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Abstract

This paper presents an iterative method for fitting egg-shapes to discrete bound-
aries of objects. Egg-shapes extend ellipses by assigning a weight to one of the two
focal points, resulting in a more pointed side. Fitting egg-shapes involves optimiz-
ing six parameters, but our approach simplifies this process to a one-dimensional
parameter space.
First, we fit an ellipse and identify which principal semi-axis aligns with the
more pointed side of the object. While the ellipse shares approximate position,
size, and orientation with the desired egg-shape, fine-tuning the fit requires more
than just adjusting the focal weight. We establish a relationship between the
ellipse’s eccentricity and the two parameters that define the closest egg-shapes. By
leveraging this relationship, we iterate over a one-dimensional space of egg-shape
candidates to assess their fit to the boundary, avoiding exhaustive methods.
Our results highlight the advantages of using egg-shapes over ellipses for
representing a variety of real-world objects.

Keywords: egg-shape; fitting; discrete shape; eccentricity; ellipse; generalized conics.

1 Introduction

The core task in any computer vision problem is to define and efficiently express the
essential object characteristics [14]. In order to represent a shape, one strategy is to
approximate it by fitting a geometric primitive to the set of its boundary points. For
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example, an ellipse enables describing the 2D shape by elongation and orientation and
requires 5 parameters. This significantly simplifies the processing and memory costs
compared to the entire collection of pixels [2]. As a result, ellipse fitting is an area of
extensive research [3, 7, 15, 20] and finds its use in a multitude of applications [10, 12,
13, 17].

This paper presents an advancement in the field of shape representation by explor-
ing the potential of an egg-shape [5], i.e., a generalization of the ellipse with a weighted
focal point. Despite the broadened scope of objects that might be described by egg-
shapes, there are two key areas that have not been addressed to the best of our
knowledge. Firstly, there is a lack of real-world examples demonstrating the benefits
of egg-shapes. Secondly, it is the absence of a method for fitting egg-shapes to object
boundaries. To this end, existing literature provides fitting methods for a different
generalization, i.e., the super-ellipse [21, 11], that yields shapes from four-armed stars
with concave sides to rectangles thru an additional parameter.

Addressing these gaps, we have identified various classes of real-world objects,
such as chicken eggs, avocados, leaves, spoons, and rackets, that demonstrably benefit
from egg-shape representation. We have assembled a collection of 1337 such objects,
complete with photographs and boundaries, and have made this collection publicly
accessible [18] in conjunction with the publication of this paper. A selection of four
boundaries from this collection is presented in the results section 6.

The fitting algorithm could draw inspiration from constrained optimization tech-
niques, as proposed for ellipses [4, 3, 7]. However, this approach requires a deep
understanding of the interplay between egg-shape parameters and careful design of
appropriate constraints. Furthermore, it would likely result in a multi-dimensional
optimization problem with non-linear inequalities, leading to potential computational
complexity and numerical instability.

Instead, we previously proposed an algorithm [9] that iteratively adjusts the
special-case egg-shape, specifically the object-fitting ellipse, while constraining its two
shape-defining parameters. In this work, we extend the algorithm in two key ways.
First, we develop a procedure to identify the pointed side of the object, which effec-
tively halves the number of iterations. Second, we leverage insights into the behavior
of the objective function to move away from an exhaustive search. The resulting algo-
rithms are detailed in section 4, and the corresponding research code is made publicly
available [8].

The primary contribution of our work, detailed in section 3, is the reduction of the
search space from six parameters to a single one. This was enabled by our key discovery,
i.e., the relationship between egg-shape parameters and the eccentricity of its best-
fitting ellipse. This contribution was facilitated by addressing two crucial aspects of
the egg-shape: its explicit, polar-form representation (sec. 2.1) and the derivation of
its arc-length sampling (sec. 2.2).

2 Egg-shapes

Conics have been generalized by assigning real-valued weights wi to multiple focal
points Fi in higher-dimensional metric spaces [6]. These generalizations are elegantly
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encompassed by Σiwi∥P−Fi∥ = c ∈ R, which implicitly defines the conic by its points
P .

