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Abstract. The eccentricity transform associates to each point of a shape
the geodesic distance to the point farthest away from it. The transform
is defined in any dimension, for simply and non simply connected sets. It
is robust to Salt & Pepper noise and is quasi-invariant to articulated mo-
tion. Discrete analytical concentric circles with constant thickness and
increasing radius pave the 2D plane. An ordering between pixels belong-
ing to circles with different radius is created that enables the tracking of
a wavefront moving away from the circle center. This is used to efficiently
compute the single source shape bounded distance transform which in
turn is used to compute the eccentricity transform. Experimental results
for three algorithms are given: a novel one, an existing one, and a refined
version of the existing one. They show a good speed/error compromise.
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1 Introduction

A major task in image analysis is to extract high abstraction level information
from an image that usually contains too much information and not necessar-
ily the correct one (e.g. because of noise or occlusion). Image transforms have
been widely used to move from low abstraction level input data to a higher
abstraction level that forms the output data (skeleton, connected components,
etc.). The purpose is to have a reduced amount of (significant) information at
the higher abstraction levels. One class of such transforms that is applied to 2D
shapes, associates to each point of the shape a value that characterizes in some
way it’s relation to the rest of the shape, e.g. the distance to some other point of
the shape. Examples of such transforms include the well known distance trans-
form [1], which associates to each point of the shape the length of the shortest
path to the border, the Poisson equation [2], which can be used to associate to
each point the average time to reach the border by a random path (average
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length of the random paths from the point to the boundary), and the eccentric-
ity transform [3] which associates to each point the length of the longest of the
shortest paths to any other point of the shape. Using the transformed images one
tries to come up with an abstracted representation, like the skeleton [4] or shock
graph [5] build on the distance transform, which could be used in e.g. shape
classification or retrieval. Minimal path computation [6] as well as the distance
transform [7] are commonly used in 2D and 3D image segmentation.

This paper is focusing on the eccentricity transform (ECC) which has its
origins in the graph based eccentricity [8,9]. It has been defined in the context
of digital images in [3,10]. It was applied in the context of shape matching
in [11]. It has been shown that the transform is very robust with respect to noise.
The eccentricity transform can be defined for discrete objects of any dimension,
closed (e.g. typical 2D binary image) or open sets (surface of an ellipsoid), and
for continuous objects of any dimension (e.g. 3D ellipsoid or the 2D surface of
the 3D ellipsoid, etc.). For the case of discrete shapes, a naive algorithm and a
more efficient one for 2D shapes without holes, have been presented in [3], with
experimental results only for the 4 and 8 neighbourhoods. For simply connected
shapes on the hexagonal and dodecagonal grid, an efficient algorithm was given
in [12]. Regarding continuous shapes, a detailed study has been made for the case
of an ellipse, and some preliminary properties regarding rectangles, and a class
of elongated convex shapes, have been given [13]. An algorithm for finding the
eccentric/furthest points for the vertices of a simple polygon was given in [14].

This paper presents an algorithm for efficiently computing the single source
shape bounded distance transform using discrete circles. The idea is to use
discrete circles to propagate the distance in a shape following an idea already
proposed for discrete wave propagation simulation [15]. In addition, a novel algo-
rithm and a refined one are given to compute the eccentricity transform. It has
been shown that, so called, eccentric points play a major role in the transform.
These points are shape border points. Different ideas are proposed in order to
attempt to identify these eccentric points. Distance transforms, originating at
these candidate eccentric points, are computed and accumulated to obtain the
eccentricity transform. A comparison between these three methods is provided.

Section 2 gives a short recall of the eccentricity transform, the main properties
relevant for this paper and gives the important facts about discrete circles. Sec-
tions 3 and 4 present the proposed algorithms, followed by experimental results.
Section 5 concludes the paper and gives an outlook of the future work.

2 Recall

In this section basic definitions and properties of the eccentricity transform and
discrete circles are given.

