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Abstract. This paper presents a novel method for fitting egg-shapes to
discrete sets of boundary points. Egg-shapes extend ellipses by assigning
a positive weight to one of the two focal points. Fitting of egg-shapes thus
requires optimization of 6 parameters. Our approach simplifies this to a
1D parameter space exploration. First, we utilize a least square algorithm
to fit an ellipse to the boundary. While the desired egg-shape shares the
orientation of the major axis and to a certain extent also the size of
the ellipse, its fine-tuning to the boundary is more involved than merely
adjusting the focal weight. To this end, we establish a relation between
the eccentricity of the ellipse and the two shape-defining parameters
of the closest egg-shapes. Subsequently, we utilize this relationship to
iterate over a 1D space of closest egg-shape candidates while assessing
their fitness to the boundary. Our results underscore the benefits of using
egg-shapes over ellipses for representing a spectrum of real-world objects.

Keywords: egg-shape · fitting · discrete shape · eccentricity · ellipse ·
generalized conics

1 Introduction

The core task in any computer vision problem is to define and efficiently express
the essential object characteristics [11]. In order to represent a shape, one strat-
egy is to approximate it by fitting a geometric primitive to the set of its boundary
points. For example, an ellipse enables describing the 2D shape by elongation
and orientation and requires 5 parameters. This significantly simplifies the pro-
cessing and memory costs compared to the entire collection of pixels [1]. As a
result, ellipse fitting is an area of extensive research [2,5,12,17] and finds its use
in a multitude of applications [7,9,10,14].

This paper presents an advancement in the field of shape representation by
exploring the potential of an egg-shape [3]. This generalization of the ellipse
introduces a positive weight to one of the focal points. Despite the broadened
scope of objects that might be described by egg-shapes, there are two key areas
that have not been addressed to the best of our knowledge. Firstly, there is a lack
of real-world examples demonstrating the benefits of egg-shapes. Secondly, it is
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the absence of a method for fitting egg-shapes to object boundaries. To this end,
existing literature provides fitting methods for a different generalization, i.e., the
super-ellipse [8,18], that yields shapes from four-armed stars with concave sides
to rectangles thru an additional parameter.

Addressing these gaps, we have identified various classes of real-world objects,
such as chicken eggs, avocados, leaves, spoons, and rackets, that demonstrably
benefit from egg-shape representation. We have assembled a collection of 1337
such objects, complete with photographs and boundaries, and have made this
collection publicly accessible [15] in conjunction with the publication of this
paper. A selection of four boundaries from this collection is presented in the
results Sect. 6.

Crucially, we have developed an algorithm, detailed in Sect. 4, that is capable
of fitting egg-shapes to the discretized boundaries of these objects. The research
code for this algorithm has also been made publicly available [6].

The primary contribution of our work, detailed in Sect. 3, is the reduction of
the search space from six parameters to a single one. This was enabled by our key
discovery, i.e., the relationship between egg-shape parameters and the eccentric-
ity of its best-fitting ellipse. This contribution was facilitated by addressing two
crucial aspects of the egg-shape: its explicit, polar-form representation (sec. 2.1)
and the derivation of its arc-length sampling (sec. 2.2).

2 Egg-Shapes

Conics have been generalized by assigning real-valued weights wi to multiple
focal points Fi in higher-dimensional metric spaces [4]. These generalizations
are elegantly encompassed by Σiwi‖P − Fi‖ = c ∈ R, which implicitly defines
the conic by its points P .

In this work, we focus on shapes in the Euclidean plane induced by two foci
and two positive weights. After a weight normalization [3], we are left with a
single weight μ from the unit interval.

Definition 1 (Egg-shape). Given two distinct foci F0 �= F1 in the Euclidean
plane, weight 0 ≤ μ ≤ 1, and scaling factor c ≥ 1. Egg-shape is a set of points
P in the Euclidean plane fulfilling

d0 + μd1 = c · f (1)

where di = ‖P − Fi‖ are the distances of P from foci Fi and f = ‖F1 − F0‖ is
the focal distance.

