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Abstract. We present a hierarchical partitioning of images using a pair-
wise similarity function on a graph-based representation of an image.
This function measures the difference along the boundary of two com-
ponents relative to a measure of differences of component’s internal dif-
ferences. This definition attempts to encapsulate the intuitive notion of
contrast. Two components are merged if there is a low-cost connection
between them. Each component’s internal difference is represented by
the maximum edge weight of its minimum spanning tree. External dif-
ferences are the cheapest weight of edges connecting components. We use
this idea to find region borders quickly and effortlessly in a bottom-up
’stimulus-driven’ way based on local differences in a specific feature, like
as in preattentive vision. The components are merged ignoring the details
in regions of high-variability, and preserving the details in low-variability
ones.

1 Introduction

Wertheimer [19] has formulated the importance of wholes (Ganzen) and not of
its individual elements , and introduced the importance of perceptual grouping
and organization in visual perception. Low-level cue image segmentation cannot
and should not produce a complete final “good” segmentation. The low-level
coherence of brightness, color, texture or motion attributes should be used to
come up sequentially with hierarchical partitions [18]. Mid and high level knowl-
edge can be used to either confirm these groups or to select some for further
attention. A wide range of computational vision problems could make use of
segmented images, where such segmentation relies on efficient computation. For
instance motion estimation requires an appropriate region of support for finding
correspondence. Higher-level problems such as recognition and image indexing
can also make use of segmentation results in the problem of matching.

It is important that a grouping method has the following properties [3]:
– captures perceptually important groupings or regions, which reflect global

aspects of the image,
– is highly efficient, running in time linear in the number of image pixels,
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Fig. 1. a) Partition of pixel set into cells. b) Representation of the cells and their
neighborhood relations by (Gk, Gk) of plane graphs. c) Internal and External contrast.

– creates hierarchical partitions [18].

In a regular image pyramid the number of pixels at any level k, is r times
higher than the number of pixels at the next reduced level k + 1. The so called
reduction factor r is greater than 1 and it is the same for all levels k. If s denotes
the number of pixels in an image I , the number of new levels on top of I amounts
to logr(s). Thus, the regular image pyramid may be an efficient structure for fast
grouping and access to image objects in top-down and bottom-up processes [17].

However, regular image pyramids are confined to globally defined sampling
grids and lack shift invariance. Bister [1] concludes that regular image pyramids
have to be rejected as general-purpose segmentation algorithms. In [9] it was
shown how these drawbacks can be avoided by irregular adaptive image pyra-
mids, where the hierarchical structure (vertical network) of the pyramid was not
a priori known but recursively built based on the data. Moreover in [16, 13, 5]
it was shown that irregular pyramids can be used for segmentation and feature
detection.

The construction of an irregular pyramid is iteratively local [15]. This means
that only local properties build the hierarchy of the pyramid. Each level repre-
sents a partition of the pixel set into cells [11], i.e. connected subsets of pixels.
On the base level (level 0) of an irregular image pyramid the cells represent sin-
gle pixels and the neighborhood of the cells is defined by the 4 (8)-connectivity
of the pixels. A cell on level k + 1 (parent) is a union of neighboring cells on
level k (children). This union is controlled by so called contraction kernels (dec-
imation parameters [12]). Every parent computes its values independently of
other cells on the same level. This implies that an image pyramid is built in
O[log(image diameter)] time. Neighborhoods on level k + 1, are derived from
neighborhoods on level k. Two cells c1 and c2 are neighbors if there exist pixels
p1 in c1 and p2 in c2 such that p1 and p2 are 4-neighbors (Fig. 1a). We assume
that on each level k+1 (k ≥ 0) there exists at least one cell not contained in level
k. In particular, there exists a highest level h . We represent the levels as dual
pairs (Gk, Gk) of plane graphs Gk and its dual (plane) graph Gk [6] (Fig. 1b).
To achieve the planar embedding of graphs we use the 4-connectivity. The se-
quence (Gk , Gk), 0 ≤ k ≤ h is called (dual) graph pyramid. Moreover the graph



is attributed, G(V, E, attrv , attre), where attrv : V → R
+ and attre : E → R

+.
We use weights for attre depending on dissimilarity criteria.

