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Abstract With most of the work focussing on 2D represen-
tations, topology preserving hierarchies have received a lot
of attention. Concepts for extending such representations to
handle any dimension have also been the subject of active
research in the recent years, but very little work has been
done to collapse a huge amount of volumetric data into it’s
minimal topologically equivalent data structure. This pa-
per presents 3D combinatorial maps and the primitive op-
erations needed to simplify such a representation. Minimal
configurations of the three primitive topological configura-
tions, simplex, hole, and tunnel, are studied. First experi-
mental results and possible applications show the potential
of the approach.

1 Introduction
Handling “structured geometric objects” is important for
many applications related to geometric modeling, compu-
tational geometry, image analysis, etc.; one has often to dis-
tinguish between different parts of an object, according to
properties which are relevant for the application (e.g. me-
chanical, photometric, geometric properties).

For instance for geological modeling, the sub-ground is
made of different layers, maybe split by faults, so layers are
sets of (maybe not connected) geological blocks.

For e.g. in image analysis, a region is a (structured) set
of pixels or voxels, or more generally an abstract cellular
complex consisting of dimensions 0, 1, 2, 3 ... (i.e. 0-cells
are vertices, 1-cells are edges, 2-cells are faces, 3-cells are
volumes, ...) and a bounding relation [17].

The structure, or the topology, of the object is related to
the decomposition of the object into sub-objects, and to the
relations between these sub-objects.

Basically, topological information is related to the cells
and their adjacency and bounding relations. Other informa-
tion (embedding information) are associated to these sub-
objects, and describe for instance their shapes (e.g. a point,
resp. a curve, a part of a surface, is associated with each
vertex, resp. each edge, each face), their textures or colors,
or other information depending on the application.

Many topological models have been conceived for rep-
resenting the topology of subdivided objects, since differ-

∗ This paper was supported by the Austrian Science Fund under grant
FSP-S9103-N04.

ent types of subdivisions have to be handled: general com-
plexes [8, 9] or particular manifolds [1, 2], subdivided into
any cells [14, 12] or into regular ones (e.g. simplices, cubes,
etc.) [13, 20]. Few models are defined for any dimen-
sions [3, 21, 5, 19]. Some of them are (extensions of) in-
cidence graphs or adjacency graphs. Their principle is often
simple, but

• they cannot deal with any subdivision without loss of in-
formation, since it is not possible to describe the relations
between two cells precisely if they are incident in several
locations;

• operations for handling such graphs are often complex,
since they have to handle simultaneously different cells
of different dimensions.

Other structures are “ordered” [5, 19], and they do not have
the drawbacks of incidence or adjacency graphs. A subdi-
vided object can be described at different levels, so several
works deal with hierarchical topological models and topo-
logical pyramids [11, 3, 18]. For geometric modeling, lev-
els are often not numerous. For image analysis, more levels
are needed since the goal is to rise up information which is
not known a priori.

[7, 15] show that 2D combinatorial maps are suitable
topological structures to be used in 2D segmentation. Many
domains need to work in 3D imagery (e.g. medicine, ge-
ology), so the theoretical framework of 2D combinatorial
maps has been extended to 3D [10, 4]. In order to use 3D
topological structures for 3D image segmentation one has to
define basic operations. In this paper only two basic opera-
tions are introduced: the contraction and the removal opera-
tion.

Attempts have been made to reduce such representa-
tions [10] to a certain extent, without guaranteeing the min-
imal representation. We extend this work in order to find
minimal representations of the topological configurations of
the initial data. And distinguish between them using the re-
maining pseudo-elements.

A short introduction of the 2D and 3D combinatorial
map is given in Section 2. In Section 3 the two opera-
tions, namely contraction and removal, are properly applied
to three objects. We show examples of the three basic struc-
tures in 3D: a simply connected volume, a volume with a
hole (volume enclosing other volume), and a volume with
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a tunnel (donut) and their minimal configurations that pre-
serve the topology.