In this work, we focus on shapes in the Euclidean plane induced by two foci and
two positive weights. After a weight normalization [5], we are left with a single weight
µ from the unit interval.
Definition 1 (Egg-shape) Given two distinct foci F0 ̸= F1 in the Euclidean plane,
weight 0 ≤ µ ≤ 1, and scaling factor c ≥ 1. Egg-shape is a set of points P in the
Euclidean plane fulfilling

d0 + µd1 = c · f (1)

where di = ∥P − Fi∥ are the distances of P from foci Fi and f = ∥F1 − F0∥ is the
focal distance.
Wherever context permits, we may use the term egg as a shorthand for egg-shape.
Definition 1 encompasses circles (µ = 0), ellipses (µ = 1), as well as a spectrum of
egg-like shapes with various sharpness (Figure 8), including those with sharp corner
[5] at c = 1 (Figure 4).

2.1 Polar coordinates

To explicitly express the egg in polar coordinates, we consider the two foci at the
origin F0 = [0, 0]⊤ and on the positive horizontal axis, F1 = [f, 0]⊤. Setting the focal
distance f = 1 yields what we refer to as the unit egg U01 (Figure 1).
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Fig. 1 Deriving polar coordinates. Unit egg U01 parametrized by c = 1.2, µ = 0.5.

For any point P at angle θ on the egg (1) holds. Taking the square results in:

d21 =

(
cf − d0

µ

)2

(2)
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Furthermore, the law of cosines yields:

d21 = d20 + f2 − 2d0f cos (θ) (3)

Subtracting (3) from (2) results in quadratic equation in d0:

d20
(
µ2 − 1

)
+ d0

(
2f(c− µ2 cos (θ))

)
+ f2

(
µ2 − c2

)
= 0. (4)

For µ = 1 the quadratic term vanishes yielding the polar equation of an ellipse.
For µ = 0, d0 = cf implicitly defines points P on a circle centered at F0. For 0 < µ < 1
and fixed θ, the two solutions of (4), i.e.,

d+0 , d
−
0 = f ·

µ2 cos (θ)− c± µ
√

c2 − 2c cos (θ)− µ2 sin2 (θ) + 1

µ2 − 1
(5)

correspond to distances (from F0) of two points: P on the egg (µ > 0⇒ d+0 ), and P−

on a generalized hyperbola (µ < 0⇒ d−0 ) [5], which is further not discussed. Putting
r(θ) = d+0 yields the polar coordinates (r(θ), θ) of the egg-shape.

2.2 Arc length

Similar to ellipses, uniform sampling of the polar angle θ will generally lead to uneven
distribution of points on the boundary (Fig. 4, left). Such sampling would likely
introduce bias when fitting to the discretized boundary of an object.

To address undersampled segments, we aim at the arc-length parameterization
(Fig. 4, right). Computing the arc-length L between two angles θ0 < θ1 in the polar
parametrization (r, θ) involves numerical integration of:

L(θ0, θ1) =

∫ θ1

θ0

√
r2 +

(
dr

dθ

)2

dθ (6)

Putting

R = R(θ) =

√
c2 − 2c cos (θ)− µ2 sin2 (θ) + 1 (7)

M = M(θ) = µ2 cos (θ)− c (8)

A = µ2 − 1 (9)

simplifies the terms for r and its derivative w.r.t θ to:

r = f · M + µR

A
(10)

dr

dθ
= −f · M + µR

A
· µ · sin (θ)

R
= −r · µ · sin (θ)

R
(11)
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Equation (11) confirms the discovery regarding the sharp corners [5] in eggs with c = 1
(Fig. 4). Specifically, when c = 1, R(θ) vanishes at θ = 2kπ ∀k ∈ Z, which results in
discontinuities in dr/dθ and leaves the derivatives undefined (Fig. 2). However, dr/dθ
is an odd function with finite and opposing left/right limits in 2kπ:

lim
c=1

θ→2kπ−

−rµ sin (θ)
R

=
rµ√
1− µ2

= − lim
c=1

θ→2kπ+

−rµ sin (θ)
R

(12)

Therefore, the square (dr/dθ)2 in (6) exists in the limit (from either side):

lim
c=1

θ→2kπ

(
dr

dθ

)2

=
r2µ2

1− µ2
(13)

0 π 2π

θ

−0.5

0.0

0.5

1.0
r dr/dθ (dr/dθ)2

Fig. 2 While r is not differentiable w.r.t θ in the corner (c = 1, θ = 2kπ), its derivative dr/dθ has
opposing left and right limits (12) displayed by hollow circles. The limit of the squared derivative
therefore exists (13).