Wherever context permits, we may use the term egg as a shorthand for egg-
shape. Definition 1 encompasses circles (μ = 0), ellipses (μ = 1), as well as a
spectrum of egg-like shapes with various sharpness (Fig. 5), including those with
sharp corner [3] at c = 1 (Fig. 3).
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Fig. 1. Deriving polar coordinates. Unit egg U01 parametrized by c = 1.2, μ = 0.5.

2.1 Polar Coordinates

To explicitly express the egg in polar coordinates, we consider the two foci at the
origin F0 = [0, 0]� and on the positive horizontal axis, F1 = [f, 0]�. Setting the
focal distance f = 1 yields what we refer to as the unit egg U01 (Fig. 1). Later,
we will also refer to its left-oriented counterpart U10 flipped about x = 1/2.

For any point P at angle θ on the egg (1) holds. Taking the square results
in:

d21 =
(

cf − d0
μ

)2

(2)

Furthermore, the law of cosines yields:

d21 = d20 + f2 − 2d0f cos (θ) (3)

Subtracting (3) from (2) results in quadratic equation in d0:

d20
(
μ2 − 1

)
+ d0

(
2f(c − μ2 cos (θ))

)
+ f2

(
μ2 − c2

)
= 0. (4)

For μ = 1 the quadratic term vanishes yielding the polar equation of an ellipse.
For μ = 0, d0 = cf implicitly defines points P on a circle centered at F0. For
0 < μ < 1 and fixed θ, the two solutions of (4), i.e.,

d+0 , d−
0 = f ·

μ2 cos (θ) − c ± μ
√

c2 − 2c cos (θ) − μ2 sin2 (θ) + 1

μ2 − 1
(5)

correspond to distances (from F0) of two points: P on the egg (μ > 0 ⇒ d+0 ), and
P− on a generalized hyperbola (μ < 0 ⇒ d−

0 ) [3], which is further not discussed.
Putting r(θ) = d+0 yields the polar coordinates (r(θ), θ) of the egg-shape.
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2.2 Arc Length

Similar to ellipses, uniform sampling of the polar angle θ will generally lead to
uneven distribution of points on the boundary (Fig. 3, left). Such sampling would
likely introduce bias when fitting to the discretized boundary of an object.

To address undersampled segments, we aim at the arc-length parameteriza-
tion (Fig. 3, right). Computing the arc-length L between two angles θ0 < θ1 in
the polar parametrization (r, θ) involves numerical integration of:

L(θ0, θ1) =
∫ θ1

θ0

√
r2 +

(
dr

dθ

)2

dθ (6)

Putting

R = R(θ) =
√

c2 − 2c cos (θ) − μ2 sin2 (θ) + 1 (7)

M = M(θ) = μ2 cos (θ) − c (8)
A = μ2 − 1 (9)

simplifies the terms for r and its derivative w.r.t θ to:

r = f · M + μR

A
(10)

dr

dθ
= −f · M + μR

A
· μ · sin (θ)

R
= −r · μ · sin (θ)

R
(11)

Equation (11) confirms the discovery regarding the sharp corners [3] in eggs with
c = 1 (Fig. 3). Specifically, when c = 1, R(θ) vanishes at θ = 2kπ ∀k ∈ Z, which
results in discontinuities in dr/dθ and leaves the derivatives undefined. However,
dr/dθ is an odd function with finite and opposing left/right limits in 2kπ:

lim
c=1

θ→2kπ−
−rμ

sin (θ)
R

=
rμ√

1 − μ2
= − lim

c=1
θ→2kπ+

−rμ
sin (θ)

R
(12)

Therefore, the square (dr/dθ)2 in (6) exists in the limit (from either side):

lim
c=1

θ→2kπ

(
dr

dθ

)2

=
r2μ2

1 − μ2
(13)

Equations (10)–(13) result, for given θ, in a recipe to reuse the radius r to com-
pute the square of the derivative. Having the ingredients, the values of arc-length
L(0, θ) can be utilized to sample the egg points at regular distances as exempli-
fied in Figs. 2 and 3.

