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Abstract. Computation of homology generators using an irregular graph
pyramid can significantly increase performance compared to the classi-
cal methods. First results in 2D exist and show the advantages of the
method. The generators are computed in upper levels of pyramid where
it is known that the graphs contains a number of self loops and mul-
tiple edges product of the contraction processes. Using a straight lines
strategy to draw this edges would not be useful to analyze the graphs on
those levels. This paper presents a novel algorithm for nicely visualize
irregular graph pyramids, including multiple edges and self loops which
preserves the geometry and the topology of the original image. This new
algorithm is used to give new insights about the top-down delineation of
homology generators in irregular graph pyramids.
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1 Introduction

Structural pattern recognition approach concerns with the description and clas-
sification of objects, taking into account the relations between their individual
parts and in some extend ignoring the changes of geometry caused by different
transformations. For example, two fingerprint images belonging to the same per-
son change their appearance by the geometrical deformations occurring at the
moment of capturing the impression. But, we can see that connections between
ridges is maintained. In general, geometrical modifications are possible with,
and without, changes in topology. But, it is not possible to change the topology
without modifying the geometry. We can break the geometric object into cells
of dimension 0,1,2,3, ... corresponding to vertexes, edges, faces, volumes... After
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that, we can extract relevant topological information from the object. In digi-
tal imagery, the application of the algebraic topology tools has been started to
use [1]. To do that, we may consider the set of pixels as a cubical cell partition of
the image space. This is possible because homology of an image does not depend
on its subdivision as long as each cell that composes the object is homeomorphic
to a topological ball. Moreover, cubical homology theory has advantages, due
to its ability to handle pixels or voxels directly, without an artificial triangula-
tion of every pixel or voxel. Computing homology generators aims locating and
characterizing the holes in a topological space. We may calculate n non-trivial
homology groups H0, H1, · · · , Hn−1 for a n−dimensional image. Informally, ho-
mology group Hp is a set of equivalence classes and every class is associated
with a p−hole in this dimension. In pattern recognition, we want to know the
number of p− holes in the geometric object. But, we also want to control the
geometry of the holes obtained. This aspect is usually avoided by the classical
homology algorithms. The problem of efficient computation of homology groups
and their ranks has been addressed from different points of view. As the classi-
cal homology algorithms [2]reduce the problem to Smith diagonalization, various
optimizations strategies has been proposed [3–6]. However, this is not enough in
many applications when the number of cubes or triangles is counted in thousands
or more.

A second approach is the methods of reducing the numbers of cell of an
object. Then, the homology groups of an object homologically equivalent, but
composed of less cubes or simplices are computed. This kind of algorithms is
efficient only if one step of the reduction is computationally inexpensive and the
reduction in the number of cells is significant [7, 8].

In this paper, our motivation is analyze the homology groups and generators
that are obtained by the method proposed in [9] for 2D digital images. In this
methods, there are the intention of controlling the geometry of the generator
obtained and the authors claim that the generators computed seem to stay on
boundaries. In general, we observe that a set of generators for a group H1 is a
linear combination of 1−holes. Hence, we loss the control about the geometry
of every particular hole. We want to visualize the generator at different levels
of pyramid, and understand the influence of the contraction process about the
generators obtained on the top level.

In Section 2, basic notions related to irregular graph pyramids, homology and
the method to computing homology generators in a graph pyramid are recalled.
Sections 3 and 4 present the proposed algorithms, followed by experimental
results. Section 5 concludes the paper and gives an outlook of the future work.

2 Recall

2.1 Irregular Graph Pyramids

A graph pyramid P [10] is a stack of successively reduced graphs P = {G1, . . . , Gh}.
Each level Gk = (Vk, Ek), 0 ≤ k ≤ h, is obtained by contracting and removing
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Fig. 1. a) Pyramid concept, and b) representation of the cells and their neighborhood
relations by a pair of dual plane graphs at the level 0 and k of the pyramid.

edges in the level Gk−1 below. Successive levels reduce the size of the data by a
reduction factor λ > 1. Edges and vertices of the graphs Gk can be weighted.

The reduction window relates a cell at the reduced level with a set of cells
in the level directly below. The contents of a lower resolution (in a higher level)
cell are computed by means of a reduction function, the input of which are the
descriptions of the cells in the reduction window. Higher level descriptions should
be related to the original input data in the base of the pyramid. This is done by
the receptive field of a given cell v ∈ Gk. The receptive field of v aggregates all
cells in the base level of which v is an ancestor. Each level represents a partition
of the base level into connected subgraphs i.e. connected subsets of pixels, if the
pyramid is build in the context of an image. The construction of an irregular
pyramid is iteratively local [11]. On the base level (level 0) of an irregular pyramid
the cells represent single pixels and the neighborhood of the cells is defined by
the 4/6/8-connectivity of the pixels. A cell on level k + 1 (parent) is a union
of neighboring cells in level k (children). This union is controlled by so called
contraction kernels (CK) [12], a spanning forest which relates two successive
levels of a pyramid. Every parent computes its values independently of other
cells on the same level. Thus local independent (and parallel) processes propagate
information up and down and laterally in the pyramid.

