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Abstract. The traveling salesperson problem (TSP) is difficult to solve
for input instances with large number of cities. Instead of finding the
solution of an input with a large number of cities, the problem is approx-
imated into a simpler form containing smaller number of cities, which is
then solved optimally. Graph pyramid solution strategies, in a bottom-up
manner using Bor̊uvka’s minimum spanning tree, convert a 2D Euclidean
TSP problem with a large number of cities into successively smaller prob-
lems (graphs) with similar layout and solution, until the number of cities
is small enough to seek the optimal solution. Expanding this tour solution
in a top-down manner to the lower levels of the pyramid approximates
the solution. The new model has an adaptive spatial structure and it
simulates visual acuity and visual attention. The model solves the TSP
problem sequentially, by moving attention from city to city with the
same quality as humans. Graph pyramid data structures and processing
strategies are a plausible model for finding near-optimal solutions for
computationally hard pattern recognition problems.

1 Introduction

Traveling salesperson problem (TSP) is a combinatorial optimization task of
finding the shortest tour of n cities given the intercity costs. When the costs
between cities are Euclidean distances, the problem is called Euclidean TSP
(E-TSP). TSP as well as E-TSP belongs to the class of difficult optimization
problems called NP-hard and NP-complete if posed as a decision problem [1].
The straightforward approach by using brute force search would be using all
possible permutations for finding the shortest tour. It is impractical for large
n since the number of permutations is (n−1)!

2 . Because of the computational
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intractability of TSP, researchers concentrated their efforts on finding approxi-
mating algorithms. Good approximating algorithms can produce solutions that
are only a few percent longer than an optimal solution and the time of solving
the problem is a low-order polynomial function of the number of cities [2,3,4].
The last few percent to reach optimality are computationally the most expensive
to achieve.

It is by now well established that humans produce close-to-optimal solutions
to E-TSP problems in time that is (on average) proportional to the number of
cities [5,6,7]. This level of performance can not be reproduced by any of the
standard approximating algorithms. Some approximating algorithms produce
smaller errors but the time complexity is substantially higher than linear, other
algorithms are relatively fast but produce substantially higher errors. It is there-
fore of interest to identify the computational mechanism used by the human
brain.

A simple way to present E-TSP to a subject is to show n cities as points on a
computer screen and ask the subject to produce a tour by clicking on the points.
In Figure 1a, an E-TSP example of 10 cities is shown and in c the solution given
by a human. The tours produced by the subjects are, on average, only a few
percent longer than the shortest tours (in Figure 1c and d the cross depicts
the starting position and the arrow the orientation used by the subject). The
solution time is a linear function of the number of cities [5,6]. Two attempts to
emulate human performance by a computational model were undertaken in [5,6].
In [5], authors attempt to formulate a new approximating algorithm for E-TSP
motivated by the failure to identify an existing algorithm that could provide a
good fit to the subjects’ data. The main aspects of the models in [5,7] are its

– (multiresolution) pyramid architecture, and
– a coarse to fine process of successive tour approximations.

They showed that performance of this model (proportion of optimal solutions
and average solution error) is statistically equivalent to human performance.
Pyramid algorithms have been used extensively in both computer and human
vision literature (e.g. [8]), but not in problem solving. The work of [5,9] was the
first attempt to use pyramid algorithms to solve the E-TSP. One of the most at-
tractive aspects of pyramid algorithms, which make them suitable for problems

a) input instance b) graph G0 c) human solution d) optimal solution

Fig. 1. E-TSP and solutions given by human and optimal solver
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such as early vision or E-TSP, is that they allow to solve (approximately) global
optimization tasks without performing a global search. A similar pyramid al-
gorithm for producing approximate E-TSP solutions with emphasis on trade-off
between computational complexity (speed) and error in the solution (accuracy)
and not on modeling human performance is formulated in [4, Chap.5], and [10].

In this paper we present a computational model for solving E-TSP approxi-
mately based on the multiresolution graph pyramid. The emphasis is on emulat-
ing human performance (time and accuracy), and not in finding an algorithm for
solving E-TSP as optimally as possible. The interested reader can consult a large
body of the literature in Operations Research for algorithms for E-TSP [4,3] that
can produce near to optimal tours. Again, these algorithms have computational
complexity that is substantially higher than linear.