3 Egg-Shapes and Best-Fitting Ellipses

We aim to establish the correspondence between egg parameters and the eccen-
tricity ε = ε(c, μ) of the best-fitting ellipse [5]. Two bounding cases are apparent
from the equation for egg-shape (cf. Fig. 4):
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Fig. 2. Uniform sampling along the arc length L (horizontal lines) leads to samples of
θ (vertical lines), which correspond to the equidistant sampling of the egg-shape.

Fig. 3. A corner-egg (c = 1) with θ sampled linearly (left) and by arc length (right).

ε(c, 0) = 0/c: egg-shape, and thus also its best-fitting ellipse, is a circle implicitly
given by d0 = cf .

ε(c, 1) = 1/c: egg-shape, and thus also its best-fitting ellipse, is an ellipse implic-
itly given by d0 + d1 = cf , i.e., one with focal distance f , the length of its
main axis cf , and eccentricity ε = f/(cf) = 1/c.

To model ε(c, μ) between, we fitted ellipses by the robust algorithm [5] to the
sampled boundaries of unit eggs parametrized by μ ∈ (0, 1) and c ∈ 〈1, 5〉.1
This way we densely sampled the parameter space of egg-shapes and tracked the
fitting-ellipse eccentricities.

Interestingly, this process reveals a power-rule increase of ε w.r.t. μ. This is
illustrated in Fig. 4 by the two dotted lines at c = 1 and c = 5. The power-rule
behavior becomes apparent after the scaled ε · c curves map to lines through the
origin in a log-log plot. Moreover, it can be observed that the slopes S of the
log-log lines are inversely proportional to c, S ∝ 1/c.

1 The upper bound for c was determined by the expected lowest eccentricity of ellipses
fitted to modeled objects. For our collection [15]: cmax = 1/εmin ≤ 1/0.2 = 5.
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Fig. 4. Relationship between egg-shape parameters c, μ, and the eccentricity of the
best-fitting ellipse. The ten solid curves correspond to iso-eccentricity lines (blue at 0,
red at 0.9). The red dot at (c,μ) = (1,1) corresponds to the unit eccentricity of the
degenerated case, i.e., the line connecting the two foci. (Color figure online)

This encourages to model the eccentricity by

ε(c, μ) ≈ 1
c

· μS(c) (14)

where
S(c) ≈ S(c;α, β, γ) = β +

α

c + γ
(15)

Fitting the three parameters results in α = 0.01994611, β = 0.49646579, γ =
−0.7994735 and yields an error in eccentricity of 0.0000 ± 0.0013.

It is worth mentioning that this modeling is performed only once, before
fitting egg-shapes to object boundaries.

4 Fitting Egg-Shapes via an Ellipse Proxy

Equation (14) relates the eccentricity of best-fitting ellipse given egg-shape
parameters. More importantly, we can constrain the inverse, egg-to-ellipse fitting
problem to the iso-eccentricity line in the (c, μ) space (Fig. 5).

Given an ellipse of eccentricity ε, the parameter c is restricted to the interval
〈1, 1/ε). Rewriting (14) allows, for a fixed c, computation of the corresponding
μ:

μ = μ(c; ε) = (c · ε)1/S(c) ≈ (c · ε)
(c+γ)

β(c+γ)+α (16)
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Fig. 5. Sampled best-fitting eggs to an ellipse of fixed eccentricity on the curve given
by Eq. (16) in the (c, μ) parameter space. For clarity, the unit eggs are scaled down.

Our objective is to fit an egg-shape to a segmented object represented by
boundary points B. It is important to note that, unlike the unit egg, boundaries
B can be arbitrarily placed and oriented within the Euclidean plane.