The aim of this paper is to build a minimum weight spanning tree (MST ) of
regions of an image combining the advantage of regular pyramids (logarithmic
tapering) with the advantages of irregular graph pyramids (their purely local
construction and shift invariance). The aim is reached by the selection method
for contraction kernels proposed in [6] to achieve logarithmic tapering, local
construction and shift invariance. Bor̊uvka’s algorithm [2] with dual graph con-
traction (DGC) [12] is used for building MST of the region and to preserve the
graph topology. The topological relation seems to play an even more important
role for vision tasks in natural systems than precise geometrical position. We
build the MST to find region borders based on local differences in a specific
feature. See the book of Jolion [10] for an extensive overview of the pyramid
framework for early vision.

The plan of the paper is as follows. In Sec. 2 we give the merging decision
criteria and we prove that the proposed algorithm builds a nested hierarchy of
parititons. Sec. 3 reports on experimental results.

2 A Hierarchy of Partitions

Hierarchies are a significant tool for image partitioning as they are naturally
combined with homogeneity criteria. Horowitz and Pavlidis [8] define a consis-
tent homogeneity criteria over a set V as a boolean predicate P over its parts
Φ(V ) that verifies the consistency property:

∀(x, y) ∈ Φ(V ) x ⊂ y ⇒ (P (y) ⇒ P (x)). (1)

In image analysis Eq. 1 states that the subregions of a homogeneous region
are also homogeneous. It follows that if Pyr is a hierarchy and P a consistent
homogeneity criteria on V then the set of maximal elements of Pyr that satisfy
P defines a unique partition of V . Thus the combined use of a hierarchy and
homogeneity criteria allow one to define partitioning in a natural way.

The goal is to find partitions Pk = {CCk
1 , CCk

2 , ..., CCk
n} such that these

elements satisfy certain properties. We use the pairwise comparison of neigh-
boring vertices, i.e. partitions to check for similarities [3–5]. A pairwise com-
parison function, Comp(CCk

i , CCk
j ) is true, if there is evidence for a bound-

ary between CCk
i and CCk

j , and false when there is no boundary. Note that

Comp(CCk
i , CCk

j ) is a boolean comparison function for pairs of partitions. The

definition of Comp(CCk
i , CCk

j ) depends on the application.
The pairwise comparison function Comp(·, ·) measures the difference along

the boundary of two components relative to the differences of component’s in-
ternal differences. This definition tries to encapsulate the intuitive notion of
contrast: a contrasted zone is a region containing two components whose inner
differences (internal contrast) are less then differences between them (exter-

nal contrast). We define an external contrast between two components and



an internal contrast of each component. These measures are defined in [3–5],
analogously.

Every vertex u ∈ Gk is a representative of a connected component CCk of the
partition Pk. The equivalent contraction kernel [12] of a vertex u ∈ Gk, N0,k(u)
is a set of edges on the base level that are contracted, i.e. applying N0,k(u) on
the base level contracts the subgraph G′ ⊆ G onto the vertex u. The internal

contrast of the CCk ∈ Pk is the largest dissimilarity inside the component
CCk i.e. the largest edge weight of the N0,k(uk) of vertex uk ∈ Gk, that is

Int(CCk) = max{attre(e), e ∈ N0,k(uk)}. (2)

Let uk,i, uk,j ∈ Vk be the end vertices of an edge e ∈ Ek. The external con-

trast between two components CCk
i , CCk

j ∈ Pk is the smallest dissimilar-

ity between component CCk
i and CCk

j i.e. the smallest edge weight connecting
N0,k(uk,i) and N0,k(uk,j) of vertices uk,i, uk,j ∈ Gk:

Ext(CCk
i , CCk

j ) = min{attre(e), e = (uk,i, uk,j) : uk,i ∈ N0,k(uk,i) ∧ w ∈ N0,k(uk,j)}.

(3)

This definition is problematic since it uses only the “smallest” edge weight be-
tween the two components, making the method very sensitive to noise. But in
practice this limitation works well as shown in Sec. 3. In Fig. 1c an example
of Int(CCk) and Ext(CCk

i , CCk
j ) is given. The Int(CCk

i ) of the component

CCk
i is the maximum of weights of the solid edges (analogously for Int(CCk

j )),

whereas Ext(CCk
i , CCk

j ) is the minimum of weights of the dashed edges con-

necting component CCk
i and CCk

j . Vertices uk,i and uk,j are representative of

the components CCk
i and CCk

j . By contracting the edges N0,k(uk,i) (see solid
edges in Fig. 1c) one arrives to the vertex uk,i, analogously N0,k(uk,j) for the
vertex uk,j .

