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Abstract. Two segmentation methods based on the minimum spanning
tree principle are evaluated with respect to each other. The hierarchical
minimum spanning tree method is also evaluated with respect to human
segmentations. Discrepancy measure is used as best suited to compute
the segmentation error between the methods. The evaluation is done
using gray value images. It is shown that the segmentation results of
these methods have a considerable difference.

1 Introduction

In [8] it is suggested to bridge and not to eliminate the representational gap, and
to focus efforts on region segmentation, perceptual grouping, and image abstrac-
tion. The segmentation process results in “homogeneous” regions with respect to
the low-level cues using some similarity measures. Problems emerge because i)
homogeneity of low-level cues will not map to the semantics [8] and ii) the degree
of homogeneity of a region is in general quantified by threshold(s) for a given
measure [2]. The union of regions forming the group is again a region with both
internal and external properties and relations. The low-level coherence of bright-
ness, color, texture or motion attributes should be used to come up sequentially
with hierarchical partitions [12]. It is important that a grouping method has the
following properties [1]: i) capture perceptually important groupings or regions,
which reflect global aspects of the image, ii) be highly efficient, running in time
linear in the number of pixels, and iii) creates hierarchical partitions [12].

Low-level cue image segmentation cannot produce a complete final “good”
segmentation [11]. This lead researchers to look at the segmentation only in the
context of a task, as well as the evaluation of the segmentation methods. However
in [9] the segmentation is evaluated purely as segmentation by comparing the seg-
mentation done by humans with those done by the normalized cuts method [12].
As can be seen in Fig. 1, there is a high degree of consistency of segmentation
done by humans (already demonstrated empirically in [9]), even thought humans
segment images at different granularity (refinement or coarsening). This refine-
ment or coarsening could be thought of as a hierarchical structure on the image,
i.e. the pyramid. Therefore in [9] a segmentation consistency measure that does
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#35 #17 #2 #12 #18

Fig. 1. Images from the Berkley image database with human segmentation [9]

not penalize this granularity difference is defined (see Sec. 4). Note that the seg-
mented image #35 in row 2 can be coarsened to obtain the image in row 4 (and
vice versa), this is called simple refinement; whereas to obtain image in row 3
from row 2 (or vice versa) we must coarsen in one part of the image and refine in
the other (notice the chin of the man in row 3), this is called mutual refinement.

In this paper, we evaluate two segmentation methods based on the minimum
spanning tree (MST ) principle. The segmentation method based on Kruskal’s
algorithm [1](KrusSeg) and a parallel, hierarchical one, based on Bor̊uvka’s al-
gorithm [6](Bor̊uSeg) (Sec. 2). We compare these two methods following the
framework of [9] i.e. comparing the segmentation results of these methods with
each other. The Bor̊uSeg is also evaluated with respect to the human segmenta-
tions. The results of the evaluation are reported in Sec. 4.

2 Segmentation Methods

A graph-theoretical clustering algorithm consists in searching for a certain com-
binatorial structure in the edge weighted graph, such as an MST [1,4], a mini-
mum cut [14,12] and a search for a complete subgraph i.e. the maximal clique [10].
Early graph-based methods [15] use fixed thresholds and local measures in find-
ing a segmentation, i.e MST is computed. The segmentation criterion is to break
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#35 #17 #2 #12 #18

Fig. 2. Segmentation produces by Bor̊uSeg(k = 300) in row 1-3 (from coarser to
finer segmentation), in row 4 KrusSeg(k = 300, σ = 1.5) and in row 5 KrusSeg(k =
30000, σ = 1.5)

the MST edges with the largest weight, which reflect the low-cost connection be-
tween two elements. To overcome the problem of a fixed threshold, Urquhart [13]
normalizes the weight of an edge using the smallest weight incident on the ver-
tices touching that edge. The methods in [1,4,6] use an adaptive criterion that
depends on local properties rather than global ones.

We evaluate segmentations of the well known method [1] based on Kruskal’s
algorithm, with the one [6] based on Bor̊uvka’s algorithm. Since, for both meth-
ods there is a threshold dependent on the size of the connected component used
(k/|CC|1 see [1,6] for more details.) in the merging criteria, the segmentation
inclusion trees are different, because of the way the data is processed, the first
one does it in serial and the other one in parallel. Setting this threshold to zero

1 |CC| cardinality of the connected component.
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both of the methods would produce the MST of the image, independent of the
way the data is processed.