The steps of Algorithm 1 proceed as follows: We begin by fitting a proxy
ellipse to the boundary points B and recording its eccentricity. It is worth noting
that while the proxy provides the angle of the object’s main axis, it does not
disambiguate between the two possible orientations of the object’s tip. Next,
we perform an iterative search along the iso-eccentricity curve. During each
iteration, we fit ellipses to both the arc-sampled unit egg U01 and its horizontally
flipped counterpart U10. Since both ellipses share the same eccentricity as the
proxy, they naturally determine transformations that align U01 and U10 with
the boundary B. Finally, we resolve the object’s tip orientation by assessing
both transformed eggs by fitness to the boundary B using a metric Δ. In the
context of this paper, Δ represents the average Hausdorff distance defined later
in Sect. 5.
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Algorithm 1. Fitting egg to boundary along 1D iso-eccentricity curve
Require: B � boundary coordinates of egg-like object
1: EB ← fit ellipse (B) � fit a proxy ellipse to the boundary
2: εB ← eccentricity (EB) � eccentricity to restrict the search
3: (Δ∗, F ∗

0 , F ∗
1 , c∗, μ∗) ← (∞, [0, 0]�, [1, 0]�, 1, 0) � loss, foci, and params to optimize

4: for c ∈ 〈1, 1/c) do � sample the iso-eccentricity curve
5: μ ← μ(c; εB) � equation (16)
6: U01 ← unit egg (c, μ) � unit egg given by c, μ
7: U10 ← flip (U01) � unit egg flipped about x = 1/2
8: for o ∈ {0, 1} do � for both orientations of the unit egg
9: EU ← fit ellipse (Uo,1−o) � ellipse fitting the unit egg, ecc(EU ) � ecc(EB)

10: TUB ← argminT |T (EU ), EB | � EU to proxy alignment transform
11: G ← TUB(Uo,1−o) � bring the egg to the object boundary
12: Δ ← |G, B| � distance of the transformed egg to the boundary
13: if Δ < Δ∗ then � if loss decreased
14: (Δ∗, F ∗

0 , F ∗
1 , c∗, μ∗) ← (

Δ, TUB([o, 0]�), TUB([1−o, 0]�), c, μ
)

� update
15: end if
16: end for
17: end for
18: return (F ∗

0 , F ∗
1 , c∗, μ∗) � foci and parameters of the best-fitting egg

5 Validation

Our methodology is verified using both overlap-centric and distance-centric met-
rics [16] on a purposely created collection of boundaries [15] segmented from
images of both biological and common objects. These include both deformable
and rigid items captured in arbitrary orientations and scales. Each segmenta-
tion is represented by a binary mask and its boundary thus as a set of integer
coordinates.

5.1 Datasets

Whole eggs: Boundaries of 1,100 photographed eggs [13].
Boiled eggs: Images of longitudinally halved, hard-boiled eggs found on the

internet were manually segmented, yielding 12 boundaries each for the egg
whites and yolks.

Avocados: Images of longitudinally halved avocados were found on the inter-
net. The shells of these avocados were manually segmented, resulting in 6
boundaries. Some of them are slightly deformed.

Leaves: Tree and plant leaves were deliberately selected and photographed in
line with this study. The criteria included being longitudinally symmetrical,
egg-shaped, elongated, and possibly pointed. Manual segmentation excluded
the stems and produced 23 boundaries.

Cells: Palisade cells of Arabidopsis thaliana in a micro-CT cross-section slice
were manually segmented, resulting in 159, mostly elliptic boundaries.

Household items: 11 spoon heads and 2 toilet seats segmented from photos.
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Rackets: Images of tennis, badminton, and squash racket heads sourced from
the internet were segmented, resulting in 12 boundaries. The outer shell of
the squash head is noted to be pointed. One of the tennis heads is elliptic.

5.2 Validation Metrics

The geometric alignment of a model with the object boundary is evaluated using
metrics that take into account either the boundary point sets M and B, or the
corresponding polygons M and B.

IoU (also referred to as the Jaccard index) [16], defined as the area of the
intersection divided by the area of the union of polygons M and B:

IoU(M,B) =
|M ∩ B|
|M ∪ B| (17)

ranges from 0 to 1, with 1 indicating perfect alignment.

