002____

003_

004

005_

006

007 008_

009___

010___

011___

012___ 013____

014

029

030___

031

Computer Vision Winter Workshop 2006

_061 _062 _063 ***__**064 _065 ___066 ___067 ___068 ___069 __070 __071 __072 __073 074 ___081 082 .087 __088 ___089 _090 091 _092

_095

.096

_098

_100

102

_103

_104

107

109

_111

_112

_113

015— Abstract With most of the work focussing on 2D represen-⁰¹⁶— tations, topology preserving hierarchies have received a lot ⁰¹⁷— of attention. Concepts for extending such representations to ⁰¹⁸— handle any dimension have also been the subject of active ⁰¹⁹— research in the recent years, but very little work has been ⁰²⁰— done to collapse a huge amount of volumetric data into it's 021 — minimal topologically equivalent data structure. This pa-022 per presents 3D combinatorial maps and the primitive op-⁰²³— erations needed to simplify such a representation. Minimal ⁰²⁴— configurations of the three primitive topological configura-025 tions, simplex, hole, and tunnel, are studied. First experi-⁰²⁶— mental results and possible applications show the potential 027— of the approach. 028___

Distinguishing the 3 primitive 3D-topological configurations: simplex, hole, tunnel

1 Introduction

032 Handling "structured geometric objects" is important for 033 many applications related to geometric modeling, compu-034_____ tational geometry, image analysis, etc.; one has often to dis-035 tinguish between different parts of an object, according to 036____ properties which are relevant for the application (e.g. me-037____ chanical, photometric, geometric properties).

For instance for geological modeling, the sub-ground is 038 039 made of different layers, maybe split by faults, so layers are 040_____ sets of (maybe not connected) geological blocks.

041___ For e.g. in image analysis, a region is a (structured) set 042____ of pixels or voxels, or more generally an abstract cellular 043 complex consisting of dimensions 0, 1, 2, 3 ... (i.e. 0-cells 044 are vertices, 1-cells are edges, 2-cells are faces, 3-cells are 045____ volumes, ...) and a bounding relation [17].

046____ The structure, or the topology, of the object is related to 047 the decomposition of the object into sub-objects, and to the 048 relations between these sub-objects.

049___ Basically, topological information is related to the cells 050 and their adjacency and bounding relations. Other informa-051 tion (embedding information) are associated to these sub-052 objects, and describe for instance their shapes (e.g. a point, 053 resp. a curve, a part of a surface, is associated with each 054 vertex, resp. each edge, each face), their textures or colors, 055____ or other information depending on the application.

056____ Many topological models have been conceived for rep-057- resenting the topology of subdivided objects, since differ-058

ent types of subdivisions have to be handled: general com- ---075 plexes [8, 9] or particular manifolds [1, 2], subdivided into -076 any cells [14, 12] or into regular ones (e.g. simplices, cubes, -077 etc.) [13, 20]. Few models are defined for any dimen--078 sions [3, 21, 5, 19]. Some of them are (extensions of) in--079 cidence graphs or adjacency graphs. Their principle is often ---080 simple, but

- they cannot deal with any subdivision without loss of in- __083 formation, since it is not possible to describe the relations __084 between two cells precisely if they are incident in several __085 locations;
- operations for handling such graphs are often complex, since they have to handle simultaneously different cells of different dimensions.

Other structures are "ordered" [5, 19], and they do not have the drawbacks of incidence or adjacency graphs. A subdivided object can be described at different levels, so several -093 works deal with hierarchical topological models and topological pyramids [11, 3, 18]. For geometric modeling, levels are often not numerous. For image analysis, more levels are needed since the goal is to rise up information which is not known a priori.

[7, 15] show that 2D combinatorial maps are suitable topological structures to be used in 2D segmentation. Many 101 domains need to work in 3D imagery (e.g. medicine, geology), so the theoretical framework of 2D combinatorial maps has been extended to 3D [10, 4]. In order to use 3D topological structures for 3D image segmentation one has to $_{105}$ define basic operations. In this paper only two basic opera-106 tions are introduced: the contraction and the removal operation. _108

Attempts have been made to reduce such representations [10] to a certain extent, without guaranteeing the minimal representation. We extend this work in order to find -110minimal representations of the topological configurations of the initial data. And distinguish between them using the remaining pseudo-elements.