The pairwise comparison function Comp(·, ·) between two connected compo-
nents CCk

i and CCk
j can now be defined as:

Comp(CCk
i , CCk

j ) =

{

True if Ext(CCk
i , CCk

j ) > PInt(CCk
i , CCk

j ),
False otherwise,

(4)

where PInt(CCk
i , CCk

j ) = min{Int(CCk
i )+τ(CCk

i ), Int(CCk
j )+τ(CCk

j )} is the
minimum internal contrast difference between two components. For the function
Comp(CCk

i , CCk
j ) to be true i.e. for the border to exist, the external contrast

difference must be greater than the internal contrast differences. The reason for
using a threshold function τ(CCk) is that for small components CCk, Int(CCk)
is not a good estimate of the local characteristics of the data, in extreme case
when |CCk| = 1, Int(CCk) = 0. Any non-negative function of a single compo-
nent CCk , can be used for τ(CCk). Choosing criteria other than minimun and
maximum will lead to an NP-complete algorithm [3].

2.1 Building Hierarchy of Partitions

Let Pk = CCk
1 , CCk

2 , ..., CCk
n be the partition on the level k of the pyramid. The

algorithm to build the hierarchy of partitions is as follows:



Algorithm 1 – Hierarchy of Partitions

Input: Attributed graph G0.

1: k = 0
2: repeat

3: for all vertices u ∈ Gk do

4: Emin(u) = argmin{attre(e) | e = (u, v) ∈ Ek or e = (v, u) ∈ Ek}
5: end for

6: for all e = (uk,i, uk,j) ∈ Emin with Ext(CCk
i , CCk

j ) ≤ PInt(CCk
i , CCk

j ) do

7: include e in contraction edges Nk,k+1

8: end for

9: contract graph Gk with contraction kernels, Nk,k+1: Gk+1 = C[Gk, Nk,k+1].
10: for all ek+1 ∈ Gk+1 do

11: set edge attributes attre(ek+1) = min{attre(ek) | ek+1 = C(ek, Nk,k+1)}
12: end for

13: k = k + 1
14: until Gk = Gk−1

Output: A region adjacency graph (RAG) pyramid.

Each vertex uk ∈ Gk i.e. CCk represents a connected region on the base level
of the pyramid, and since the presented algorithm is based on Bor̊ovka’s algo-
rithm [2], it builds a MST (uk) of each region, i.e N0,k(uk) = MST (uk) [7]. The
idea is to collect the smallest weighted edges e (4th step) that could be part of
the MST , and then to check if the edge weight attre(e) is smaller than the in-
ternal contrast of both of the components (MST of end vertices of e) (6th step).
If these conditions are fulfilled then these two components will be merged (7th
step). Two regions will be merged if the internal contrast, which is represented
by its MST , is larger than the external contrast, represented by the weight of
the edge, attre(e). All the edges to be contracted form the contraction kernels
Nk,k+1, which are then used to create the graph Gk+1 = C[Gk, Nk,k+1] [14],
so that the topology is preserved. In general Nk,k+1 is a forest. We update the
attributes of those edges ek+1 ∈ Gk+1 with the minimum attribute of the edges
ek ∈ Ek that are contracted into ek+1 (11th step). The output of the algorithm
is a pyramid where each level represents a RAG, i.e a partition. Each vertex
of these RAGs is the representative of a MST of a region in the image. The
algorithm is greedy since it collects only the nearest neighbor with the minimal
edge weights and merges them if Eq. 4 is false.

Proposition 1. For any connected attributed graph G(V, E, attre, attrv), Alg. 1
produces a hierarchy over V .
Proof. All individual vertices v ∈ V on the base level form a partition. It is only
needed to check that partitions are partially ordered by the inclusion relation.
Assume this is not the case, i.e. ∃(CCk