2 Combinatorial Maps
Combinatorial maps and generalized maps define a general
framework which allows us to encode any subdivision of
nD topological spaces orientable or non-orientable with or
without boundaries. They encode all the incidence relations
and consist of abstract elements, called darts D and a set of
permutations βi. i-cells are implicitly encoded by subsets of
D which can be obtained using the βi permutations. (When
encoding the same configuration, differences between the
two mentioned map types are limited to the number of darts,
number of permutations, and their meaning).

In the case of combinatorial maps, for each dimension,
there is more then one way of attributing the permutations,
but the number of permutations used for a certain dimension
and how many of them are involutions is fixed i.e. for an
nD combinatorial map there is 1 permutation and n − 1
involutions (an involution is a permutation whose orbits are
of size 1 or 2).

2D and 3D combinatorial maps are given in more detail
in the following sections.

2.1 2D Combinatorial Maps
2D Combinatorial maps may be understood as a particular
encoding of a planar graph, where each edge is split into two
half-edges, the so called darts. A 2D combinatorial map is
formally defined by the triplet G = (D, σ, α) [6] where D

represents the set of darts, σ is a permutation on D encoun-
tered when turning clockwise around each vertex (the cycles
of σ encode the vertices), and α is an involution on D which
maps each of the two darts of one edge to the other one (the
cycles of α encode the edges). The cycles of the permutation
ϕ, defined as ϕ = σ ◦ α, encode the faces of the combina-
torial map. (see Fig. 1d) [10] uses β1 to refer to ϕ and β2

to refer to α and represents the 2D combinatorial map as
G = (D, β1, β2) (see Fig. 1b).

2.2 3D Combinatorial Maps
A 3D combinatorial map is formally defined by
G = (D, permutation, involution1, involution2),
with the following two notations (and meanings) for the
permutations studied until now: G = (D, β1, β2, β3) [4]
and G = (D, γ, σ, α) [4]. Further on, we will present the
first one.

Like in the similar 2D combinatorial map notation, the
permutation β1 connects darts belonging to the same face
and the same volume, preserving their ordering on the
boundary of the face, and the involution β2 connects 2 darts,
part of the same edge and the same volume. The additional
involution, β3, links 2 darts that belong to the same face and
same edge (and the 2 volumes separated by the respective
face). β3 can be regarded like a glue, which brings together
neighboring volumes defined be the 2D manifolds encoded
by β1 and β2 (see Fig. 2).

For a certain dart d, the set of darts implicitly represent-
ing the i-cell containing the dart d is obtained by applying
2 of the 3 permutations βi any number of times and in any

combination to the dart d. (i is defined by the 2 permutations
applied) [4].

2.2.1 Operations on the 3D Combinatorial Maps We
apply two operations to an i-cell: removal (removes the i-
cell and merges the 2 (i+1)-cells that it was separating) and
contraction (contracts the i-cell to a (i-1)-cell by merging it’s
2 neighboring (i-1)-cells). For our experiments we used the
following 4 operations: edge contraction, face contraction,
volume contraction and face removal. (See Table 1)

Our maps encode volumes from the input data as vertices
and thus edge contraction is the equivalent to merging two
such neighboring volumes. The other 3 operations are ap-
plied to simplify/collapse the resulting representation, while
preserving the correct topological configuration. The last
one (face removal) is needed to deal with the special case
of “face self loop”, which is a face that encloses a volume
alone, and which is bounded by one edge. (Such a self loop
can be the result of the contraction operations described).

Figure 2: 3D Combinatorial map permutations

2.2.2 Pseudo elements To keep the topological encod-
ing consistent, the simplification process keeps i-cells which
help encoding inside-like relations. In 2D this means keep-
ing self-loops and parallel edges which surround at least one
vertex, in 3D this concept is translated as parallel faces and
“face self loops” (faces bounded by a single edge) which
enclose a vertex. As shown in the following sections, these
pseudo elements let us discriminate between different topo-
logical configurations.