Equations (10)–(13) result, for given θ, in a recipe to reuse the radius r to compute
the square of the derivative. Having the ingredients, both the arc-length L(0, θ) and
its inverse can be numerically approximated (Fig. 3) and utilized to sample the egg
points at regular distances (Fig. 4).

3 Egg-shapes and best-fitting ellipses

We aim to establish the correspondence between egg parameters and the eccentricity
ε = ε(c, µ) of the best-fitting ellipse [7]. Two bounding cases are apparent from the
equation for egg-shape (cf. Fig.5):

ε(c, 0) = 0 : egg-shape, and thus also its best-fitting ellipse, is a circle implicitly
given by d0 = cf .
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Fig. 3 Uniform sampling of the arc length L(0, θ) (horizontal lines) resulting in samples of the polar
angle θ (vertical lines), which correspond to equidistant points on the egg-shape.
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Fig. 4 A corner-egg (c = 1) with θ sampled linearly (left) and by arc length (right).

ε(c, 1) = 1/c : egg-shape, and thus also its best-fitting ellipse, is an ellipse implicitly
given by d0 + d1 = cf , i.e., one with focal distance f , the length of its main axis cf ,
and eccentricity ε = f/(cf) = 1/c.

To model ε(c, µ) between we investigate the eccentricities of ellipses fitted to sampled
unit egg boundaries, parametrized by c and µ. To explore the parameter space, we
regularly sample nµ = 49 values for µ ∈ (0, 1) with step size of 0.02 and nc = 41 values
for c ∈ ⟨1, 5⟩ with step size of 0.1. Notably, the upper bound for c is determined by
the expected lowest eccentricity of ellipses fitted to our modeled objects; specifically,
cmax = 1/εmin ≤ 5. The robust ellipse-fitting algorithm [7] is employed for ellipse
fitting.

Interestingly, this process reveals an increase of ε w.r.t. µ that follows a power law

ε ≈ 1

c
µSc (14)

for c-dependent exponents Sc ∈ (0, 1). This can be seen in Fig. 5 by the two dotted
curves at c = 1 and c = 5 as well as in Fig. 6 for 9 selected values of c.
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Fig. 5 Relationship between egg-shape parameters c,µ, and the eccentricity of the best-fitting
ellipse. The ten solid curves correspond to iso-eccentricity lines (blue at 0, red at 0.9). The red dot
at (c,µ) = (1,1) corresponds to the unit eccentricity of the degenerated case, i.e., the line connecting
the two foci.

The power-like nature is better articulated in the log-log plot (Fig. 6, right) where
the curves lend themselves to linear modeling:

log ε ≈ log

(
1

c
µSc

)
= Sc logµ− log c (15)

While these lines seem to be parallel, a closer inspection reveals their slopes Sc obtained
as an average of the respective samples i:

Sc =
1

nµ

nµ∑
i=1

log εi + log c

logµi
=

1

nµ

nµ∑
i=1

log εic

logµi
(16)

are inversely proportional to c (Fig. 7). This can be modeled by

S(c) ≈ S(c;α, β, γ) = β +
α

c+ γ
. (17)

.
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Fig. 6 Eccentricities ε of ellipses fitted to unit egg-shapes parametrized by (c, µ), for 9 selected
values of c ∈ ⟨1, 5⟩ times 49 samples of µ ∈ (0, 1). The linear tendency of the samples in the log-log
plot (right) informs a power-law modeling of the eccentricity curves w.r.t. µ.
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Fig. 7 Inversely proportional slopes Sc can be modeled by Eq. (17). The color dots correspond to
the same values of c as shown in Fig. 6.

Putting the things together, we aim to model eccentricity

ε(c, µ) ≈ 1

c
· µS(c) (18)

by fitting the three parameters parameters α, β, and γ to the eccentricities measured
at the c, µ grid. The fitting results in α = 0.01994611, β = 0.49646579, γ = −0.7994735
and yields an error in eccentricity of 0.0000± 0.0013.

It is worth mentioning that this modeling is performed only once, before fitting
egg-shapes to object boundaries.

4 Fitting egg-shapes via an ellipse proxy

Equation (18) relates the eccentricity of best-fitting ellipse given egg-shape parameters.
More importantly, we can constrain the inverse, egg-to-ellipse fitting problem to the
iso-eccentricity curve in the (c, µ) space (Figure 8).
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Fig. 8 Sampled best-fitting eggs to an ellipse of fixed eccentricity on the curve given by equation
(19) in the (c, µ) parameter space. For clarity, the unit eggs are scaled down.