2.1 Recall ECC

The following definitions and properties follow [3,11].
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Let the shape S be a closed set in R
2 and ∂S be its border1. A (geodesic) path

π is the continuous mapping from the interval [0, 1] to S. Let Π(p1,p2) be the
set of all paths between two points p1,p2 ∈ S within the set S. The geodesic
distance d(p1,p2) between two points p1,p2 ∈ S is defined as the length λ(π)
of the shortest path π ∈ Π(p1,p2) between p1 and p2

d(p1,p2) = min{λ(π(p1,p2))|π ∈ Π} where λ(π(t)) =
∫ 1

0
|π̇(t)|dt (1)

where π(t) is a parametrization of the path from p1 = π(0) to p2 = π(1).
The eccentricity transform of S can be defined as, ∀p ∈ S

ECC(S,p) = max{d(p,q)|q ∈ S} (2)

i.e. to each point p it assigns the length of the shortest geodesics to the points
farthers away from it. In [3] it is shown that this transformation is quasi-invariant
to articulated motion and robust against salt and pepper noise (which creates
holes in the shape).

This paper considers defined by points on a square grid Z
2. Paths need to be

contained in the area of R
2 defined by the union of the support squares for the

pixels of S. The distance between any two pixels whose connecting segment is
contained in S is computed using the �2-norm.

2.2 Properties of Eccentric Points

In general, an extremal point is a point where a function reaches an extremum
(local or global). In the case of the geodesic distance d in a shape S we call a
point x ∈ S maximal iff d(x,p) is a local maximum for a given point p ∈ S.
X(S) denotes the set of all maximal points of shape S.

An eccentric point of a shape S is a point e ∈ S that is farthest away in S
from at least one other point p ∈ S i.e. ∃p ∈ S s.t. ECC(S,p) = d(p, e). For a
shape S, E(S) = {e ∈ S|e is eccentric for at least one point of S} denotes the
set of all its eccentric points. The set of eccentric points E(S) is a subset of the
set of all maximal points X(S) i.e. E(S) ⊆ X(S) (eccentric points are global
maxima for d, while maximal points are local maxima for a given point p).

Knowing E(S) can speedup the computation of the ECC(S). A naive algo-
rithm for ECC(S) computes all geodesic distances d(p,q) for all pairs of points
in S and takes the maximum at each point p ∈ S. Since the geodesic distance
is commutative, e.g. d(p,q) = d(q,p), it is sufficient to restrict q in (2) to the
eccentric points E(S). Instead of computing the length of the geodesics from
p ∈ S to all the other points q ∈ S and taking the maximum, one can compute
the length of the geodesics from all q ∈ E(S) to all the points p ∈ S. This
reduces the number of steps from |S| to |E(S)|. The key question is therefore
how to estimate E(S) without knowing ECC(S).

The following properties of eccentric points are relevant for this paper and
concern bounded 2D shapes.
1 This definition can be generalized to any dimension, continuous and discrete objects.
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Property 1. All eccentric points E(S) of a shape S lie on the border of S i.e.
E(S) ⊆ ∂S. (Proof due to [3]).

Property 2. Being an eccentric point is not a local property i.e. ∀B ⊂ ∂S a
boundary part (a 2D open and simple curve), and a point b ∈ B, we can con-
struct the rest of the boundary ∂S\B s.t. b is not an eccentric point of S. (Proof
due to [13]).

Property 3. Not all eccentric points e ∈ E(S) are local maxima in the eccentric-
ity transform (the ellipse in [13] is an example).

E.g. some eccentric points e∈E(S) may find larger eccentricity values ECC(S, e)
< ECC(S,q) in their neighborhood |e − q| < ε for ε > 0. They typically form
connected clusters containing also a local maximum in ECC(S).

Property 4. Not all eccentric points are local maxima in the distance transform
from any point of the shape i.e. there is no guarantee that all eccentric points
of a shape S will be local maxima in the distance transform DT (S,p) for any
random point p ∈ S (see [13] for an example).