2.2.3 Multiple minimal encodings Every i-cell needs
to be bounded by at least one (i-1)-cell i.e. a volume is
bounded by at least one face, a face by at least one edge, and
an edge by at least 1 vertex. This leads to multiple encod-
ings for the same topological configuration which cannot be
reduced/collapsed anymore. For example a single volume,
can be represented as a volume bounded by 2 faces bounded
by the same edge (self loop) and 1 vertex (a globe obtained
from gluing together 2 halves around the self loop which is
the equator) (Fig. 3a), or as a volume bounded by 1 face,
bounded by 1 edge connecting 2 vertices (a soap bubble
hanging in the middle of the straw)(Fig. 3b). So, depend-
ing on the operations applied and their order, starting from
the same initial configuration, we can obtain different output
configurations that are topologically equivalent.
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β2

β1

ϕ

σ

−dd

α

a) 2D shape b) combinatorial map c) simplified representation d) combinatorial map

Figure 1: 2D Combinatorial maps using different notations.

Operation Preconditions Result
edge contraction edge connects 2 different vertices, the 2 vertices are merged,

no volumes or faces will be removed contracted edge is removed
face contraction face is bounded by 2 different edges the 2 bounding edges are merged

no volumes or vertices will be removed contracted face is removed
volume contraction volume is bounded by 2 different faces the 2 bounding faces are merged

no vertices or edges will be removed the volume is removed
face removal face is incident to 2 different volumes the 2 incident volumes are merged

no vertices or edges are removed the face is removed

Table 1: Operations applied to the 3D Combinatorial map

3 Connected component analysis

As mentioned in Section 2.2.1, in our setup voxels from the
input data are represented as vertices and adjacency relations
between 2 voxels are represented by connecting their 2 as-
sociated vertices by an edge. An additional vertex is used
to represent the background volume. For the sake of clarity,
this vertex is not drawn in the initial configuration images of
our experiments.

The algorithm for identifying the connected components
is as follows (each operations is applied only if the precon-
ditions mentioned in Table 1 are satisfied):

1. contract all edges connecting two vertices that belong
to the same connected component

2. contract all faces bounded by exactly two edges
3. contract all volumes bounded by exactly two faces
4. remove all ”face self loops”

The four steps are repeated until Step 1 does not find any
more contractable edges. In each such iteration, Steps 2-4
are repeated until neither of them finds any more candidates
for contraction/removal.

3.1 2 x 2 x 2 Cube - 1 connected component

The first experiment is the reduction of a 2 × 2 × 2 cube
where each voxel has the same label. Fig. 4a shows the ini-
tial combinatorial map for this object. (The labels of vertices
and edges correspond to the labels used by our library.) The
final configuration is shown in Fig. 4b. The map is reduced
to 4 darts defining 2 vertices, 2 edges, 1 face and 1 volume.

One vertex represents the background and the other one
represents the voxels of the initial cube that has been merged
into 1 element. These 2 vertices are connected by 1 face that
is bounded by 2 edges.

3.2 3 x 3 x 3 Cube with enclosed object inside - 2
connected components

To demonstrate that the topology is preserved during the
simplification of the combinatorial map, the second experi-
ment reduces a cube that completely encloses another ob-
ject. Fig. 4c shows the initial combinatorial map for this
configuration. The two objects are reduced to a combinato-
rial map consisting of 16 darts defining 4 vertices, 5 edges,
3 faces and two volumes (see Fig. 4d).

The outer cube enclosing the inner object is merged into 2
vertices connected by a single edge. These 2 vertices (vertex
17 and 26) connect to the background (vertex 28) and the
inner object (vertex 14). In addition the edge between these
2 vertices defines a face that completely encloses the inner
object (vertex 14) representing the inclusion relation of this
object being inside the outer cube.

3.3 3 x 3 x 2 Cuboid with object tunnel inside - 1
connected component

In 3D there are basically 2 types of inside configurations.
The 3rd experiment shows the reduction of a torus which
is surrounding (but not completely enclosing) another ob-
ject. Fig. 4e shows the initial combinatorial map for this
experiment. The 2 objects are reduced to a combinatorial
map consisting of 24 darts defining 3 vertices, 5 edges, 4
faces and 2 volumes (see Fig. 4f).