_114 A short introduction of the 2D and 3D combinatorial _115 map is given in Section 2. In Section 3 the two opera-_116 tions, namely contraction and removal, are properly applied 117 to three objects. We show examples of the three basic struc-118 tures in 3D: a simply connected volume, a volume with a _119 hole (volume enclosing other volume), and a volume with _120

This paper was supported by the Austrian Science Fund under grant 059 FSP-S9103-N04. 060_

a tunnel (donut) and their minimal configurations that pre-121___ 122____ serve the topology. 123_

¹²⁴— **2 Combinatorial Maps** 125

Combinatorial maps and generalized maps define a general 126 framework which allows us to encode any subdivision of 127 nD topological spaces orientable or non-orientable with or 128 without boundaries. They encode all the incidence relations 129 and consist of abstract elements, called darts \mathcal{D} and a set of 130 permutations β_i . *i*-cells are implicitly encoded by subsets of 131 \mathcal{D} which can be obtained using the β_i permutations. (When 132 encoding the same configuration, differences between the 133 two mentioned map types are limited to the number of darts, 134 number of permutations, and their meaning). 135

In the case of combinatorial maps, for each dimension, 136_ there is more then one way of attributing the permutations, 137. but the number of permutations used for a certain dimension 138 and how many of them are involutions is fixed i.e. for an 139 nD combinatorial map there is 1 permutation and n-1140____ involutions (an involution is a permutation whose orbits are 141___ of size 1 or 2). 142

2D and 3D combinatorial maps are given in more detail 143 in the following sections. 144

145— 2.1 2D Combinatorial Maps 146_

2D Combinatorial maps may be understood as a particular 147 encoding of a planar graph, where each edge is split into two 148 half-edges, the so called darts. A 2D combinatorial map is 149 formally defined by the triplet $G = (\mathcal{D}, \sigma, \alpha)$ [6] where \mathcal{D} 150_ represents the set of darts, σ is a permutation on \mathcal{D} encoun-151_ tered when turning clockwise around each vertex (the cycles 152_ of σ encode the vertices), and α is an involution on \mathcal{D} which 153 maps each of the two darts of one edge to the other one (the 154 cycles of α encode the edges). The cycles of the permutation 155 φ , defined as $\varphi = \sigma \circ \alpha$, encode the faces of the combinatorial map. (see Fig. 1d) [10] uses β_1 to refer to φ and β_2 157_ to refer to α and represents the 2D combinatorial map as 158 $G = (\mathcal{D}, \beta_1, \beta_2)$ (see Fig. 1b). 159.

160—2.2 3D Combinatorial Maps

А combinatorial map is formally defined by 3DG= $(\mathcal{D}, permutation, involution_1, involution_2),$ with the following two notations (and meanings) for the 164___ permutations studied until now: $G = (\mathcal{D}, \beta_1, \beta_2, \beta_3)$ [4] 165____ and $G = (\mathcal{D}, \gamma, \sigma, \alpha)$ [4]. Further on, we will present the 166____ first one.

167___ Like in the similar 2D combinatorial map notation, the permutation β_1 connects darts belonging to the same face and the same volume, preserving their ordering on the boundary of the face, and the involution β_2 connects 2 darts, part of the same edge and the same volume. The additional involution, β_3 , links 2 darts that belong to the same face and same edge (and the 2 volumes separated by the respective face). β_3 can be regarded like a glue, which brings together neighboring volumes defined be the 2D manifolds encoded by β_1 and β_2 (see Fig. 2).