2.3 Recall Discrete Circles

The shape bounded distance transform algorithm presented in this paper prop-
agates the distance computation in the shape. This idea has already been used
to perform discrete wave propagation simulation [15]. The propagation is per-
formed with discrete concentric circles where each circle corresponds to a given
distance range. The propagation provides a cheap distance computation. The
discrete circle definition has to verify specific properties as the center coordi-
nates and the radius aren’t necessarily integers. The most important property is
that circles centered on a point must fill, preferably pave, the discrete space. We
can’t miss points during our propagation phase. Of course, the arc/circle gener-
ation algorithm has to be linear in the number of pixels generated or we would
loose the whole point of proposing a new method with a reasonable complexity.
There exists several different discrete circle definitions. The best known circle is
an algorithmic definition proposed by Bresenham but this doesn’t correspond to
the requirements of our problem. The circle doesn’t pave the space, the center
coordinates and radius are only integer. The definition that fits our problem is
the discrete analytical circle proposed by Andres [16]:

Definition 1. (Discrete Analytical Circle) A discrete analytical circle C (R,o)
is defined by the double inequality:

p ∈ C (R,o) iff
(

R − 1
2

)
≤ ‖p − o‖ <

(
R +

1
2

)

with p ∈ Z
2,o ∈ R

2, and R ∈ R the radius using euclidean distance.
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This circle is a circle of arithmetical thickness 1. The circle definition is similar
to the discrete analytical line definition proposed by Reveillès [17].

The fact that this circle definition is analytical, and not just algorithmic like
Bresenham’s circle, has many advantages. Point localisation, i.e. knowing if a
point is inside, outside or on the circle, is trivial. The center coordinates and the
radius don’t have to be integers. The circle definition can easily be extended to
any dimension (see [18]). Circles with the same center pave the space:

∞⊎
R=0

C (R,o) = Z
2

Each integer coordinate point in space belongs to one and only one circle. When
you draw Bresenham circles with the same center and increasing radii there are
discrete points that don’t belong to any of the concentric circles. What is less
obvious is that this circle has good topological properties. In fact, as shown
in [18] for the general case in dimension n for discrete analytical hyperspheres,
a discrete circle of arithmetical thickness equal to 1 (this is the case with the
given definition) is at least 8-connected. The discrete points of the circle can be
ordered and there exists a linear complexity generation algorithm [16,18].

3 Shape Bounded Single Source Distance Transform

Given a discrete connected shape S and an initial point o ∈ S. The shape
bounded single source distance transform DT assigns to every point q ∈ S its
geodesic distance to o:

DT (S,o) = {d(o,q)}, q ∈ S (3)

Another formulation would consider the time needed for a wavefront initiated at
o traveling in the homogeneous medium S to reach each point q of S. Following
the previous formulation we propose to model the wavefront using discrete arcs
and record the time when each point q is reached for the first time. The wavefront
travels with speed 1 i.e. 1 distance unit corresponds to 1 time unit.

The wavefront propagating from a point o will have the form of a circle cen-
tered at o. If the wavefront is blocked by obstacles, the circle is “interrupted”
and disjoint arcs of the same circle continue propagating in the unblocked direc-
tions. For a start point o, the wavefront at time t is the set of points q ∈ S at
distance t − 0.5 � d(o,q) < t + 0.5 . The wavefront at any time t consists of a
set of arcs W (t) ⊂ S. Each arc A ∈ W (t) lies on a circle centered at the point
where the path from q ∈ A to p first touches ∂S.

The computation starts with a circle of radius 1 centered at the source point
o, W (1) = {C(1,o)}. It propagates and clusters as presented above, with the
addition that pixels with distance smaller than the current wavefront also block
the propagation. An arc A ∈ W (t) of the wavefront W (t), not touching ∂S at
time t, but touching at t−1, diffracts new circles centered at the endpoints e ∈ A.
The added arcs start with radius one and handicap d(p, e). The handicap of an
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Fig. 1. The three steps during wavefront propagation (shape white, background black).
Left, radius 1: circle with radius 1 and center O is bounded to an arc. Middle, radius
2: the front is splitted in two arcs A, B. Right, radius 3: arc B, touching the hole at
radius 2 but not at radius 3, creates arc C with the center at the current point of B.

arc accumulates the length of the shortest path to the center of the arc such
that the distance of the wavefront from the initial point o is always the sum of
the handicap and the radius of the arc. No special computation is required for
the initial angles of arcs with centers on the boundary pixels of S. They will be
corrected by the clustering and bounding command when drawing with radius
1. See Fig. 1 and Alg. 1.