Some samples of the segmentation results, obtained by applying these meth-
ods to gray value images are shown in Fig. 2. The Bor̊uSeg method is capable of
producing a hierarchy of images, the pyramid (see the images in Fig. 2, where
row 1 represent lower levels of the pyramid, row 2 the middle levels, and row
3 the higher levels). The methods use only local contrast based on pixel inten-
sity values. We smoothed the images before segmenting them with the KrusSeg2

method (Gaussian with parameter σ = 1.5), whereas Bor̊uSeg worked with non
smoothed images. As expected, and seen from Fig. 2, segmentation methods
which are based only on low-level local cues can not create results as good as
humans. The overall number of regions in rows 1 and 4 in each column of Fig. 2,
are almost the same, and this condition is required in [9] to perform the evalua-
tion in Sec. 4. Both of the methods are capable of segmenting the face of a man
satisfactory (image #35). The Bor̊uSeg method did not merge the statue on the
top of the mountain with the sky (image #17), compared to humans which do
segment this statue as a single region (see Fig. 1). Both methods have problems
segmenting the sea creatures (image #12). Note that the segmentation done by
humans on the image of rocks (image #18), contains the axis of symmetry, even
thought there is no “big” local contrast, therefore both of the methods fail in
this respect.

3 Evaluating Segmentations

There are two general methods used to evaluate segmentations: (i) qualitative
and (ii) quantitative methods. Qualitative methods involve humans, meaning
that different observers would give different evaluations about the segmenta-
tions (e.g. [7]). Quantitative methods are classified into analytic methods and
empirical methods [16]. Analytical methods study the principles and properties
of the algorithm, like processing complexity, efficiency and so on. For references
on the analytic studies of methods based on minimum spanning tree see Sec. 2.
The empirical methods study properties of the segmentations by measuring how
“good” a segmentation is close to an “ideal” one, by determining this “good-
ness” with some function of parameters. Both of the approaches depend on the
subjects, the first one, in coming up with the reference (perfect) segmentation3

and the second one, in defining the “goodness” function. The difference between
the segmented image and the (ideal) reference can be used to asses the perfor-
mance of the algorithm [16]. The reference image could be a synthetic image
or be manually segmented by humans. Higher value of the discrepancy means
bigger error, signaling poor performance of the segmentation method. In [16],
it is concluded that evaluation methods based on “mis-segmented pixels should
be more powerful than other methods using other measures”. In [9] the error
measures used for evaluating segmentation counts the mis-segmented pixels.
2 The method is very sensitive to noise [1].
3 Also called a gold standard [3].
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In this paper we use the framework given in [9] to evaluate qualitatively the
result of the KrusSeg [1] with Bor̊uSeg [6] and of the Bor̊uSeg with respect to
humans using the discrepancy measures defined in the next section.

4 Benchmarking Segmentations

In [9] segmentations made by humans are used as a reference and basis for bench-
marking segmentations produced by different methods. The concept behind this
is the observation that even though different people produce different segmenta-
tions for the same image, the obtained segmentations differ, mostly, only in the
local refinement of certain regions. This concept has been studied in [9] on a hu-
man segmentation database (see Fig. 1) and used as a basis for defining two error
measures, which do not penalize a segmentation if it is coarser or more refined
than the other. In this sense, in an image P a pixel error measure E(S1, S2, p),
between two segmentations S1 and S2 containing pixel p ∈ P , called the local
refinement error, is defined as:

E(S1, S2, p) =
|R(S1, p)\R(S2, p)|

|R(S1, p)| (1)

where \ denotes set difference, |x| the cardinality of a set x, and R(S, p) is the
set of pixels corresponding to the connected component in segmentation S that
contains pixel p. Using the local refinement error E(S1, S2, p) the following error
measures are defined in [9]: the Global Consistency Error (GCE), which forces
all local refinements to be in the same direction, and is defined as:

GCE(S1, S2) =
1
n

min

⎧
⎨

⎩

∑

p∈P

E(S1, S2, p),
∑

p∈P

E(S2, S1, p)

⎫
⎬

⎭
(2)

and the Local Consistency Error (LCE), allowing refinement in different direc-
tions in different parts of the image:

LCE(S1, S2) =
1
n

∑

p∈P

min {E(S1, S2, p), E(S2, S1, p)} (3)

n is the number of pixels in the image. Notice that LCE ≤ GCE for any two seg-
mentations. GCE is tougher measure than LCE, because GCE tolerates simple
refinements, while LCE tolerates mutual refinement as well.