Higher level descriptions are related to the original input by the equivalent
contraction kernels (ECK). A level of a dual graph pyramid consists of a pair
(Gk, Gk) of plane graphs Gk and its geometric dual Gk (Fig. 1b). The vertices
of Gk represent the cells on level k and the edges of Gk represent the neighbor-
hood relations of the cells, depicted with square vertices and dashed edges in
Fig. 1b. The edges of Gk represent the borders of the cells on level k, solid lines
in Fig. 1b, including so called pseudo edges needed to represent neighborhood
relations to a cell completely enclosed by another cell. Finally, the vertices of Gk

(circles in Fig. 1b), represent junctions of border segments of Gk. The sequence
(Gk, Gk), 0 ≤ k ≤ h is called irregular (dual) graph pyramid. For simplicity of
the presentation the dual G is omitted afterward.

In [13], methods for optimally building irregular pyramids are presented.
Methods like MIS and MIES ensure logarithmic height by choosing efficient
contraction kernels i.e. contraction kernels achieving high reduction factors.



2.2 Homology

In this part, the basic notions of homology theory are recalled. Interested readers
can find more details in algebraic topology classic books as [2] and others like [14–
16].

Fig. 2. a): a simplicial complex made of 1 connected component and containing one
1-dimensional hole. b):Incident matrix describing the boundaries of each 2-cell f1 and
f2

Starting from a cell decomposition of an object X its homology can be de-
fined in an algebraic way by studying incidence relations of its subdivision. A
cell of dimension p is called a p−cell. For example, in the simplicial complex il-
lustrated on (Fig.2a) f1 and f2 are 2− cells; a1,a2,a3,a4,a5,a6 and a7 are 1−cells;
v1,v2,v3,v4 and v5 are 0−cells. As it is shown on Fig.2 b: incidence matrix Ep

describes the boundary of each (p+ 1)−cell.
The notion of p−chain is defined as a sum

∑nb p−cells
i=1 αici, where ci are

p−cells of X and αi are coefficients assigned to each cell in the chain. For exam-
ple, on (Fig.2a)the sums: f1 + f2 is a 2−chain; a1 + a4, a3 and a2 + a7 + a4 are
1−chains. Note that the notion of chain is purely algebraic and the cells that
compose a chain do not have to satisfy any property of adjacency.

We compute the homology with coefficients over Z/2Z, because our image
are nD objects embedded in RD. Note that in this case, a cell that appears
twice on a chain vanishes, because c+ c = 0 for any cell c when using moduli 2
coefficients ( i.e. if a cell appears even times we discard it otherwise we keep it).

For each dimension p = 0, . . . , n, where n = dim(X), the set of p−chains
together with a binary operation that define the sum of p−chains, forms an
abelian group denoted Cp. Homology examines the connectivity between two
immediate dimensions. To do so, and since for each dimension p we have a
group, we may define a set of maps ∂p between them to relate their structure.
These applications ∂p describe the boundary of p−chain as (p− 1)chains. They
are homomorphism and preserve the identity, inverses, and subgroups between
group [16].



The p−chain groups can be put into a sequence, in the following way:

Cn
∂n−→ Cn−1

∂n−1−→ · · · ∂1−→ C0
∂0−→ 0, (1)

which satisfy ∂p∂p−1(c) = 0 for any p−chain c. This sequence of groups is a free
chain complex.