The complexity of Alg. 1 is determined by the number of pixels in S, denoted
|S|, and the number of arcs of the wave. Arcs are drawn in O(n) where n is
the number of pixels of the arc. Pixels in the shadow of a hole, where different
parts of the wavefront meet (’shocks’), are drawn by each part. All other pixels
are drawn only once. Adding and extracting arcs to/from the wavefront (W in
Alg. 1) can be done in log(size(W )).

For convex shapes, the size of W is 1 all the time, so the algorithm executes
in O(|S|). For simply connected shapes, each pixel is drawn only once. Assuming
an exaggerated upper bound size(W ) = |S| and each arc only draws one pixel,
the complexity for simply connected shapes is below O(|S| log |S|). Each hole
creates an additional direction to reach a point, e.g. no hole: 1 direction; 1 hole:
2 directions - one on each side of the hole; 2 holes: maximum 3 directions - one
side, between holes, other side, etc. Note that we don’t count the number of
possible paths, but the number of directions from which connected wavefronts
can reach a point at the shortest geodesic distance. For a non-simply connected
shape with k holes, a pixel is set a maximum of k times (worst case). Thus, the
complexity for non-simply connected shapes with k holes is below O(k|S| log |S|).

4 Progressive Refinement Eccentricity Transform

In [3] an algorithm for approximating the ECC of discrete shapes was presented
(will be denoted by ECC06) (see Alg. 2). The algorithm is faster than the naive
one (see [3]), and computes the exact values for a class of simply connected
shapes. For all other shapes it gives an approximation. Based on Properties 3
and 4 we refine algorithm ECC06 by adding a third phase to ECC06. This step
finds the limits of clusters of eccentric points for which at least one eccentric point
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Algorithm 1. DT (S,p) - Compute distance transform using discrete circles.
Input: Discrete shape S and pixel p ∈ S .
1: for all q ∈ S do D(q) ← ∞ /*initialize distance matrix*/
2: D(p) ← 0
3: W ← Arc(p, 1, [0; 2π], 0, ∅) /*Arc(center, radius, angles, handicap, parent)*/
4:
5: while W �= ∅ do
6: A � arg min{A.r + A.h|A ∈ W} /*select and remove arc with smallest ra-

dius+handicap*/
7:
8: /*draw arc points with lower distance than known before, use real distances*/
9: D(m) ← min{D(m), A.h + d(A.c,m)|m ∈ A ∩ S}

10:
11: P1, . . . , Pk ←actually drawn (sub)arcs/parts of A /*split and bound*/
12: W ← W+Arc(A.c,A.r + 1, Pi.a, A.h, A), ∀i = 1..k /*propagate*/
13:
14: /*diffract if necessary*/
15: if A.p touches ∂S on either side then
16: e ← last point of A, on side where A.p was touching ∂S
17: W ← W+Arc(e,1, [0; 2π], D(e), A)
18: end if
19: end while
Output: Distances D.

has been found (this is phase 2, lines 19-28 of Alg. 3). The refined algorithm is
denoted by ECC06’.

Algorithms ECC06 and ECC06’ try to identify the ECC centers (smallest ECC
value). Computing the DT (S, c) for a center point c is expected to create local
maxima where eccentric points lie. For non-simply connected shapes the center
can become very complex, it can contain many points and it can be disconnected.
This makes identifying all center points harder, as not all eccentric points are
farthest away from all center points. Missing center points can lead to missing
eccentric points which leads to an approximation errors.

4.1 New Algorithm (ECC08)

Algorithm ECC08 first attempts to identify at least one point from each cluster
of eccentric points. Like in ECC06’, scanning along ∂S is then used to find the
limits of each cluster.

Inspecting a shape S is done by repeatedly computing DT (S,q) for the high-
est local maximum in the current approximation of ECC(S) and accumulating
the results (using max) to obtain the next approximation. After some steps, this
process can enter an infinite loop if all reachable points have been visited al-
ready. Such a configuration is called an oscillating configuration and the visited
points are called oscillating points [19]. If DT (S,q) with q ∈ S is considered
as an approximation for ECC(S), the error is expected to be higher around q
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Algorithm 2. ECC06(S) - Eccentricity transform by progressive refinement.
Input: Discrete shape S .
1: for all q ∈ S , ECC(q) ← 0 /*initialize distance matrix*/
2: p ← random point of S /*find a starting point*/
3:
4: /*Phase 1: find a diameter*/
5: while p not computed do
6: ECC ← max{ECC, DT (S ,p)} /*accumulate & mark p as computed*/
7: p ← arg max{ECC(p)|p ∈ S} /*highest current ECC (farthest away)*/
8: end while
9:

