes (Ganzen) and not of its individual
elements as: “There are wholes (Ganzen), the behaviour of which is not determined by that
of their individual elements, but where the part-processes are themselves determined by the
intrisinic nature of the whole” [18], and introduced the importance of perceptual grouping
and organization in visual perception. Low-level cue image segmentation cannot and should
not produce a complete final “good” segmentation. The low-level coherence of brightness,
color, texture or motion attributes should be used to come up sequentially with hierarchical
partitions [15]. Mid and high level knowledge can be used to either confirm these groups
or select some for further attention. A wide range of computational vision problems could
make use of segmented images, where such segmentations rely on efficient computation. For
instance motion estimation requires an appropriate region of support for correspondence op-
eration. Higher-level problems such as recognition and image indexing can also make use of
segmentation results in the problem of matching. It is important that a grouping method has

the following properties [3]:

e capture perceptually important groupings , which reflect global aspects of the image,

e be highly efficient, running in time linear in the number of image pixels,
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Figure 1: a) Partition of pixel set into cells. b) Representation of the cells and their neighbor-

hood relations by (G},G}) of plane graphs. c) Internal and External contrast.

e creates hierarchical partitions [15].

In a regular image pyramid the number of pixels at any level £, is r times higher than the
number of pixels at the next reduced level £ + 1. The so called reduction factor r is greater
than one and it is the same for all levels k. If s denotes the number of pixels in an image I,
the number of new levels on top of I amounts to log,(s). Thus, the regular image pyramid
may be an efficient structure for fast grouping and access to image objects in bottom-up and
top-down processes [14]. However, regular image pyramids are confined to globally defined
sampling grids and lack shift invariance. Bister et.al. [1] concludes that regular image pyramids
have to be rejected as general-purpose segmentation algorithms. In [13, 7] it was shown how
these drawbacks can be avoided by irregular image pyramids, the so called adaptive pyramids,
where the hierarchical structure (vertical network) of the pyramid was not “a priori” known
but recursively built based on the data. Moreover in [12, 4] it was shown that the irregular

pyramid can be used for segmentation and feature detection.

Each level represents a partition of the pixel set into cells, i.e. connected subsets of pixels (CC).
The construction of an irregular image pyramid is iteratively local [11, 6]. This means that we
use only local properties to build the hierarchy of the pyramid. On the base level (level 0) of
an irregular image pyramid the cells represent single pixels and the neighborhood of the cells
is defined by the 4 (8)-connectivity of the pixels. A cell on level I + 1 (parent) is a union of
neighboring cells on level [ (children). This union is controlled by so-called contraction kernels
(decimation parameters) [9]. Every parent computes its values independently of other cells on
the same level. This implies that an image pyramid is built in O[log(image_diameter)] time.
Neighborhoods on level £ + 1, are derived from neighborhoods on level £. Two cells ¢; and ¢,
are neighbors if there exist pixels p; in ¢; and ps in cp such that p; and p, are 4-neighbors, as
seen in Figure 1a). We assume that on each level & + 1 (k > 0) there exists at least one cell
not contained in level k. In particular, there exists a highest level A . In general the top of the
pyramid can have one vertex, i.e. an apex. We represent the levels as dual pairs (G, G},) of
plane graphs G}, and its dual (plane) graph G}, (Figure 1b)). The vertices of G}, represent the
cells and the edges of GGj represent the neighborhood relations of the cells on level &, depicted
with square vertices and dashed edges in Figure 1b). The edges of G represent the borders
of the cells on level k, depicted with solid lines in Figure 1b), possibly including so called



pseudo edges needed to represent the neighborhood relation to a cell completely surrounded
by another cell. Finally, the vertices of G the circles in Figure 1b), represent meeting points
of at least three edges from G, solid lines in Figure 1b). The sequence (G, Gy), 0 < k < h
is called a (dual) graph pyramid, where A is the highest level in the pyramid. Moreover the
graph is attributed G(V, E, ay, ac), i.e. a, : V — R and a, : E — R". We use a weight for

attr, measuring the contrast between the two end points.