Given an ellipse of eccentricity ε, the parameter c is restricted to the interval
⟨1, 1/ε). Rewriting (18) allows, for a fixed c, computation of the corresponding µ:

µ = µ(c; ε) = (c · ε)1/S(c) ≈ (c · ε)
(c+γ)

β(c+γ)+α (19)

Our objective is to fit an egg-shape to a segmented egg-like object represented by
its boundary points B. It is important to note that, unlike the unit egg, the objects
can be arbitrarily scaled, oriented, and placed within the Euclidean plane.

The steps of Algorithm 1 proceed as follows. We begin by fitting a proxy ellipse EB

to the boundary points B and recording its eccentricity εB . In addition to [9], FitEl-
lipse also determines the orientation of its major semi-axis towards the more pointed
end of B (see Appendix A for details). This adjustment simplifies and approximately
halves the run-time of the previously published Algorithm 1 in [9] by eliminating its
inner loop, which originally accounted for both semi-axis orientations.

Next, we conduct an iterative search along the iso-eccentricity curve. In each itera-
tion, we fit an ellipse EU to the arc-sampled unit egg U01. Because both ellipses share
the same eccentricity, they are similar. The corresponding similarity transform then
aligns U01 with the boundary B (see Appendix A).

Finally, we assess this alignment by means of average Hausdorff distance, HD ,
which is defined later in section 5.
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Algorithm 1 Exhaustive egg fitting to boundary along 1D iso-eccentricity curve

Require: B ▷ boundary coordinates of egg-like object
1: EB ← FitEllipse (B) ▷ fit a proxy ellipse to the boundary
2: εB ← eccentricity (EB) ▷ eccentricity to restrict the search
3: (∆∗, F ∗

0 , F
∗
1 , c

∗, µ∗)← (∞, [0, 0]⊤, [1, 0]⊤, 1, 0) ▷ loss, foci, and params to optimize
4: for c ∈ ⟨1, 1/εB) do ▷ sample the iso-eccentricity curve
5: µ← µ(c; εB) ▷ equation (19)
6: U01 ← unit egg (c, µ) ▷ unit egg given by c, µ
7: EU ← FitEllipse (U01) ▷ ellipse fitting the unit egg (εU ≊ εB)
8: TUB ← argminT |T (EU ), EB | ▷ EU to EB alignment transform (25)
9: M ← TUB(U01) ▷ transform the unit egg to the object boundary

10: ∆← HD(M,B) ▷ distance of the transformed egg to the boundary
11: if ∆ < ∆∗ then ▷ if loss decreased
12: (∆∗, F ∗

0 , F
∗
1 , c

∗, µ∗)←
(
∆, TUB([0, 0]

⊤), TUB([1, 0]
⊤), c, µ

)
▷ update

13: end if
14: end for
15: return (F ∗

0 , F
∗
1 , c

∗, µ∗) ▷ foci and parameters of the best-fitting egg

The brute-force loop beginning on line 4 of Algorithm 1 requires discretizing the
half-open interval ⟨1, 1/εB), where in [9], we employed 50 equidistant samples to iterate
over the parameter c.

To this end we propose another enhancement by analyzing the discrete error curves
stemming from algorithm 1, specifically the Hausdorff distance as a function of c ∈
⟨1, 1/εB). This analysis was conducted on a test dataset [18] (further described in
Section 5) and revealed that error curves exhibit a tendency toward either monotonic
or convex behavior (Figure 9), occasionally perturbed by minor noise. Based on this
observation, we reformulate the algorithm in a more modular fashion, enabling the
substitution of the brute-force loop with a local optimization.

In algorithm 2, the two ellipses are described by 6-tuples (x, y, a, b, ε, ϕ) encoding
center, lengths of main axes, eccentricity, and orientation. Constrained by the eccen-
tricity εB of the object’s proxy ellipse EB , EggCandidate generates an egg shape at
c, transformed to align with the object boundary B. Disregarding foci Fi and param-
eters c and µ of the egg shape, the Loss function evaluates the fitness of its boundary
M against the object B.