Our goal is to show that the results of our model are well fitted to the results
of the humans, and the quality and speed are comparable to that of human sub-
jects. The next section presents a short overview of the pyramid representations
(Section 2). In Section 3 the solution of the E-TSP using a minimum spanning
tree (MST) based graph pyramid is introduced. The bottom-up simplification of
the input data is shown in Section 3.1, and in Section 3.2 the top-down approxi-
mative solution is described. Psychophysical experiments on E-TSP are presented
in Section 4.

2 Irregular Graph Pyramid

In our framework, the TSP input is represented by graphs where cities are rep-
resented by vertices, and the intercity neighborhoods by edges (see Figure 1b).
Each vertex of the constructed input graph must have at least two edges for
the TSP tour to exist. A level (k) of the graph pyramid consists of a graph Gk.
Moreover the graph is attributed, G = (C, N, wv , we), where we : N → R

+ is a
weighted function defined on edges N . The weights we are Euclidean distances
in the E-TSP and wv : C → R

+ is a weighted function defined on cities C. I.e.
each vertex (city) has as a weight its position in the Cartesian coordinate system

Finally, the sequence Gk, 0 ≤ k ≤ h is called irregular graph pyramid.
In a regular pyramid, the number of vertices at any level k is λ times higher

than the number of pixels at the next (reduced) level k +1. The so called reduc-
tion factor λ is greater than one and it is the same for all levels k. The number
of levels on top of G amounts to logλ(|G|). This implies that a pyramid is build
in O[log(diameter(G))] parallel steps [8]. Regular image pyramids are confined
to globally defined sampling grids and lack shift invariance [11]. In [12,13] it is
shown how these drawbacks can be avoided by adaptive irregular pyramids.

In Graham’s model [5], clusters are not explicitly represented. Instead, the
centers of the clusters were used in the E-TSP solution process. The centers were
modes (peaks) of the intensity distribution produced by blurring the image. To
make clusters explicit, Pizlo et. al [14] used an adaptive model in which adaptive
top-down partitioning of the plane along the axis of Cartesian system was used.
The hierarchy was represented by a binary tree. This top-down clustering had
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the advantage that the entire E-TSP did not have to be represented at once in
the memory. The disadvantage was that although this algorithm was invariant
to translation, it was not invariant to rotation. Our new model uses graphs as
representation, which are invariant to both translation and rotation of the input
city constellation. However, the clustering is performed in bottom-up fashion.

3 Solving E-TSP by a Graph Pyramid

Let G0 = (C, N, wv , we) be the input graph, with weights on edges given as
distances in L2 space. The goal of the TSP is to find an nonempty ordered
sequence of vertices and edges (v0, e1, v1, ..., vk−1, ek, vk, ..., v0) over all vertices
of G0 such that all the edges and vertices are distinct, except the start and the
end vertex v0. This tour is called the optimal tour τopt and the sum of edge
weights in this tour is minimal, i.e.

τopt =
∑

e∈τ

we → min,

where we is the weight of edge e.
We use local to global and global to local processes in the graph pyramid to

find a good solution τ∗, approximating the E-TSP. The main idea is to use:

– bottom-up processes to reduce the size of the input, and
– top-down refinement to find an (approximate) solution.

The size of the input (number of vertices in the graph) is reduced such that an
optimal (trivial) solution can be found by the combinatorial search, e.g. for a 3
city instance (not all cities are co-linear) there is only one solution, not needing
any search, and this is the optimal one. For a 4 city input (not all co-linear)
there are three solutions from which two are non-optimal since they cross edges.
A pyramid is used to reduce the size of the input in the bottom-up process. The
(trivial) solution is then found at the top of the pyramid and refined in a process
emulating fovea by humans using lower levels of this pyramid, i.e. the vertical
neighborhoods (parent-children relations) are used in this process to refine the
tour. The final, in general non-optimal, solution is found when all the cities at
the base level of the pyramid are in the tour. The steps needed to find the E-TSP
solution are shown in Algorithm 1. Partitioning of the input space is treated in
Section 2. Sections 3.1 and 3.2 discuss steps 2 and 4 of Algorithm 1 in more
detail.