The aim of this paper is to build in parallel a minimum weight spanning tree (M ST) to find
region borders quickly and effortlessly in a bottom-up ’stimulus-driven’ way based on local
differences in a specific feature, like in preattentive vision. For more in depth on the subject
see the book of Jolion [8]. This goal is reached by using the selection method for contraction
kernels proposed in [5] to achieve logarithmic tapering, local construction and shift invariance.
Bortiivka’s algorithm [2] with the dual graph contraction algorithm [9] is used for building in
parallel (hierarchical) a minimum weight spanning tree (of the region) and at the same time
to preserve topology. The topological relation seems to play an even more important role for
vision tasks in natural systems than precise geometrical position. The plan of the paper is
as follows. In Sec. 2 we give the merging decision criteria and in Sec. 2.1 we prove that the

proposed algorithm builds the M ST. Sec. 3 reports on experimental results.
2 A Hierarchy of Partitioning

The goal is to find partitions P, = {CCF,CCk,...,CC*} on level k of the pyramid, such
that these elements satisfy certain properties. We use the pairwise comparison of neigh-
boring vertices (regions) to check for similarities [3, 4]. A pairwise comparison function,

Comp(CCf,CCJ’-“) is true, if there is evidence for a boundary between CC¥ and CCJ’?, and
false when there is no boundary. Note that Comp(CCF, CCJ’?) is a boolean comparison function
for pairs of partitions. The definition of Comp(CCf, CCF) depends on the application. This
function measures the difference along the boundary of two components relative to a measure
of differences of components’ internal differences, and tries to encapsulate the intuitive notion
of local contrast: a contrasted zone is a region containing two connected components whose
inner differences (internal contrast) are less than differences with between them (external

contrast).

Every vertex u;, € G}, is a representative of a “homogeneous” region CC* on the base level of
the pyramid, i.e. this region is represented by a M ST (u;) = CC*. The internal contrast of
the CC* is the largest dissimilarity measure i.e. the largest edge weight of the M ST (uy)
of the vertex uy € Gy, defined as

Int(CC*) = max{attr.(e),e € MST (uy)}. (1)

Let u i, ur; € V be the end vertices of an edge e € E. The external contrast between two

components CCF,CC¥ € P, is the smallest dissimilarity between components CCf and



CC¥ i.e. the smallest edge weight connecting MST (uy,;) and MST (ug,;) defined as
Ext(CC¥, CCJI-“) = min{attre(e), e = (g, Uk ;) Uk € MST (up;) A ug; € MST (ug;)}. (2)

This definition is problematic since it uses only the “smallest” edge weight between the two
components, making the method very sensitive to noise, but in practice this limitation works
well as shown in Sec. 3. In Fig. 1¢) is shown a simple example of internal contrast, I nt(C’CJ’?) of
the component C' C]’?, as the mazimum of weights of the solid line edges, and external contrast,
Ext(CCF, CC]’?), as the minimum of weights of the dashed line edges connecting component
CCf and CC}. Vertices ug; and uy; are representative of the components CCf and CCY,
and hold as attribute the maximum edge weight of its M ST, whereas the edge e, connecting
the vertices holds the minimum edge weight. By contracting the edges of M ST (uy;) one
arrives at the vertex uy;, analogously for M ST (uy ;). The pairwise comparison between two
connected components CCf and CC} is defined by:

True if Ext(CCF,CCF) > PInt(CCF,CC¥),

C cck .occh) = 3
omp(CC; J) {False otherwise, 3)

where the PInt(CCF, CC]’?) is the minimum internal contrast defined as,
PInt(CCf,CCY) = min(Int(CCY) + 7(CCF), Int(CCF) + 7(CCY)). (4)

For the function Comp(CCF, C’CJ’?) to be true i.e. for the border to exist, the external contrast
difference must be greater than the internal contrast. The reason for using a threshold function
7(CC*) is that for small components CC*, Int(CC¥) is not a good estimate of the local
characteristics of the data, in the extreme case when |CC*| = 1, Int(CC*) = 0. Any non-
negative function of a single component CC can be used for 7(CC¥) [3].