The boundary of a single p-cell is defined as the sum of its incident (p −
1)−cells. As these applications are lineal by definition, the boundary of a general
p−chain is then defined by linearity as the sum of the boundaries of each cell
that appears in the chain e.g. in (Fig.2a) ∂(f1 + f2)=∂(f1)+∂(f2)=(a1 + a2 +
a5)+(a1+a3+a4) = a2+a3+a4+a5. Note that chains are considered over Z/2Z
coefficients i.e. any cell that appears twice vanishes. For each dimension p, the
set of p-chains which have a null boundary are called p-cycles. The null boundary
is the element identity for the defined binary operation on group Cp. Hence, the
p−cycles conforms the kernel of ∂p, which is a special subgroup in their domain
Cp, denoted Zp. e.g. a1 +a3 +a4 and a1 +a5 +a6 +a7 are 1−cycles. The set of p-
chains which bound a p+1-chain are called p-boundaries and they are a subgroup
of Cp, denoted Bp e.g. a1 + a2 + a5=∂(f1) and a2 + a3 + a4 + a5=∂(f1 + f2) are
1−boundaries. As we have seen the boundary of a boundary is the null chain.
This imply that all boundaries are cycles and it is possible to see that Bp is a
subgroup of Zp. Note that every 0−chain is a cycle. Recall that we are interested
in characterize the ’holes’ and a p−hole is a p−cycle which is not a p−boundary.
e.g z=a2+a6+a7 is a 1−dimensional hole. We may factor Zp using the subgroup
Bp, getting the cosets. The elements in the cosets of Bp correspond to p−cycles
which are not p−boundaries. For z ∈ Zp, the subset z +Bp = {z + b|b ∈ Bp} of
Zp is the left coset of Bp containing z. The element z is called its representative.
If two elements z1 and z2 of Zp are representatives for the same coset then
z1 + Bp = z2 + Bp. It is possible to demonstrate that b = z1 + z2 ∈ Bp. Hence,
two p−cycles z1 and z2 are in the same coset iff there exist a boundary b ∈ Bp
with z1 = z2 + b. (Note that with coefficients in Z/2Z, the inverse of z is z).

This defines an equivalence relation (homology relation) in the group of
p−cycles. The set of p−cycles Zp is then partitioned by the homology rela-
tion, according to the hole they surround. Two p−cycles in the same equiv-
alence class said to be homologous. In conclusion, The pth homology group,
denoted Hp, is defined as the quotient group Zp/Bp. Thus, elements of the ho-
mology groups Hp are equivalence classes and two cycles z1 and z2 belong to
the same equivalence class if their difference is a boundary. For example, in fig-
ure Fig.2 a: B1 = {a1 + a3 + a4, a1 + a2 + a5, a2 + a3 + a4 + a5} is the set
of 1-boundaries, and Z1 = {a1 + a3 + a4, a1 + a2 + a5, a2 + a3 + a4 + a5, a2 +
a6 + a7, a1 + a5 + a6 + a7, a3 + a4 + a5 + a6 + a7, a1 + a2 + a3 + a4 + a6 + a7}
is the set of 1− cycles. Hence, H1 = Z1/B1 = {{a2 + a6 + a7, a1 + a5 + a6 +
a7, a1 + a2 + a3 + a4 + a6 + a7, a3 + a4 + a5 + a6 + a7}}. We can see that:
a2+a6+a7 = a1+a5+a6+a7+∂(f1); a2+a6+a7 = a1+a2+a3+a4+a6+a7+∂(f2);
a2 + a6 + a7 = a3 + a4 + a5 + a6 + a7 + ∂(f1 + f2);a1 + a5 + a6 + a7 =
a1+a2+a3+a4+a6+a7+∂(f1+f2); a1+a5+a6+a7 = a3+a4+a5+a6+a7+∂(f2);
and a1 + a2 + a3 + a4 + a6 + a7 = a3 + a4 + a5 + a6 + a7 + ∂(f1).
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Fig. 3. Illustration of the methods use in [9] for computing generators of homology
groups using an image pyramid.

A set of generators for a group Hp is defined as a maximal subset S of
elements of Hp, such that every element of Hp can uniquely be defined as a
linear combination of element of S [17].

2.3 Computing Homology Generators in a Graph Pyramid

The method in [18] follows the approach of reducing the number of cells of an
object in order to compute homology. This has a similar idea as used in [7,
17]. But, in this case all simplifications that are computed during the reduction
process are kept by using a pyramid as is illustrated in (Fig. 3). The approach
builds a hierarchical structure using two operations: contraction and removal. In
this way, homology generators were computed in the top level of the pyramid,
and could be used to deduce generators of any level of the pyramid. The method
can be summarized in three steps:

1. Starting from a segmented image, built a graph pyramid using contraction
kernels of cells with the same label.

2. Homology generators are computed in the top level of the pyramid.
3. Deduce the homology generators of lowest level directly from the highest

level using the notion of equivalent contraction kernel.

The visualization of homology generators that were computed on top level of
pyramid was only possible by down-projecting to the base level and showing the
image itself. So far, was not possible to visualize them in the top level neither
the projections on the next intermediate levels.

3 Visualizing a Graph Pyramid

In this section, a novel algorithm to visualize connecting paths of dually con-
tracted graphs is shown. In the process of building a pyramid, the number of self
loops and multiple edges that produces the contractions are increasing, and most



of them can not be eliminated in the simplification process, see Fig. 4 c). A very
simple method to draw such graphs using straight lines [19], can not deal with
this problem satisfactorily making difficult the study of particular situations in
upper levels of pyramids. We propose a new method to nicely draw multiple
edges and self loops maintaining the correspondences between surviving nodes.