For a certain dart d, the set of darts implicitly representing the i-cell containing the dart d is obtained by applying 2 of the 3 permutations β_i any number of times and in any combination to the dart d. (i is defined by the 2 permutations __181 applied) [4]. .182

183

184

191

.198

_200

201

202

203

204

205

206

207

208

209

210

211

212

213

_214

215

2.2.1 Operations on the 3D Combinatorial Maps We apply two operations to an *i*-cell: removal (removes the *i*-185 cell and merges the 2 (i+1)-cells that it was separating) and 186 contraction (contracts the *i*-cell to a (*i*-1)-cell by merging it's _187 2 neighboring (i-1)-cells). For our experiments we used the 188 following 4 operations: edge contraction, face contraction, _189 volume contraction and face removal. (See Table 1) .190

Our maps encode volumes from the input data as vertices and thus *edge contraction* is the equivalent to merging two 192 such neighboring volumes. The other 3 operations are ap-_193 plied to simplify/collapse the resulting representation, while 194 preserving the correct topological configuration. The last 195 one (face removal) is needed to deal with the special case $_{196}$ of "face self loop", which is a face that encloses a volume _197 alone, and which is bounded by one edge. (Such a self loop can be the result of the contraction operations described). _199

Figure 2: 3D Combinatorial map permutations

2.2.2 Pseudo elements To keep the topological encod-_216 ing consistent, the simplification process keeps *i*-cells which ___217 help encoding inside-like relations. In 2D this means keep-_218 ing self-loops and parallel edges which surround at least one _219 vertex, in 3D this concept is translated as parallel faces and _220 "face self loops" (faces bounded by a single edge) which 221 enclose a vertex. As shown in the following sections, these 222 pseudo elements let us discriminate between different topo- ____23 logical configurations. _224

.225 2.2.3 Multiple minimal encodings Every *i*-cell needs 226 to be bounded by at least one (i-1)-cell i.e. a volume is 227 bounded by at least one face, a face by at least one edge, and .228 an edge by at least 1 vertex. This leads to multiple encod-229 ings for the same topological configuration which cannot be 230 reduced/collapsed anymore. For example a single volume, can be represented as a volume bounded by 2 faces bounded 232 by the same edge (self loop) and 1 vertex (a globe obtained 233 from gluing together 2 halves around the self loop which is 234 the equator) (Fig. 3a), or as a volume bounded by 1 face, 235 bounded by 1 edge connecting 2 vertices (a soap bubble hanging in the middle of the straw)(Fig. 3b). So, depend-237 ing on the operations applied and their order, starting from 238 the same initial configuration, we can obtain different output 239 configurations that are topologically equivalent. 240

156.

161_

162

163.

168

169_

170_

171_

172_

 173_{-}

174

175_

176_

177

178

180

Figure 1: 2D Combinatorial maps using different notations.

Operation	Preconditions	Result
edge contraction	edge connects 2 different vertices,	the 2 vertices are merged,
	no volumes or faces will be removed	contracted edge is removed
face contraction	face is bounded by 2 different edges	the 2 bounding edges are merged
	no volumes or vertices will be removed	contracted face is removed
volume contraction	volume is bounded by 2 different faces	the 2 bounding faces are merged
	no vertices or edges will be removed	the volume is removed
face removal	face is incident to 2 different volumes	the 2 incident volumes are merged
	no vertices or edges are removed	the face is removed

Table 1: Operations applied to the 3D Combinatorial map

3 Connected component analysis

241___

242_ 243_

244

245_

246

247

248

249_

250_

251__ 252

253___

254

255

256

257_ 258_

259_

260_

 261_{-}

262

263

264_

265

266

267

268

269

270_

271

272_

273_

274_

275_

276_

277_

278____

279_

280___

281___

282

283

284_

285

286

287

288

289

290

291.

292

293

294

295

296_

297

298

299.

300_

As mentioned in Section 2.2.1, in our setup voxels from the input data are represented as vertices and adjacency relations between 2 voxels are represented by connecting their 2 associated vertices by an edge. An additional vertex is used to represent the background volume. For the sake of clarity, this vertex is not drawn in the initial configuration images of our experiments.

The algorithm for identifying the connected components is as follows (each operations is applied only if the preconditions mentioned in Table 1 are satisfied):

-	1.	contract all edges connecting two vertices that belong
-		to the same connected component
-	2.	contract all faces bounded by exactly two edges
	3.	contract all volumes bounded by exactly two faces
	4.	remove all "face self loops"
- 1		_

The four steps are repeated until Step 1 does not find any more contractable edges. In each such iteration, Steps 2-4 are repeated until neither of them finds any more candidates for contraction/removal.