2.1 Building A Hierarchy of Partitions: The Algorithm

First we give two lemmas that provide the basis of the minimum weight spanning tree algo-

rithms which help us in proving the Proposition 1. Proofs can be found in [16].

Lemma 2.1 Consider a verter v in a weighted connected graph G. Among all the edges
incident on v, let e be one of minimum weight. Then, G has a minimum weight spanning tree
that contains e.

Lemma 2.2 Let T be an acyclic subgraph of a weighted connected graph G such that there
exists a minimum weight spanning tree containing T. If G' denotes the graph obtained by
contracting the edges of T, and T' in is a minimum weight spanning tree of G', then T i, UT

15 a mintmum weight spanning tree of G.

With the definition of the comparison function Comp(-,-) we can now build the hierarchy of

partitions as follows:



Algorithm 1 — Algorithm: Hierarchy of Partitions
Input: Attributed graph Gj.

1: k=0
2: repeat

3: for all vertices u € GG, do

4 Erpin(u) = argmin{attre(e) |e = (u,v) € Ey or e = (v,u) € Ey}

5:  end for

6: for all e = (upg,up;) € Emin with Ext(CCF,CCF) < PInt(CCf,CC¥) do
7: include e in contraction edges N k1

8  end for

9:  contract graph G with contraction kernels, Ny y+1: Gt1 = C[Gr, Nig+1]-

10: for all €k+1 € Gk+1 do

11: set edge attributes attr.(ex+1) = min{attre(ex) | ex+1 = C(ex, Nk x+1)}
12:  end for
132 k=k+1

14: until G, = Gj_1
Output: A region adjacency graph (RAG) pyramid, where each vertex is representative of a
MST of a region.

Each vertex u;, € Gy i.e. CC* represents a connected region on the base level of the pyramid,
and since the presented algorithm is based on Borovka’s algorithm [2], it builds a M ST (uy)
of each region, i.e Noy(ug) = MST(ug). The idea is to collect the smallest weighted edges
e (4th step) that could be part of the M ST, and then to check if the edge weight attr.(e)
is smaller than the internal contrast of both of the components (M ST of end vertices of e)
(6th step). If these conditions are fulfilled then these two components will be merged (7th
step). Two regions will be merged if the internal contrast, which is represented by its M ST,
is larger than the external contrast, represented by the weight of the edge, attr.(e). All the
edges to be contracted form the contraction kernels Nj 11, which then are used to create the
graph Gyy1 = C|Gk, Ni 1] [10], so that the topology is preserved. In general Ny ;iq is a
forest. We update the attributes of those edges ex11 € Ggi1 with the minimum attribute of
the edges e, € Fj that are contracted into ey (11th step). The output of the algorithm is a
pyramid where each level represents a RAG, i.e a partition. Each vertex of these RAGs is the
representative of a M ST of a region in the image. The algorithm is greedy since it collects

only the nearest neighbor with the minimal edge weights and merges them if Eq. 3 is false.

Let us prove that the Algorithm 1 builds the M ST. The proof is based on Kruskal’s proof [16].

Proposition 1 The Algorithm 1 constructs a minimum weight spanning tree of a weighted

connected graph G.



Proof. Let G be the given nontrivial weighted connected graph. Also let us suppose that the
criterion Ext(CCF,CCF) < PInt(CCF,CC¥) is fulfilled for all edges, this implies that the
algorithm becomes Bortuvka’s algorithm. Clearly, when Bortvka’s algorithm terminates the
selected tree T,,;, is a spanning tree. Thus we have to show that 7,,;, is indeed a minimum
weight spanning tree of G by proving that every 7; constructed in the course of Boruvka’s
algorithm is contained in a minimum weight spanning tree of G. Our proof is by induction
on . The subgraph T}, is constructed from 7; by adding an edge of minimum weight with
exactly one end vertex in 7;. This construction ensures that all 7;’s are connected. As
inductive hypothesis assume that 7; is contained in a minimum spanning tree of G. If G’
denotes the graph obtained by contracting the edges of 7T; and v’ denotes the vertex of G’,
which corresponds to the vertex set of 7}, then e;,; is in fact a minimum weight edge incident
on v in G'. Clearly by Lemma 2.1 the edge e;, is contained in a minimum weight spanning
tree T, in of G'. By Lemma 2.2, T, UT)