The general problem is to draw a plane (multi)graph Gk = (Vk, Ek) such that
edges do not cross, assuming that the planar graph G0 = (V0, E0) is defined on a
square grid and Gk has been constructed by dual graph contraction. The nodes
has fixed positions in the plane and they should be kept in the whole drawing
of pyramid. The general steps of the new algorithm are enumerated as follows:

1. Determine the Equivalent Contraction Kernel (ECK) that corresponds to
graph Gk, i.e. (Sk, N0,k).

2. For all the edges e ∈ Ek, find the corresponding bridge in E0.
3. Calculate multiplicity of ECK-branches, i.e. count the number of bridges the

branch is connected to.
4. Place interconnection squares:

– where branches split, or
– where they change direction

5. Draw parallel lines according to the multiplicity count between all connected
interconnection squares.

6. Connect lines inside interconnection squares without crossings.

The first step is to obtain the ECK that leads to graph Gk, meaning the set
of edges contracted from the base level graph that produces the actual graph. In
the Fig. 4 a), it is shown the base level graph example and in b) the EKC that
produces the graph in c). In general, this can be seen recursively as the ECK of
the level k-2 plus the bridges of the edges in the CK of level k-1 (N0,2 = N0,1∪
BRIDGES(N1,2)). The second step is to find the corresponding bridges of all
the edges from graph Gk, these edges plus the ones from the ECK obtained
in the level before will be used as possible paths to draw connecting edges be-
tween surviving nodes. Note that each corresponding bridge from edges of graph
Gk is connecting two contracted trees, making the actual drawing connected.
Dual graph contraction ensures the existence of connecting paths and that each
connecting path contains exactly one bridge. In case of multiple equivalent con-
necting paths, that are not yet eliminated by the simplification process, one can
be selected arbitrarily or as the path which is part of the ECK of the apex.
The third step should start by the leafs of N0,k with multiplicity initialized in 0
and incremented by one for all incident bridges of step 2. All ”interior” edges of
N0,k sum the multiplicity of their sons plus, eventually, the number of incident
bridges, see Fig. 4 d).

The set of edges that has multiplicity 0 are not useful to the drawing so they
are eliminated. Taking into account only the rest of the edges, for each ”interior”
node (non surviving node) we check if there exist a branches split or direction
change to place the interconnection squares. In the case of surviving nodes an
interconnection square is placed only if contains an adjacent edge with order
greater than 1, see Fig. 4 e).
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Fig. 4. Process of drawing the graph of level 2 (c) from example pyramid with base
level (a).

The interconnection squares where the edge orientation changes without
splitting of branches have one side through which all lines enter and one side
through which all lines exit. Hence, their order can be preserved without cross-
ing. The interconnection squares at a branching correspond to a branching of a
contraction tree (e.g a connected component of the ECK). Consequently there is
only of the square through which the lines reach the tree’s root. The multiplicity
of this side is the sum of the multiplicity of all the other (3) sides. Furthermore,
there is a strict order (i.e. clockwise) of the remaining three sides and the line
bundles can be connected in the same order as shown, see Fig. 4 e). Finally,
interconnection squares are not shown in the drawing, see Fig. 4 f).

4 Experiments

Until now, the visualization of homology generators, computed in a graph pyra-
mid, was possible only by down-projecting them and then visualizing them in



the base level (image). Also, the homology generators are computed in the dual
graphs Gk, but the visualization was done in the image itself (see Figure 5).

With the new method we are able to see all levels of pyramid and in particular
the top levels where generators are computed (Fig. 6). Now, we are also able
to see the generators projections on the following levels, see Fig. 7. The figure
shows the experiments using the images from [18]. The image a-) has 3 generators
represented by numbers, the generator number 1 and 2 are self loops, and the
third one is divided in two edges. The projection of this generators in the previous
level(d), gives the generator 1 as a self loop but the generator 2 is now divided
in two edges and the generator 3 is divided in 3 edges as well. The top level
contains exactly a set of generators of the initial image. As shown, the graphs
in those levels have self loops that now are nicely drawn and we can easily see
the set of generators obtained by the method. The new method can correctly
visualize all pyramid levels and any generators computed on them.

(a) (b)

Fig. 5. Homology generators are computed in dual graphs but visualized on original
image, (a): without using pyramids, (b): using pyramids and down-projecting them.

5 Conclusion

This paper presents a method for nicely visualize graph pyramids with multiple
edges and self loops using not just straight lines, preserving the geometry and
topology of the original image. The usefulness of the method is shown, but not
limited to, the context of homology generator computation using irregular graph
pyramids. We plan to extend this method for 3D combinatorial map pyramids,
and apply it in the context of homology generator computation in 3D.
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Fig. 6. Graph Pyramid drawing. First raw shows the first 0-4 levels and second raw
last 30-34 levels.
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