Due to its discrete nature, computing or approximating the gradient of the com-
pound loss on line 16 in FitEgg is challenging, if not impossible, necessitating the
use of optimization algorithms that do not rely on gradient information. Knowing the
nature of error curves and the bounds of c, we utilized the Brent’s algorithm [1] to
compute the argmin on line 16. As a result, we observed two notable improvements
over equidistant sampling [9]: (1) the method identified more refined minima, and (2)
it reduced the average number of EggCandidate calls to 23, leading to a 2.4-fold
increase in computational efficiency (see also Figure 9).
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Algorithm 2 Replacing exhaustive search

1: function EggCandidate(c, EB)
2: µ← µ(c, εB) ▷ εB ∈ EB ; equation (19)
3: U01 ← unit egg (c, µ) ▷ unit egg given by c, µ
4: EU = (xU , 0, aU , bU , εU , 0)← FitEllipse (U01) ▷ ellipse fitting the unit egg
5: TUB ← argminT |T (EU ), EB | ▷ EU to EB ellipse alignment (25)
6: M ← TUB(U01) ▷ transform unit egg boundary points
7: (F0, F1)←

(
TUB([0, 0]

⊤), TUB([1, 0]
⊤)

)
▷ transform the unit egg foci

8: return (F0, F1, c, µ) ,M ▷ model parameters and boundary points
9: end function

10: function Loss((c, EB), B) ▷ measure model-to-object alignment
11: (F0, F1, c, µ) ,M ← EggCandidate(c, EB)
12: return HD(M,B) ▷ avgerage Hausdorff of boundaries (21)
13: end function

Require: B ▷ boundary coordinates of egg-like object
14: function FitEgg(B)
15: EB = (xB , yB , aB , bB , εB , ϕB)← FitEllipse (B) ▷ proxy oriented at ϕB

16: c∗ = argminc∈⟨1,1/εB)Loss(EggCandidate(c, EB), B) ▷ find optimal c
17: (F ∗

0 , F
∗
1 , c

∗, µ∗) ,M∗ ← EggCandidate(c∗;EB) ▷ optimal egg-shape model
18: return (F ∗

0 , F
∗
1 , c

∗, µ∗) ▷ foci and parameters of the best-fitting egg
19: end function

5 Validation

Our methodology is verified using both overlap-centric and distance-centric metrics
[19] on a purposely created collection of boundaries [18] segmented from images of
both biological and common objects. These include both deformable and rigid items
captured in arbitrary orientations and scales. Each segmentation is represented by a
binary mask and its boundary thus as a set of integer coordinates.

5.1 Datasets

Whole eggs: Boundaries of 1,100 photographed eggs [16].
Boiled eggs: Images of longitudinally halved, hard-boiled eggs found on the internet
were manually segmented, yielding 12 boundaries each for the egg whites and yolks.
Avocados: Images of longitudinally halved avocados were found on the internet. The
shells of these avocados were manually segmented, resulting in 6 boundaries. Some of
them are slightly deformed.
Leaves: Tree and plant leaves were deliberately selected and photographed in line with
this study. The criteria included being longitudinally symmetrical, egg-shaped, elon-
gated, and possibly pointed. Manual segmentation excluded the stems and produced
23 boundaries.
Cells: Palisade cells of Arabidopsis thaliana in a micro-CT cross-section slice were
manually segmented, resulting in 159, mostly elliptic boundaries.
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Fig. 9 An example of the iterative process for minimizing the Average Hausdorff Distance (HD)
with respect to the free egg-shape parameter c ∈ ⟨1, 1/εB) by exhaustive search and Brent’s algorithm.
The two polylines represent the number and order of objective function calls.

Household items: 11 spoon heads and 2 toilet seats segmented from photos.
Rackets: Images of tennis, badminton, and squash racket heads sourced from the inter-
net were segmented, resulting in 12 boundaries. The outer shell of the squash head is
noted to be pointed. One of the tennis heads is elliptic.

5.2 Validation metrics

The geometric alignment of a model with the object boundary is evaluated using
metrics that take into account either the boundary point sets M and B, or the
corresponding polygons M and B.

5.2.1 IoU

(also referred to as the Jaccard index) [19], defined as the area of the intersection
divided by the area of the union of polygons M and B:

IoU(M,B) =
|M ∩B|
|M ∪B| (20)

ranges from 0 to 1, with 1 indicating perfect alignment.