" in 18 @ minimum weight spanning tree of G. More
specifically T;,1 = T; U {e;;1} is contained in a minimum weight spanning tree of G and the

correctness of Boruvka's algorithm follows.O
3 Experiment Results on Grid Graphs

We use as attributes of edges the difference between pixel intensities attr(u;, u;) = |I(u;) —
I(u;)|. For color images we run the algorithm by computing the distances (weights) in RGB
color space. To compute the hierarchy of partitions we define 7(CC) as 7(CC) = o/|CC|,
where a = const and |CC]| is the number of elements in CC, i.e. the size of the region. The
algorithm has one running parameter «, which is used to compute the function 7. A larger
constant « sets the preference for larger components. A more complex definition of 7(CC),
which is large for certain shapes and small otherwise would produce a partitioning which
prefers certain shapes, e.g. using ratio of perimeter to area would prefere components that
are not long and thin. For speed purposes we store in vertices the internal contrast and the

size of the connected component (receptive field).

We use indoor RG B images 'Lena’") (512 x 512) and 'Object 452 (128 x 128), an outdoor image
"Monarch’? (768 x 512) and a synthetic image (223 x 111) for the experiments. We found that
a = 300 produces the best hierarchy of partitions of the images shown in Fig. 2(a,d,g) and
a = 1000 for the image under (j), after the average intensity attribute of vertices is down-
projected onto the base grid. Fig. 2 shows some of the partitions on different levels of the
pyramid and the number of components. In all images there are regions of large intensity
variability and gradient. This algorithm copes with this kind of variability. In contrast to [3]
the result is a hierarchy of partitions as multiple resolution suitable for further goal driven,

domain specific analysis. Since the algorithm preserves details in low-variability regions, a

DWaterloo image database
2) Coil 100 image database



a)Lena (262 144) b) Level 14 (48) c) Level 15 (27)

d)Monarch (393216)  e) Level 16 (57) f)Level 22 (18)

g)Object45 (16384)  h)Level 12 (5) i)Level 14 (3)

)(24753) k)Level 10 (13) )Level 14 (2)

Figure 2: Some levels of the partitioning and the number of components.

noisy pixel would survive through the hierarchy. Of course, image smoothing in low variability
regions would overcome this problem. We, however we do not smooth the images, as this would
introduce another parameter into the method. The hierarchy of partitions can also be built
from an oversegmented image to overcome the problem of noisy pixels. Note that the influence
of 7 in decision criterion is smaller as the region gets bigger. For an oversegmeted image, where

the size of regions are large, the algorithm becomes parameterless.
4 Conclusion and Outlook

In this paper we have introduced a method to build a hierarchy of partitions of an image by
comparing in a pairwise manner the difference along the boundary of two components relative
to the differences of components’ internal differences. Even though the algorithm makes
simple greedy decisions locally, it produces perceptually important partitions in a bottom-

up ’stimulus-driven’ way based only on local differences. It was shown that the algorithm



can handle large variation and gradient intensity in images. Since our framework is general

enough, we can use RAGs of any oversegmented image and build the hierarchy of partitions.

External knowledge can help in a top-down segmentation technique. A drawback is that the

maximum and minimum criterion is very sensitive to noise, although in practice it has a small

impact. Other criteria like median would lead to an NP-complete algorithm. The algorithm

has only one running parameter which controls the sizes of the regions. Our future work is to

automatically extract this parameter from the image and also to define different comparison

function which will prefer regions of specific shapes.
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