3.1 2 x 2 x 2 Cube - 1 connected component

The first experiment is the reduction of a $2 \times 2 \times 2$ **cube** where each voxel has the same label. Fig. 4a shows the initial combinatorial map for this object. (The labels of vertices and edges correspond to the labels used by our library.) The final configuration is shown in Fig. 4b. The map is reduced to 4 darts defining 2 vertices, 2 edges, 1 face and 1 volume.

One vertex represents the background and the other one represents the voxels of the initial cube that has been merged into 1 element. These 2 vertices are connected by 1 face that is bounded by 2 edges.

3.2 3 x 3 x 3 Cube with enclosed object inside - 2 connected components

To demonstrate that the topology is preserved during the —327 simplification of the combinatorial map, the second experi- ___328 ment reduces a **cube that completely encloses another ob-** ___329 **ject**. Fig. 4c shows the initial combinatorial map for this ___330 configuration. The two objects are reduced to a combinato- ___331 rial map consisting of 16 darts defining 4 vertices, 5 edges, ___332 3 faces and two volumes (see Fig. 4d). ____333

3.3 3 x 3 x 2 Cuboid with object tunnel inside - 1 connected component

In 3D there are basically 2 types of *inside* configurations. $_345$ The 3^{rd} experiment shows the **reduction of a torus** which $_346$ is surrounding (but not completely enclosing) another ob- $_347$ ject. Fig. 4e shows the initial combinatorial map for this $_348$ experiment. The 2 objects are reduced to a combinatorial $_349$ map consisting of 24 darts defining 3 vertices, 5 edges, 4 $_350$ faces and 2 volumes (see Fig. 4f). $_351$

The torus is merged into 1 vertex (vertex 17) connected to the background (vertex 19) and the inner tunnel (vertex 14). The tunnel (vertex 14) is connected on both sides with the background (edges -755 and -155). The fact that the torus surrounds the tunnel is represented by the self loop (edge -679) and the cone like face/surface (bounded by the selfloop edge -679 and the edge -826; visualized by the dotted lines).

.301 .302

303

_304 _305

.306

_307

.308

.309

.310

_311

312

_313

_314

_315 _316

.317

.318

.319

.320 .321

<u>322</u> 323

324

.325

.326

342

343

_344

Figure 3: Multiple minimal encodings for one volume

Configuration		Vertices	Edges	Faces	Volumes
2x2x2 cube (initial)	120	9	20	18	7
2x2x2 cube (final)	4	2	2	1	1
2x2x2 cube (final - pseudo elements)			0	0	0
3x3x3 with object inside (initial)	576	28	80	84	32
3x3x3 with object inside (final)	16	4	5	3	2
3x3x3 with object inside (final - pseudo elements)			0	1	1
3x3x2 with tunnel inside (initial)	352	19	51	52	20
3x3x2 with tunnel inside (final)	24	3	5	4	2
3x3x2 with tunnel inside (final - pseudo elements)			1	1	0

Table 2: Number of cells in each experimented configuration

³⁸⁸— 3.4 Discriminating between the 3 configurations

As can be seen from the experiment results, discriminating between the first configuration and the other two is very easy, and can be done just by looking at the labels of the obtained vertices. The second and third configurations are more complex, because of the containment relation and cannot be discriminated based only on the vertices. Here, edges and faces have to be taken into considerations. An object having an edge self loop (or edge cycle) surrounds another object (Fig. 4f), and an object having a face self-loop (or face cycle) encloses another one (Fig. 4d). Note that in experiment 3, the adjacency of the tunnel and the background is also shown by the 2 edges connecting it to the background.

4 Outlook

Connected component analysis is certainly one of the first experiments to do when testing out a new representation that should preserve topology, but the possibilities do not stop here. Next steps will include the extension to 3D of the Minimum Spanning Tree pyramid concept [15] used for segmentation of 2D images, and using it to segment volumetric data and videos (2D+time). Further on, having this implementation, we can pursue research in describing videos using actions, events, and relations, following the concept presented in [16].