The Average Hausdorff Distance (HD) is used to assess the fitness for
its decreased sensitivity to outliers [16] when compared to the usual Hausdorff
distance. HD is defined by:

HD(M,B) = max (d(M,B), d(B,M)) (18)

where d(X, Y) is the directed Average Hausdorff distance [16] given by:

d(X,Y ) =
1

|X|
∑
x∈X

min
y∈Y

||x − y||. (19)

To assess improvements of egg models MG over elliptic models EL across con-
tours of different lengths we further introduce the following normalization:

Normalized Improvement (NI) in average Hausdorff distance HD of egg
model MG over elliptical model ML when fitted to boundary B. We define
NI = 0 if models align. Otherwise:

NI(MG,ML|B) =
HD(ML, B) − HD(MG, B)

max
(
HD(ML, B) , HD(MG, B)

) . (20)

Being already normalized, IoU is naturally suited to assess improvements by:

ΔIoU(MG,ML|B) = IoU(MG, B) − IoU(ML, B). (21)

Both improvement metrics fall in the closed interval 〈−1, 1〉. Positive values
indicate an improvement due MG, while negative values signify a decline.
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6 Results

Figure 7 showcases a selection of top-improvement examples. To avoid clutter,
Fig. 6 summarizes both improvement metrics (20), (21) in two separate scatter
plots. 94.68% of data points indicating improvements in both metrics are located
in the 1st quadrants. The ties in the 2nd and 4th quadrants correspond to cases
improved in only one of the metrics. They account for 10+11 out of 159 cells and
9 + 12 out of 1100 whole eggs. Finally, the 3rd quadrant shows minimal declines
in both metrics: less than 4% of cells (6 out of 159) and less than 2% of whole
eggs (20 out of 1100). The leftmost point of the upper part is the elliptic tennis
racket that can not be improved by the egg-shape.

In the marginal-improvement rectangle (0, 0.1) × (0, 0.02) in the upper part,
a cluster of 9 boiled-egg yolks can be found. They are almost elliptical making it
difficult for the egg-shapes to improve them. This explains the almost identical
IoU and only marginally improved NI values. The enclosed badminton racket
already deviates from an ellipse and was slightly improved by an egg-shape.

Fig. 6. Normalized improvements in average Hausdorff distance (NI) and in IoU .
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Fig. 7. Improvements by egg-shape fit (right column) over elliptic fit (left column) for
selected contours. Top to bottom: avocado (NI = 0.54), whole egg (NI = 0.52), spoon
head (NI = 0.71), and leaf (NI = 0.58). Gray and dark green areas are not explained
well by the respective model. The blue crosses show the foci. (Color figure online)
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Upon examining areas with higher improvements, it becomes apparent that
the term egg-shapes may warrant reconsideration. In our selection, avocados out-
performed eggs (both boiled and whole) in both metrics. This can be attributed
to their more tapered shape, which is better modeled by egg-shapes.

A similar observation can be made about the top-scoring leaves (e.g., those
with ΔIoU � 0.06) and spoons (NI � 0.6), which are difficult to model using
ellipses. However, egg-shapes have proven effective in modeling the spikes or even
sharp corners by reducing c towards 1 (refer to Fig. 7).

In the bottom part of Fig. 6, most of the plant cells cluster in the marginal
improvement rectangle. This is because most of the cells are elliptical or even
circular in shape, and an ellipse already provides a good model. A strong correla-
tion between the metrics is evident for both datasets. Unlike eggs, the cells have
been segmented from a single image, which results in more jagged boundaries.
For such boundaries, improvements in IoU could potentially be more pronounced
than those in NI, explaining the steeper trend.

7 Conclusions and Future Work

In this paper, we introduced a novel method for fitting discrete boundaries using
egg-shapes. We ventured beyond the confines of implicit equations and harnessed
the power of explicit representation in conjunction with arc-length parametriza-
tion. This approach led to our key finding: a relationship between egg-shape
parameters and the eccentricity of the best-fitting ellipse, which subsequently
informed the design of our fitting algorithm.

Our algorithm was rigorously tested on over 1,000 boundaries. The results
have demonstrated the potential of egg-shapes for representing real-world
objects. Unexpectedly, we have discovered that there are objects other than eggs,
which when fitted with an egg-shape, show even better improvements over ellip-
tic fits. This intriguing finding expands the potential applications of egg-shape
fitting beyond what was initially anticipated.