3.1 Bottom-Up Simplification Using an MST Pyramid

The main idea is that cities being close neighbors are put into a cluster and
considered as a single city at reduced resolution. By doing this recursively one
produces a pyramid representation of the problem. It is well known that the
human visual system represent images on multiple level of scales and resolu-
tion [15,16].
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Algorithm 1. Approximating E-TSP Solution by an MST Graph Pyramid
Input : Attributed graph G0 = (C, N, wv , we), and parameters r and s

1: partition the input space by preserving approximate location:
create graph G0

2: reduce number of cities bottom-up until the graph contains s vertices:
build graph pyramid Gk, ∀k = 0, ..., h, where s = |Gh|

3: find the optimal tour τa for the graph Gh

4: refine solution top-down until all vertices at the base level are processed:
refine τa until level 0 is reached

Output : Approximate TSP solution τ∗.

There are many different algorithms to make hierarchical clustering of cities
[17]. We choose for this purpose the MST principle, especially Bor̊uvka’s algo-
rithm [18] since it hierarchically clusters neighboring vertices. The time com-
plexity of Bor̊uvka’s algorithm is O(|E| log |V |). It can be shown that MST can
be used as the natural lower bound and for the case of the TSP with the triangle
inequality, which is the case for the E-TSP, it can be used to prove the upper
bound as well [19]. The first step in Christofides’ heuristics [2] is finding an MST
as an approximation of TSP. Christofides shows that it is possible to achieve at
least 3

2 times of the optimal solution of TSP i.e. Christofides heuristics solution
of TSP is at most 50% longer than the optimal solution.

For a given graph G0 = (C, N, wv , we) the vertices are hierarchically grouped
into trees (clustered) as given in Algorithm 2. The idea of Bor̊uvka is to do
greedy steps like in Prim’s algorithm [20], in parallel over the graph at the same
time. The size of trees (clusters) are not allowed to contain more than r ∈ N

+

cities. These trees must contain at least 2 cities, due to the fact that the pyramid
must have a logarithmic height [21], since the reduction factor λ is 2 ≤ λ ≤ r.
This parameter can be related also to the number of ’concepts’ that humans can
have in their ’memory buffer’, and is usually not larger than 10.

The number s ∈ N
+ of vertices in the top level of the pyramid is chosen such

that an optimal tour can be found easily (usually s = 3, or s = 4). Note that

Algorithm 2. Reduction of the E-TSP Input by an MST Graph Pyramid
Input : Attributed graph G0 = (C, N, wv , we), and parameters r and s

1: k ← 0
2: repeat
3: ∀vk ∈ Gk find the edge e′ ∈ Gk with minimum we incident into this vertex
4: using e′ create trees T with no more than r vertices
5: contract trees T into parent vertices vk+1

6: create graph Gk+1 with vertices vk+1 and edges ek ∈ Gk \ T
7: attribute vertices in Gk+1

8: k ← k + 1
9: until there are s vertices in the graph Gk+1.

Output : Graph pyramid – Gk, 0 ≤ k ≤ h.
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larger s means a shallow pyramid and larger graph at the top, which also means
higher time complexity to find the optimal tour at the top level. Thus r and s
are used to control the trade off between speed and quality of solution.

An example of how Algorithm 2 builds the graph pyramid (only the last two
levels) is shown in Figure 2. Each vertex (black in Gh−1) finds the edge with the
minimal weight (solid lines in Gh−1). These edges create trees of no more than
r (= 4) cities. These trees are then contracted to the parent vertices (enclosed
black vertices in Gh−1 are contracted into white vertices in Gh). The parent
vertices together with edges not touched by the contraction are used to create
the graph of the next level (parallel edges and self loops can be removed, since
they are not needed for the clustering of vertices). The dotted lines between
vertices in different levels represent the parent-child relations. The new parent
vertex attribute can be the gravitational center of its child vertices, or by using
the position of the vertex near this gravitational center. The algorithm iterates
until there are s vertices at the top of the pyramid, and since s is small a full
search can be employed to find the optimal tour τa at the top quickly.