10: /*Phase 2: find center points and local maxima*/
11: pECC ← 0 /*make sure we enter the loop*/
12: while pECC �= ECC do
13: pECC ← ECC
14: C ← arg min{ECC(p)|p ∈ S} /*find all points with minimum ECC*/
15: for all c ∈ C, c not computed do
16: D ← DT (S ,c) /*do a distance transform from the center*/
17: ECC ← max{ECC, D} /*accumulate & mark c as computed*/
18:
19: M ← {q ∈ S|D(q) local maximum in S & q not computed}
20: for all m ∈ M , m not computed do
21: ECC ← max{ECC, DT (S ,m)} /*accumulate & mark m as computed*/
22: end for
23: end for
24: end while
Output: Distances ECC.

and smaller around the points farther away from q i.e. the points with highest
values in DT (S,q). Whenever an oscillating configuration is reached all points
of ∂S which are local minima in the current ECC approximation are selected
for distance computation. If the last operation does not produce any unvisited
points as ECC local maxima, the search is terminated (Alg. 3).

All three algorithms try to find E(S) and compute DT (S, e) for all e in the
current approximation of E(S). As E(S) is actually known only after computing
ECC(S), all algorithms incrementally refine an initial approximation of ECC(S)
by computing DT (S,q) for candidate eccentric points q that are identified dur-
ing the progress of the approximation. For ECC06’ and ECC08, one eccentric
point per cluster is sufficient to produce the correct result.

4.2 Experimental Results

We have compared the three algorithms, ECC06, ECC06’, and ECC08, on 70
shapes from the MPEG7 CE-Shape1 database [20], 6 from [21], and one addi-
tional new shape (see Table 5).
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Algorithm 3. ECC08(S) - Eccentricity transform by progressive refinement.
Input: Discrete shape S .
1: for all q ∈ S , ECC(q) ← 0 /*initialize distance matrix*/
2: ToDo ← random point of S /*find a starting point*/
3:
4: /*Phase 1: inspect shape*/
5: while ToDo �= ∅ do
6: p � arg max{ECC(p)|p ∈ ToDo} /*remove point with highest current ECC*/
7: ECC ← max{ECC, DT (S ,p)} /*accumulate & mark p as computed*/
8:
9: /*add not computed local maxima to ToDo*/

10: ToDo ← ToDo ∪ {q ∈ S|ECC(q) local maximum in S & q not computed}
11:
12: /*test if an oscillating configuration was found*/
13: if ToDo = ∅ then
14: ToDo ← ToDo ∪ {q ∈ ∂S|ECC(q) local minimum in ∂S & q not computed}
15: end if
16: end while
17:
18: /*Phase 2: find limits of clusters of eccentric points */
19: ToDo ← all neighbours in ∂S of all eccentric points in ECC
20: while ToDo �= ∅ do
21: p � arg max{ECC(p)|p ∈ ToDo} /*remove point with highest current ECC*/

22: ECC ← max{ECC, DT (S ,p)} /*accumulate & mark p as computed*/
23:
24: /*do we need to continue in this direction?*/
25: if ECC changed previously i.e. p is an eccentric point then
26: ToDo ← ToDo ∪ {q ∈ ∂S|q is a neighbour of p in ∂S & q not computed}
27: end if
28: end while
Output: Distances ECC.

The MPEG7 database contains 1400 shapes from 70 object classes. One shape
from each class was taken (the first one) and reduced to about 36,000 pixels
(aspect ratio and connectivity preserved). Table 1 summarizes the main char-
acteristics of the 70 shapes, their sizes and the range of smallest and largest
eccentricity values. The smallest eccentricity appears at the center of the shape
and the largest eccentricity corresponds to its diameter.