We have used the GCE and LCE measures presented above to evaluate the
Bor̊uSeg method [6] using the human segmented images from the Berkley humans
segmented images database [9]. Also, the evaluation of Bor̊uSeg with respect to
KrusSeg is done.

4.1 Evaluation of Segmentations on the Berkley Image Database

As mentioned in [9] a segmentation consisting of a single region and a segmen-
tation where each pixel is a region, is the coarsest and finest possible of any
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Human vs. human Bor̊uSeg vs. human Bor̊uSeg vs. KrusSeg
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Fig. 3. The LCE (above) and GCE (below), error measure results for 100 images

segmentation. In this sense, the LCE and GCE measures should not be used
when the number of regions in the two segmentation differs a lot. So, taking
into consideration that the Bor̊uSeg produces a whole hierarchy of segmenta-
tions with different number of regions (from coarser to finer), we have selected
for the evaluation two levels of this pyramid. In the first case, we have taken for
each image the segmentation level produced by the Bor̊uSeg with the number of
regions closest to the average number of regions produced by the humans (for
the same image). When evaluating the KrusSeg we have chosen for the Bor̊uSeg
the segmentation level that had the number of regions closest to the number of
regions produced by the KrusSeg method. In all the cases this meant going lower
in the pyramid and taking a level which is basically a refinement of the one used
when comparing to the humans. Also, as recommended by Felzenszwalb etal [1],
the images given to the KrusSeg method have been smoothed with a Gaussian
filter (e.g. σ = 1.5). Because the KrusSeg still produced much more regions than
the human segmentations in the database have, an evaluation of the KrusSeg
vs. the humans would have been unfair.

As data for the experiments, we take 100 gray level images from the Berkley
Image Database4. For each of the images in the test, we calculate the GCE and
LCE using the results produced by the KrusSeg and the corresponding level from
the hierarchy produced by Bor̊uSeg, and the human segmentations for the same
image together with the corresponding level from the Bor̊uSeg pyramid. In the
case of humans and Bor̊uSeg, having more than one pair of GCE and LCE for
each image, we calculate the mean and the standard deviation. The results are
summarized in Fig. 3. As a reference point, in the same figure, you can see the
4 http://www.cs.berkeley.edu/projects/vision/grouping/segbench/
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Human vs. human Bor̊uSeg vs. human Bor̊uSeg vs. KrusSeg
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Fig. 4. Histograms of LCE (above) and GCE (below) discrepancy measure

results for calculating the GCE and LCE values for pairwise two segmentations
made by humans, for the same image. We can see that the humans did very
good and proved to be consistent when segmenting the same image, and that
the Bor̊uSeg produces segmentations that obtained higher values for the GCE
and LCE error measures.

In Fig. 4 one can see the histograms of the GCE and LCE values obtained
([0 . . . 1], where zero means no error), humans vs. humans, Bor̊uSeg vs. humans,
and Bor̊uSeg vs. KrusSeg. Notice that the humans are consistent in segmenting
the images and the humans vs. humans histogram shows a peak very close to 0.
Also, the results show that there is a considerable difference (GCE mean value
0.4) between the segmentations produced by the Bor̊uSeg and KrusSeg methods.

5 Conclusion and Outlook

In this paper we have evaluated segmentation results of two methods based on
the minimum spanning tree principle. The evaluation is done using discrepancy
measures that do not penalize segmentations that are coarser or more refined
in certain regions. We use gray scale images to evaluate the quality of results.
In the case of Bor̊uSeg, this evaluation can be used to find classes of images for
which the algorithm has segmentation problems, corresponding to higher GCE
and LCE values. We have observed that the results produced by the Bor̊uSeg
vs. KrusSeg methods have shown a considerable difference. We plan to use a
larger image database to confirm the quality of the obtained results, and do the
evaluation with additional low level cues (color and texture) as well as different
statistical measures.
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