5 Conclusions

The paper presents the basic operations that can collapse a high resolution voxel complex into its topologically equivalent smallest counterpart. We demonstrated the correctness of the underlying software library by the three basic config- -448 urations in 3D: a simply connected volume, a volume with -449 a hole and a volume with a tunnel. The resulting structures -450 contain pseudo elements characterizing the respective topol- -451 ogy. ___453

_421

422

423

424 _425

_426 _427

_428

_429

_430

_431

___432

___433

___434

435

_436 _437

_438

439

_440 _441

_442 _443

_444

_445

_446

447

_452

___454

_455

___456

___457

_458

_459

___460

___461

_462

___463

___465

__466

___467

468

_469

___470

__471

__472

_473

474

_475

476

477

_478

References

- [1] S. Ansaldi, L. de Floriani, and B. Falcidieno. Geometric Modeling of Solid Objects by Using a Face Adjacency Graph Representation. Computer Graphics, 19(3):131-139, 1985.
- [2] B. Baumgart. A Polyhedron Representation for Computer Vision. In AFIPS National Computer Conference Proc., volume 44, pages 589-596, Anaheim, May 1975.
- ___464 [3] Y. Bertrand, G. Damiand, and C. Fiorio. Topological Encoding of 3D Segmented Images. In G. Borgefors, I. Nyström, and G. S. di Baja, editors, International Conference on Discrete Geometry for Computer Imagery, volume 1953 of Lecture Notes in Computer Science, pages 311-324. Springer-Verlag, Germany, 2000.
- [4] A. Braquelaire, G. Damiand, J-P. Domenger, and F. Vidil. Comparison and convergence of two topological models for 3d image segmentation. In Workshop on Graph-Based Representations in Pattern Recognition, number 2726 in Lecture Notes in Computer Science, pages 59-70, York, England, June 2003.
- [5] E. Brisson. Representing Geometric Structures in D Dimensions: Topology and Order. Discrete and Computational Geometry, 9:387-426, 1993.
- _479 [6] Luc Brun and Walter G. Kropatsch. Dual Contraction 480