The torus is merged into 1 vertex (vertex 17) connected to
the background (vertex 19) and the inner tunnel (vertex 14).
The tunnel (vertex 14) is connected on both sides with the
background (edges -755 and -155). The fact that the torus
surrounds the tunnel is represented by the self loop (edge
-679) and the cone like face/surface (bounded by the self-
loop edge -679 and the edge -826; visualized by the dotted
lines).
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a) 2 faces, 1 vertex b) 1 face, 2 vertices

Figure 3: Multiple minimal encodings for one volume

Configuration Darts Vertices Edges Faces Volumes
2x2x2 cube (initial) 120 9 20 18 7
2x2x2 cube (final) 4 2 2 1 1
2x2x2 cube (final - pseudo elements) 0 0 0
3x3x3 with object inside (initial) 576 28 80 84 32
3x3x3 with object inside (final) 16 4 5 3 2
3x3x3 with object inside (final - pseudo elements) 0 1 1
3x3x2 with tunnel inside (initial) 352 19 51 52 20
3x3x2 with tunnel inside (final) 24 3 5 4 2
3x3x2 with tunnel inside (final - pseudo elements) 1 1 0

Table 2: Number of cells in each experimented configuration

3.4 Discriminating between the 3 configurations
As can be seen from the experiment results, discriminating
between the first configuration and the other two is very
easy, and can be done just by looking at the labels of the
obtained vertices. The second and third configurations are
more complex, because of the containment relation and can-
not be discriminated based only on the vertices. Here, edges
and faces have to be taken into considerations. An object
having an edge self loop (or edge cycle) surrounds another
object (Fig. 4f), and an object having a face self-loop (or face
cycle) encloses another one (Fig. 4d). Note that in experi-
ment 3, the adjacency of the tunnel and the background is
also shown by the 2 edges connecting it to the background.

4 Outlook
Connected component analysis is certainly one of the first
experiments to do when testing out a new representation
that should preserve topology, but the possibilities do not
stop here. Next steps will include the extension to 3D of the
Minimum Spanning Tree pyramid concept [15] used for seg-
mentation of 2D images, and using it to segment volumet-
ric data and videos (2D+time). Further on, having this im-
plementation, we can pursue research in describing videos
using actions, events, and relations, following the concept
presented in [16].

5 Conclusions
The paper presents the basic operations that can collapse a
high resolution voxel complex into its topologically equiva-
lent smallest counterpart. We demonstrated the correctness

of the underlying software library by the three basic config-
urations in 3D: a simply connected volume, a volume with
a hole and a volume with a tunnel. The resulting structures
contain pseudo elements characterizing the respective topol-
ogy.
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Ferri, José M. Iñesta, Adnan Amin, and Pavel Pudil,
editors, Advances in Pattern Recognition, Joint IAPR
International Workshops on SSPR’2000 and SPR’2000, volume
1876 of Lecture Notes in Computer Science, pages 256–265,
Alicante, Spain, August 2000. Springer, Berlin
Heidelberg, New York.

[8] P. Cavalcanti, P. Carvalho, and L. Martha.
Non-manifold Modeling: An Approach Based on
Spatial Subdivision. Computer-Aided Design,
29(3):209–220, 1997.

[9] G.A. Crocker and W.F. Reinke. An Editable
Nonmanifold Boundary Representation. Computer
Graphics and Applications, 11(2):39–51, 1991.
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a) 2 × 2 × 2 initial map b) 2 × 2 × 2 final map

c) 3 × 3 × 3 initial map d) 3 × 3 × 3 final map

e) 3 × 3 × 2 initial map f) 3 × 3 × 2 final map

Figure 4: The 3 primitive 3D topological configurations: simplex(a,b), hole(c,d), tunnel(e,f)
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