Fig. 2. Building the graph pyramid and finding the first TSP tour approximation

In our current software implementation we use the fully connected graph to
represent the input instance, as expected the bottom-up simplification algorithm
has at least O(|E|2) time complexity [22]. This time complexity can be reduced
easily to O(|E| log |V |) if instead of the fully connected graph one uses a planar
graph e.g. Delaunay triangulation.

3.2 Top-Down Approximation of the Solution

The tour τa found at level h of the graph pyramid is used as the first approxi-
mation of the TSP tour τ∗. This tour is then refined using the pyramid structure
already built. Similar to Pizlo et. al. [14] we have chosen to use the most simple
refinement, the one-path refinement. The one-path refinement process starts by
choosing (randomly) a vertex v in the tour τa. Using the parent-child relation-
ship, this vertex is expanded into the subgraph G′

h−1 ⊂ Gh−1 from which it was
created i.e. its receptive field in the next lower level. In this subgraph a path
between vertices (children) is found that makes the overall path τ ′

a the shortest
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Fig. 3. Refining the E-TSP tour by a graph pyramid

one (see Figure 3a). Since the number of vertices (children) in G′
h cannot be

larger than r, a complete search is a plausible approach to find the path with
the smallest contribution in the overall length of the tour τ ′

a. Note that edges in
the τ ′

a are not necessarily the contracted edges during bottom-up construction.
The refinement process then choses one of the already expanded vertices in

G′
h−1, say v′ and expands it into its child at the next lower level G′

h−2, and the
tour τ ′′

a is computed. The process of tour refinement proceeds recursively until
there are no more parent-children relationships (graph G0, Figure 3b vertices
of the receptive field of c, RF (c)), i.e. vertices at the base of the pyramid are
reached. E.g. in Figure 3b, the tour is refined as the shortest path between the
start vertex b and end vertex e and all the vertices (children of c) of the RF (c).
After arriving at the finest resolution, the process of refinement continues by
taking a vertex in the next upper level in the same cluster (Figure 3 vertex
b or e), and expanding it to its children and computing the tour. Note that
the process of vertex expansion toward the base level emulates the movement of
fovea (attention) in the process of solving the problem by a human observer. The
tour is refined to the finest resolution in one part whereas other parts are left in
their coarse resolution. The process converges when all vertices in the pyramid
have been ’visited’3. More formally the steps are depicted in Algorithm 3, and
Procedure 1, and 2.

Other refinement approaches can be chosen as well. One can use different
approaches of refinement for e.g. one can think of using many vertices and ex-
panding them in parallel (multi-path refinement), or use the one-path refinement
until a particular level of the pyramid and continue with the multi-path refine-
ment afterward. In these cases one needs to change Procedure 1. Note that there
is a randomness in choosing which of the vertices to refine, which is may cor-
respond to individual differences on how humans choose from which vertex to
start the tour. In this case one needs to change Procedure 2.

3 A demo is given in http://www.prip.tuwien.ac.at/Research/twist/results.php.
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Algorithm 3. E-TSP Solution by a MST Graph Pyramid
Input : Graph pyramid Gk, 0 ≤ k ≤ h and the tour τa

1: τ∗ ← τa

2: v ← random vertex of τ∗

3: repeat
4: refine(τ∗, v) /* refine the path using the children of v. See Prc. 1 */
5: mark v as visited
6: v ← nextVertex(Gk, v, τ∗) /* get next vertex to process. See Prc. 2 */
7: until v = ∅

Output : Approximation E-TSP tour τ∗.

Procedure 1. refine(τ∗, v): refine a path τ∗ using the children of v

Input : Graph pyramid Gk, 0 ≤ k ≤ h, the tour τ∗, and the vertex v.
1: (c1, . . . , cn) ← children of v /* vertices that have been contracted to v */
2: if n > 0 /* v is not a vertex from the bottom level */ then
3: vp, vs ← neighbours of v in τ∗ /* predecessor and successor of v */
4: p1, . . . , pn ← argmin{length of path {vp, cp1 , . . . , cpn , vs}} such that p1, . . . , pn is

a permutation of 1, . . . , n /* optimal order of new vertices in the tour */
5: replace path {vp, v, vs} in τ∗ with path {vp, cp1 , . . . , cpn , vs}

Output : refined TSP tour τ∗.