4

404				. 142(6)-266-274-1005	E 4 4
481		of Combinatorial Maps. Technical Report		Processing, 142(6):366–374, 1995.	541
482		PRIP-TR-54, Institute f. Computer Aided Automation [1]	.9] P	P. Lienhardt. N-dimensional Generalized	542
483		183/2, Pattern Recognition and Image Processing	C	Combinatorial Maps and Cellular Quasi-manifolds.	543
484		Group, TU Wien, Austria, 1999. Also available		Int. J. of Comp. Geom. and Appl., 4(3):275–324, 1994.	544
485		-		A. Paoluzzi, F. Bernardini, C. Cattani, and V. Ferrucci.	
		•			
486		http://www.prip.tuwien.ac.at/ftp/pub/publications/trs/tr54.ps.gz.		Dimension Independent Modeling with Simplicial	546
487	[7]	Luc Brun and Walter G. Kropatsch. Irregular		Complexes. ACM Trans. on Graphics, 12(1):56–102, 1993.	
488		Pyramids with Combinatorial Maps. In Francesc J. [2	21] J	J. Rossignac and M. O'Connor. SGC: a	548
489		Ferri, José M. Iñesta, Adnan Amin, and Pavel Pudil,	Γ	Dimension-independent Model for Pointsets with	549
490		editors, Advances in Pattern Recognition, Joint IAPR	I	Internal Structures and Incomplete Boundaries. In	550
491		International Workshops on SSPR'2000 and SPR'2000, volume		M. J. Wozny, J. Turner, and K. Preiss, editors, <i>In</i>	551
		-		•	
492		1876 of Lecture Notes in Computer Science, pages 256–265,		Geometric Modeling for Product Engineering, pages 145–180.	
493		Alicante, Spain, August 2000. Springer, Berlin	E	Elsevier Science, 1989.	553
494		Heidelberg, New York.			554
495	[8]	P. Cavalcanti, P. Carvalho, and L. Martha.			555
496		Non-manifold Modeling: An Approach Based on			556
497		Spatial Subdivision. Computer-Aided Design,			557
		•			
498	501	29(3):209–220, 1997.			558
499	[9]	G.A. Crocker and W.F. Reinke. An Editable			559
500		Nonmanifold Boundary Representation. Computer			560
501		Graphics and Applications, 11(2):39–51, 1991.			561
502	[10]	G. Damiand. Définition et étude d'un modèle topologique			562
503	L . 1	minimal de représentation d'images 2d et 3d. Thèse de			563
504		doctorat, Université Montpellier II, Décembre 2001.			564
	F1 1 1	-			
	[11]	L. De Floriani, E. Puppo, and P. Magillo. A Formal			565
506		Approach to Multiresolution Hypersurface Modeling.			566
507		In R. Straber, W. and Kein and R. Rau, editors,			567
508		Geometric Modeling: Theory and Practice, pages 302–323.			568
509		Springer-Verlag, 1997.			569
510	[12]	D. Dobkin and M. Laszlo. Primitives for the			570
511	[12]	manipulation of three-dimensional subdivisions.			571
512		Algorithmica, 4(1):3–32, 1989.			572
513	[13]	V. Ferruci and A. Paoluzzi. Extrusion and Boundary			573
514		Evaluation for Multidimensional Polyhedra.			574
515		Computer-Aided Design, 23(1):40–50, 1991.			575
516	[14]	L. Guibas and J. Stolfi. Primitives for the			576
517		Manipulation of General Subdivisions and the			577
518		Computation of Voronoi Diagrams. ACM Trans. on			578
519		<i>Graphics</i> , 4(2):74–123, 1985.			579
	[15]	Yll Haxhimusa, Adrian Ion, Walter G. Kropatsch, and			580
521		Luc Brun. Hierarchical Image Partitioning using			581
522		Combinatorial Maps. In D. Chetverikov, L. Czuni,			582
523		and M. Vincze, editors, Joint Hungarian-Austian Conference			583
524		on Proceedings on Image Processing and Pattern Recognition,			584
525		HACIPPR 2005 - OAGM 2005/KPAF 2005, pages 179–186,			585
		10			
526	F 4 63	Veszprm, Hungary, 11-13, May 2005. OCG.			586
	[16]	Adrian Ion, Yll Haxhimusa, and Walter G. Kropatsch.			587
528		A Graph-Based Concept for			588
529		Spatiotemporal Information in Cognitive Vision. In			589
530		L. Brun and M. Vento, editors, 5th IAPR-TC15 Workshop			590
531		on Graph-based Representation in Pattern Recognition, volume			591
532		3434 of Lecture Notes in Computer Science, pages 223–232,			592
533					593
		Poitiers, France, April 2005. Springer, Berlin			
534	r /	Heidelberg, New York.			594
535	[17]	Vladimir A. Kovalevsky. Finite topology as applied to			595
536		image analysis. Computer Vision, Graphics, and Image			596
537		Processing, 46:141–161, 1989.			597
	[18]	W.G. Kropatsch. Building Irregular Pyramids by Dual			598
539	r ~1	Graph Contraction. <i>IEE-Proc. Vision, Image and Signal</i>			599
540		Super contraction. Inter 1 rot. vision, image una signal			600
J+U					000

a) $2 \times 2 \times 2$ initial map

___661

<u>__662</u>

<u>__664</u>

___666

__667 __668

_669

___670

___671

___672

__673

__674

___675

___676

___677

___678

___679

___680

___681

_682

_683

_684

___685

___686

___687

___688

___689

___690

___691

___692

___693

___694

___695

___696

___697

_698

_699

_700

___701

_702

___703

___704

___705

___706

__707

_708

_709

_710

_711

__712 __713

__714 __715

_716

_717

___718 ___719

___720

b) $2 \times 2 \times 2$ final map

Figure 4: The 3 primitive 3D topological configurations: simplex(a,b), hole(c,d), tunnel(e,f)