The results of our research pave the way for future development, which can be
pursued along several avenues: 1. The choice of arc-length parametrization was
largely based on intuition. A comparison with its linear counterpart is necessary
to validate our approach. 2. Our algorithm currently performs an exhaustive
search along the iso-eccentricity curve. However, the existence of a global min-
imum along this curve, which could potentially speed up the fitting process,
remains unexplored. 3. Similar to egg-shape parameters, we observed a promis-
ing pattern between eccentricity and the offsets of the focal points. However,
modeling this seems to be a more complex task. 4. We have yet to address the
robustness of our method in dealing with noise, overlaps, or partial occlusions.

Acknowledgements. We would like to express our sincere gratitude to Aysylu Gab-
dulkhakova for sharing her invaluable insights and knowledge on egg-shapes.

This project was supported by the Vienna Science and Technology Fund (WWTF)
project LS19-013 and the Vienna Scientific Cluster (VSC).



Fitting Egg-Shapes to Discretized Object Boundaries 119

References

1. Costa, L.D.F., Cesar, R.M., Jr.: Shape Analysis and Classification: Theory and
Practice. CRC Press, Boca Raton (2000)

2. Fitzgibbon, A., Pilu, M., Fisher, R.: Direct least square fitting of ellipses. IEEE
Trans. Pattern Anal. Mach. Intell. 21(5), 476–480 (1999)

3. Gabdulkhakova, A., Kropatsch, W.G.: Generalized conics with the sharp corners.
In: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Appli-
cations, pp. 419–429 (2021)

4. Groß, C., Strempel, T.K.: On generalizations of conics and on a generalization of
the Fermat-Torricelli problem. Am. Math. Mon. 105(8), 732–743 (1998)
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8. Köhntopp, D., Lehmann, B., Kraus, D., Birk, A.: Segmentation and classification
using active contours based superellipse fitting on side scan sonar images for marine
demining. In: IEEE International Conference on Robotics and Automation, pp.
3380–3387 (2015)

9. Kothari, R.S., Chaudhary, A.K., Bailey, R.J., Pelz, J.B., Diaz, G.J.: Ellseg: an
ellipse segmentation framework for robust gaze tracking. IEEE Trans. Visual Com-
put. Graphics 27(5), 2757–2767 (2021)

10. Liao, M., et al.: Automatic segmentation for cell images based on bottleneck detec-
tion and ellipse fitting. Neurocomputing 173, 615–622 (2016)

11. Loncaric, S.: A survey of shape analysis techniques. Pattern Recogn. 31(8), 983–
1001 (1998)

12. Long, C., Hu, Q., Zhao, M., Li, D., Ouyang, Z., Yan, D.M.: A triple-stage robust
ellipse fitting algorithm based on outlier removal. IEEE Trans. Instr. Meas. 72,
1–14 (2023)

13. Nho, T.: Egg-segmentation dataset (2023). https://universe.roboflow.com/the-
nho/egg-segmentation. Accessed 26 July 2023

14. Panagiotakis, C., Argyros, A.: Region-based fitting of overlapping ellipses and its
application to cells segmentation. Image Vis. Comput. 93, 103810 (2020)

15. Pelletier, V., Hlad̊uvka, J.: Eggshapes: a collection of egg-shaped objects and their
boundaries. Dataset, TU Wien (2023). https://doi.org/10.48436/de66n-2pj41

16. Taha, A.A., Hanbury, A.: Metrics for evaluating 3D medical image segmentation:
analysis, selection, and tool. BMC Med. Imaging 15, 29 (2015)

17. Wang, W., Wang, G., Hu, C., Ho, K.C.: Robust ellipse fitting based on maximum
correntropy criterion with variable center. IEEE Trans. Image Process. 32, 2520–
2535 (2023)

18. Zhang, X., Rosin, P.L.: Superellipse fitting to partial data. Pattern Recogn. 36(3),
743–752 (2003)

https://doi.org/10.48436/d17s6-p5d44
https://doi.org/10.1007/978-3-031-01815-2
https://doi.org/10.1007/978-3-031-01815-2
https://universe.roboflow.com/the-nho/egg-segmentation
https://universe.roboflow.com/the-nho/egg-segmentation
https://doi.org/10.48436/de66n-2pj41