i , CCk
j ) ∈ Pk such that CCk

i ∩ CCk
j 6= φ

but neither Ck
i ⊂ Ck

j nor Ck
j ⊂ Ck

i . There are at least two edges, e′ connecting

CCk
i and CCk

j \ CCk
i and the other edge e′′ connecting CCk

j and CCk
i \ CCk

j ,

from which it follows that CCk
i ∈ Pk ⇒ PInt(CCk

i , CCk
j ) < Ext(CCk

i , CCk
j ) =

attre(e
′), and for the edge e′′ one shows that attre(e

′′) = Ext(CCk
j , CCk

i ) ≤



PInt(CCk
j , CCk

i ), since PInt(CCk
j , CCk

i ) = PInt(CCk
i , CCk

j ) (Eq. 2) and e′′ ∈

CCk
i it follows Ext(CCk

j , CCk
i ) ≤ PInt(CCk

i , CCk
j ) < Ext(CCk

i , CCk
j ) ≤

PInt(CCk
j , CCk

i ) ⇒ CCk
j /∈ Pk, contradicting the assumption CCk

j ∈ Pk. 2

Proposition 2. For any connected attributed graph G(V, E, attre, attrv), Alg. 1
produces the partitions which are invariant under any monotone transforma-
tion of the attre (dissimilarity measure).
Proof. It should be checked that the order by which the edges are contracted
is not changed by a monotone transformation. The monotone transformation
does not change the total order of edges incident on a vertex. This implies that
the edge with the minimum weight is also not changed after this monotone
transformation in the 4th step of Alg. 1. Moreover this transformation does not
change the total order of the edges in a connected component CCk

i and CCk
j ,

implying that the minimum of maximum edge weight of the CCk
i and CCk

j is
on the same edge (7th step). Edges marked in the 4th and 7th step of the Alg. 1
are not changed by the transformation, which results in the invariance of the
partitions. 2

Proposition 3. For any connected attributed graph G(V, E, attre, attrv), the
hierarchy over V is invariant under monotone transformation of attributes.
Proof. The proof is straightforward using Prop. 2.2

3 Experiments on Image Graphs

We attribute edges with the intensity difference atte(ui, uj) = |I(ui) − I(uj)|,
where I(ui) is the intensity of the pixel pi. For color images we run the algorithm
by computing the distances in color space. To compute the hierarchy of partitions
the function τ(CCk) = f(CCk) is defined as τ(CCk) = α/|CCk |, where α =
const and |CCk| is the number of elements in CCk, i.e. the size of the region. The
algorithm has one running parameter α. A larger constant α sets the preference
for larger components. A more complex definition of τ(CCk), which is large
for certain shapes and small otherwise, would produce a partition which prefers
certain shapes. To speed up the computation, vertices are attributed (attrv) with
the internal differences, average color and the size of the region it represents.
Each of these attributes is computed for each level of the hierarchy. Note that
the height of the pyramid depends only on the image content.

We use indoor RGB images ’Lena’1(512× 512) and ’Object 45’2(128× 128)
and an outdoor image ’Monarch’1(768 × 512) for experiments. We found that
α = 300 produces the best hierarchy of partitions of the images shown in Fig. 2.
Fig. 2b,c,e,h show some of the partitions on different levels of the pyramid and
the number of components. In all of the images there are regions of large inten-
sity variability and gradient. This algorithm is capable of grouping perceptually
important regions dispite of large intensity variability and gradient. Since the al-
gorithm preserves details in low-variability regions, a noisy pixel would survive

1 Waterloo image database
2 Coil 100 image database



a) Lena (262 144) b) Level 14 (48) c) Level 15 (27)

f) Object45 (16 384)

g) Level 14 (2)
d) Monarch (393 216) e) Level 22 (18)

Fig. 2. Some levels of the partitioning produced with α = 300.

throughout the hiearchy (Fig.2e). Image smoothing in low variability regions
would overcome this problem. We do not smooth the images, because that would
introduce another parameter in the method. The hierarchy of partitions can also
be built from an oversegmented image to overcome the problem of noisy pixels.
Note that the influence of τ in the decision criterion is smaller as the region gets
bigger. For an oversegmented image the algorithm becomes parameterless.

4 Conclusion and Outlook

In this paper we have introduced a method to build hiearchical partitions of an
image by comparing in a pairwise manner the difference along the boundary of
two components relative to the differences of component’s internal differences.
Even though the algorithm makes simple greedy decisions locally, it produces
perceptually important partitions in a bottom-up ’stimulus-driven’ way based
only on local differences. It was shown that the algorithm can handle large varia-
tion and gradient intensity in images. Since our framework is general enough, we



can use RAGs of any oversegmented image and build the hierarchy of partitions.
External knowledge can help in a top-down segmentation technique. A drawback
is that the maximum and minimum criterion is very sensitive to noise, although
in practice it has a small impact. Other criteria, such as median, would lead
to an NP-complete algorithm. The algorithm has only one running parameter
which controls the sizes of the regions.
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