Procedure 2. nextVertex(Gk, v, τ∗): get next vertex to process
Input : Graph pyramid Gk, 0 ≤ k ≤ h, the vertex v, and the tour τ∗

1: repeat
2: if v has unvisited children then
3: v ← first unvisited child of v in τ∗ /* given an orientation */
4: else if v has unvisited siblings then
5: v ← first unvisited sibling of v in τ∗ /* given an orientation */
6: else if v has a parent i.e. v is not a vertex of the top level then
7: v ← parent of v
8: else
9: v ← ∅

10: until (v not visited)
∨

(v = ∅)
Output : new vertex to process v.

4 Psychophysical Evaluation of Solutions

Four subjects (including one author) were tested. Each subject solved the same
100 E-TSP problems in a different order. There were 4 different sizes 6, 10, 20,
and 50 cities, with 25 instances per problem size. The cites in each problem were
generated randomly on a 256 × 256 square grid [7]. Examples of 10 city tours
produced by the subject and by the model are presented in Figure 4. The crosses
depict the starting point chosen by the subjects and the model. BSL, OSK, and
ZP chose the clock-wise tour, whereas ZL the counter-clock-wise tour. The MST
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based pyramid model choses randomly the orientation of the tour. To test how
well the model fits the subject data, the algorithm is run 15 times with different
parameters r (2 ≤ r ≤ 7). The results of the best model fitting (as well as the
standard deviation) to the subject data are shown in Figure 5. It can be seen that
fit are quite good. The worst fit is for the case of 50-city problems (especially
for OSK). Specifically, the model’s performance is not as good as that of the
subjects. To improve the models’s performance, higher values of r would have
to be used. This is how the simulation were performed in [14].

a) BSL b) OSK

c) ZL d) ZP

e) MST pyramid model

Fig. 4. E-TSP solutions by humans subjects and the MST pyramid model

For larger instances (> 100 cities) data with human subjects are difficult to
obtain. Therefore we tested the results of the Algorithm 1 with the state-of-the-
art Concorde TSP solver4 with respect to time and with adaptive pyramid [14]
with respect to the solution error. The test is done with respect to the quality
of results, and the time needed to solve input examples with 200, 400, 600,
800, and 1000 cities. The error values are shown in Figure 6a and the time
performance in Figure 6b. The time plot is normalized to the time needed for
methods to solve the 200 city instance in one second. We have fixed the values
of the parameter r = 7 and s = 3 for these experiments. Note that the Concorde
algorithm solves the problem optimally, i.e. no error. We show that the results of
the MST-based model are comparable to humans in quality and speed, and scale
well with large input instances. This solution strategy emulates human fovea by
moving attention from city to city.

4 http://www.tsp.gatech.edu/concorde/index.html
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a) BSL b) OSK
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Fig. 5. Model fitting on human data
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Fig. 6. The solution error and the time performance

5 Conclusion

Pyramid strategies convert in a bottom-up process a 2D Euclidean TSP problem
with a large number of cities into successively smaller problems with similar
layout and solution until the number of cities is small enough to seek the optimal
solution. Expanding this solution in a top-down manner to the lower levels of



Approximating TSP Solution by MST Based Graph Pyramid 305

the pyramid approximates the solution. The introduced method uses a version of
Bor̊uvka’s MST construction to reduce the number of cities. A top-down process
is then employed to approximate the E-TSP solution of the same quality and at
the same speed as humans do. The new model has an adaptive spatial structure
and it simulates visual acuity and visual attention. Specifically, the model solves
the E-TSP problem sequentially, by moving attention from city to city, the same
way human subjects do. We showed that the new model fits the human data.
Pyramid data structures and processing strategies are a plausible model for
finding near-optimal solutions for NP-hard pattern recognition problems, e.g.
matching.

Acknowledgment. The authors would like to thank anonymous reviewers for
their valuable comments.
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