5.2.2 The Average Hausdorff Distance (HD)

is used to assess the fitness for its decreased sensitivity to outliers [19] when compared
to the usual Hausdorff distance. HD is defined by:

HD(M,B) = max (d(M,B), d(B,M)) (21)

where d(X, Y) is the directed Average Hausdorff distance [19] given by:

d(X,Y ) =
1

|X|
∑
x∈X

min
y∈Y
||x− y||. (22)
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To assess improvements of egg models MG over elliptic models EL across contours of
different lengths we further introduce the following normalization:

5.2.3 Normalized improvement (NI)

in average Hausdorff distance HD of egg model MG over elliptical model ML when
fitted to boundary B. We define NI = 0 if models align. Otherwise:

NI(MG,ML|B) =
HD(ML, B)−HD(MG, B)

max
(
HD(ML, B) , HD(MG, B)

) . (23)

Being already normalized, IoU is naturally suited to assess improvements by:

∆IoU(MG,ML|B) = IoU(MG, B)− IoU(ML, B). (24)

Both improvement metrics fall in the closed interval ⟨−1, 1⟩. Positive values indicate
an improvement due MG, while negative values signify a decline.

6 Results

Figure 11 showcases a selection of top-improvement examples. To avoid clutter, Figure
10 summarizes both improvement metrics (23),(24) in two separate scatter plots.
94.68% of data points indicating improvements in both metrics are located in the 1st

quadrants. The ties in the 2nd and 4th quadrants correspond to cases improved in only
one of the metrics. They account for 10 + 11 out of 159 cells and 9 + 12 out of 1100
whole eggs. Finally, the 3rd quadrant shows minimal declines in both metrics: less
than 4% of cells (6 out of 159) and less than 2% of whole eggs (20 out of 1100). The
leftmost point of the upper part is the elliptic tennis racket that can not be improved
by the egg-shape.

In the marginal-improvement rectangle (0, 0.1) × (0, 0.02) in the upper part, a
cluster of 9 boiled-egg yolks can be found. They are almost elliptical making it difficult
for the egg-shapes to improve them. This explains the almost identical IoU and only
marginally improved NI values. The enclosed badminton racket already deviates from
an ellipse and was slightly improved by an egg-shape.

Upon examining areas with higher improvements, it becomes apparent that the
term egg-shapes may warrant reconsideration. In our selection, avocados outperformed
eggs (both boiled and whole) in both metrics. This can be attributed to their more
tapered shape, which is better modeled by egg-shapes.

A similar observation can be made about the top-scoring leaves (e.g., those with
∆IoU ≳ 0.06) and spoons (NI ≳ 0.6), which are difficult to model using ellipses.
However, egg-shapes have proven effective in modeling the spikes or even sharp corners
by reducing c towards 1 (refer to Fig. 11).

In the bottom part of Fig. 10, most of the plant cells cluster in the marginal
improvement rectangle. This is because most of the cells are elliptical or even cir-
cular in shape, and an ellipse already provides a good model. A strong correlation
between the metrics is evident for both datasets. Unlike eggs, the cells have been
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Fig. 10 Normalized improvements in average Hausdorff distance (NI) and in IoU .

segmented from a single image, which results in more jagged boundaries. For such
boundaries, improvements in IoU could potentially be more pronounced than those
in NI, explaining the steeper trend.

7 Conclusions and future work

In this paper, we introduced a novel method for fitting discrete boundaries using
egg-shapes. We ventured beyond the confines of implicit equations and harnessed the
power of explicit representation in conjunction with arc-length parametrization. This
approach led to our key finding: a relationship between egg-shape parameters and the
eccentricity of the best-fitting ellipse, which subsequently informed the design of our
fitting algorithm.

Our algorithm was rigorously tested on over 1,000 boundaries. The results have
demonstrated the potential of egg-shapes for representing real-world objects. Unex-
pectedly, we have discovered that there are objects other than eggs, which when fitted
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HD = 7.83  IoU = 0.909 HD = 3.64  IoU = 0.960

HD = 3.32  IoU = 0.964 HD = 1.58  IoU = 0.991

HD = 10.83  IoU = 0.911 HD = 3.17  IoU = 0.980

HD = 10.04  IoU = 0.907 HD = 4.21  IoU = 0.964

Fig. 11 Improvements by egg-shape fit (right column) over elliptic fit (left column) for selected
contours. Top to bottom: avocado (NI = 0.54), whole egg (NI = 0.52), spoon head (NI = 0.71), and
leaf (NI = 0.58). Gray and dark green areas are not explained well by the respective model. The blue
crosses show the foci.
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with an egg-shape, show even better improvements over elliptic fits. This intrigu-
ing finding expands the potential applications of egg-shape fitting beyond what was
initially anticipated.