Correct ECC values are computed by the naive algorithm RECC as the max-
imum of the distance transforms of all boundary points ∂S (according to Prop-
erty 1). Table 2 compares the performance of the 3 algorithms:

max.pixel error: maximum difference between RECC and ECC per pixel /
max.eccentricity for this shape;

max.error size: maximum number of pixels that differ between RECC and
ECC / size of this shape;
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Table 1. Characteristics of shapes from the MPEG7 database

measure ranges from to
sizes in pixel 683 28821

smallest eccentricity in pixel (ECCmin) 28 235
maximum eccentricity in pixel (ECCmax) 55 469

Table 2. Results of 70 images from the MPEG7 database

measure ECC06 ECC06’ ECC08
max.pixel error 4.45 / 221.4 4.27 / 221.4 6.57 / 266.6
max.error size 4923 / 19701 2790 / 19701 2359 / 19701

#DT(ECC) / #DT(RECC) 8% 10% 15%
100% correct 44 / 70 60 / 70 56 / 70

Table 3. ’Worst’ results from the MPEG7 database

shape characteristics max.ECC.diff. size of ECC.diff.
nb. name ECCmin ECCmax size ECC06 ECC06’ ECC08 ECC06 ECC06’ ECC08
58 pocket 170.7 266.6 13815 3.750 0.000 6.568 2241 0 1318
48 hat 126.5 221.4 19701 4.454 4.274 4.274 4923 2790 2359
5 Heart 108.1 213.4 24123 2.784 0.731 0.731 2378 482 482
4 HCircle 127.0 250.2 28821 0.000 0.000 1.454 0 0 404

18 cattle 99.6 198.2 9764 1.223 1.223 1.223 2154 258 258
11 bird 116.0 230.1 14396 1.209 0.000 0.000 3963 0 0

#DT(ECC) / #DT(RECC): average number of times the distance trans-
form(DT) is called wrt. RECC (in percent);

100% correct: the number of shapes for which the error was 0 for all pixels /
the total number of shapes.

All three algorithms produce a good ECC approximation in about 8% to 15%
of the time of RECC. There are only a few shapes for which the approximation
was not 100% correct and the highest difference was about 7 pixels less than
correct eccentricity in an image where the eccentricities varied from 170 to 266.6
pixels. Table 3 lists the 6 worst results with the three algorithms. Each shape
is characterized by its number, its name, the range of eccentricities of RECC
and the number of pixels (size). The next columns list the largest difference in
eccentricity value and the number of pixels that were different. To judge the
quality of the results we selected the example hat which had errors in all three
algorithms (Fig. 2 shows the results by a contour line plot with the same levels).
Algorithms ECC06’ and ECC08 compute the correct eccentricity transform for
all of the “problem” shapes showing the improvement of the discrete arc paving
with respect to 4- and 8-connectivity used in [21] (see Table 4).
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a)RECC b)ECC06

c)ECC06’ d)ECC08

Fig. 2. Results of example shape hat

Table 4. Results on the 6 “problem” shapes from [21]

measure in % ECC06 ECC06’ ECC08
max.pixel error 1.521 / 74.7 0.00 / 74.7 0.00 / 74.7
max.error size 675 / 1784 0 / 1784 0 / 1784
#DT(ECC)

#DT(RECC) 27% 50% 48%

100% correct 1 /6 6/6 6/6

Table 5. Results for image ’3holes’

measure ECC06 ECC06’ ECC08
max.pixel error 1.913 /409.2 1.100 / 409.2 12.773 / 409.2
max.error size 360 / 19919 119 / 19919 698 / 19919
#DT(ECC)

#DT(RECC) 7% 8% 9%

Table 5 shows the results of the three algorithms on an example 2D shape.
On this example ECC06 and ECC06’ produce better results than ECC08.

Overall ECC06’ produces the best results with a computation speed between
ECC06 and ECC08. ECC06 is the fastest in this experiment.

5 Conclusion

This paper presents a method for efficiently computing the shape bounded dis-
tance transform using discrete circles, which in turn is used by the three approx-
imation strategies: ECC08, a novel one; ECC06, an existing one; and ECC06’, a
refined version of ECC06. They all approximate the eccentricity transform of a
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discrete 2D shape. Experimental results show the excellent speed/error perfor-
mance. Extensions to 3D and higher dimensions are planned.
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