The results of our research pave the way for future development, which can be
pursued along several avenues: 1. The choice of arc-length parametrization was largely
based on intuition. A comparison with its linear counterpart is necessary to validate
our approach. 2. Similar to egg-shape parameters, we observed a promising pattern
between eccentricity and the offsets of the focal points. However, modeling this seems
to be a more complex task. 3. We have yet to address the robustness of our method
in dealing with noise, overlaps, or partial occlusions.

Acknowledgements

This work was supported by the Vienna Science and Technology Fund (WWTF)
project LS19-013 and by the European Union’s NextGenerationEU through the
Recovery and Resilience Plan for Slovakia under the project 09I03-03-V04-00363.
Computational resources were provided by the Vienna Scientific Cluster (VSC).

References

[1] Brent, R.P.: Chapter 5: An algorithm with guranteed convergence for finding a
minimum of a function of one variable. In: Algorithms for Minimization Without
Derivatives, pp. 61–80. Prentice-Hall (1973)

[2] Costa, L.d.F., Cesar Jr, R.M.: Shape analysis and classification: theory and
practice. CRC Press (2000)

[3] Fitzgibbon, A., Pilu, M., Fisher, R.: Direct least square fitting of ellipses. IEEE
Transactions on Pattern Analysis and Machine Intelligence 21(5), 476–480 (1999)

[4] Fitzgibbon, A.W., Pilu, M., Fisher, R.B.: Direct least squares fitting of ellipses.
In: Proceedings of 13th international conference on pattern recognition. vol. 1,
pp. 253–257. IEEE (1996)

[5] Gabdulkhakova, A., Kropatsch, W.G.: Generalized conics with the sharp cor-
ners. In: Progress in Pattern Recognition, Image Analysis, Computer Vision, and
Applications. pp. 419–429 (2021)

[6] Groß, C., Strempel, T.K.: On generalizations of conics and on a generalization
of the Fermat–Torricelli problem. The American Mathematical Monthly 105(8),
732–743 (1998)
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A Unit-egg to boundary alignment

In each step of the iterative search, the unit egg candidate U01 is transformed by
a similarity transformation to approximate the boundary B. This transformation is
determined, up to orientation, by the two similar fitting ellipses EU and EB (Fig. 12).

To achieve consistency in orientations, we ensure that the major semi-axes of the
ellipses point towards the more pointed part of the matched shapes. Following the
definition of the unit egg we set its orientation to the positive x-axis. For the arbitrarily
orientated egg-like shape B, we need a mechanism to determine which of the two
semi-major axes heads towards its more pointed end.

Given the fitting ellipse EB by its center [xB , yB ]
⊤, major-axis a⃗B , and minor axis

b⃗B ⊥ a⃗B vectors, we split the boundary points B into two subsets B+ and B−, based
on the half-planes defined by the center and the two opposing semi-axes orientations,
i.e., a⃗B and −a⃗B . We then project both subsets onto the minor axis b⃗B and compare
their variances. The subset of the smaller variance indicates the semi-axis towards the
more pointed tip of B. We denote its angle from the positive horizontal axis as ϕ.

aU

bU

[xU , 0]>[0, 0]>
aB

bB

[xB , yB ]>

Fig. 12 Orientation of unit egg ellipse EU (left) and boundary ellipse EB (right). Projections of
the red boundary part (B+) onto minor axis bB yield lower variance than projections of the blue
counterpart (B−).

The transformation of the axis-aligned ellipse EU centered at [xU , 0]
⊤ to the similar

ellipse EB centered at [xB , yB ]
⊤ and oriented at ϕ can be decomposed into transla-

tion to the origin, followed by isotropic scaling s, rotation by ϕ, and translation to
[xB , yB ]

⊤. The transformation of points [x, y]⊤ can be thus expressed in homogeneous
coordinates by TUB · [x, y, 1]⊤ where

TUB =

1 0 xB

0 1 yB
0 0 1

·
s 0 0
0 s 0
0 0 1

·
cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1

·
1 0 −xU

0 1 0
0 0 1

 . (25)

To mitigate errors potentially arising from the numerical fitting of the two ellipses
we obtain the isotropic scale as the averaged axes ratio s = 1

2 (||a⃗B ||/||a⃗U || +
||b⃗B ||/||b⃗U ||).
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