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Abstract
This paper presents a method to decompose binary shapes intoconnected parts, based on their struc-
ture, as captured by the eccentricity transform. This decomposition is then used in a graph pyramid
framework for mapping a polar-like coordinate system to a non-rigid shape. Initial experimental
results are presented.

1 Introduction

The usual output of shape matching methods is a shape similarity value (see e.g. [1, 3, 4, 12, 17, 14,
6]). Some also give correspondences of the used shape signature, usually border points/parts (see e.g.
[12, 1, 17]), but finding all point correspondences based on the obtained information is in most of the
cases not straightforward.

This paper presents a concept for using structure to map a coordinate system to an articulated shape,
with the purpose of addressing the corresponding (or a close) point in the same or other instances of
the articulated shape. It is mainly motivated by observations like: ’one might change his shirt/t-shirt,
changing his aspect, or alter his pose a little, but the wristwatch is still located in the same place’.

If thinking of finding the correspondences of all points of the shape, the task is similar to the non-rigid
registration problem widely used in the medical image processing community [2]. Differences to our
approach include the usage of gray scale information, to compute the deformation vs. the usage of a
binary shape and, the registration of a whole image (in most cases in the medical community) vs. the
registration of a (in this paper) connected 2D shape.

The method in [3] uses a triangulation of the binary shape as amodel, and the produced triangulation
correspondence could probably also be used to find corresponding points. An a priory known model
would still be needed for the shape class.

In this paper, we propose to use the Euclidean eccentricity transform [5] as a basis for a 2D polar like
coordinate system. To support the mapping of the coordinates, a method for decomposing a shape into
connected parts is first introduced. Section 2 recalls the eccentricity transform and graph pyramids
and their properties relevant for this paper. Sections 3 and4 describe the proposed methods, with the
experiments given in Section 5. Section 6 concludes the paper.

1 Supported by the Austrian Science Fund under grants S9103-N13 and P18716-N13.



2 Recall

In this section basic definitions and properties of the eccentricity transform and graph pyramids are
given.

2.1. Recall ECC

The following definitions and properties follow [5]. Let theshapeS be a closed set inR2 and∂S be its
border2. A (geodesic) pathπ is the continuous mapping from the interval[0, 1] toS. LetΠ(p1,p2) be
the set of all paths between two pointsp1,p2 ∈ S within the setS. The geodesic distanced(p1,p2)
between two pointsp1,p2 ∈ S is defined as the lengthλ(π) of the shortest pathπ ∈ Π(p1,p2)
betweenp1 andp2:

d(p1,p2) = min{λ(π(p1,p2))|π ∈ Π} whereλ(π(t)) =

∫ 1

0

|π̇(t)|dt (1)

whereπ(t) is a parametrization of the path fromp1 = π(0) to p2 = π(1).

The eccentricity transform ofS can be defined as,∀p ∈ S

ECC(S,p) = max{d(p,q)|q ∈ S} (2)

i.e. to each pointp it assigns the length of the shortest geodesics to the pointsfarthest away from it.
In [11] it is shown that this transformation is quasi-invariant to articulated motion and robust against
salt and pepper noise (which creates holes in the shape).

This paper considers the class of 4-connected discrete shapesS defined by points on a square gridZ
2.

Paths need to be contained in the area ofR
2 defined by the union of the support squares for the pixels

of S. The distance between any two pixels whose connecting segment is contained inS is computed
using theℓ2-norm.

Computation:
In [5] efficient approximation and computation algorithms are presented. The shape bounded single
source distance transform,DT (S,p), computes the geodesic distance of all points of a shapeS to the
point p, and is the main tool used for computingECC(S). DT (S,p) can be efficiently computed
using discrete circles [5] or fast marching [16].

Terminology:
An eccentric pointof a shapeS is a pointe ∈ S that is farthest away inS from at least one other
pointp ∈ S i.e. ∃p ∈ S s.t.ECC(S,p) = d(p, e).

The centerC ⊆ S of a shapeS is the set of pointsc ∈ C with the smallest eccentricity i.e.c ∈
C ⇐⇒ ECC(S, c) = min{ECC(S,p), ∀p ∈ S}. If the shapeS is a simply connected shape, the
centerC is a single point. Otherwise it can be a disconnected set of arbitrary size (e.g. forS made
out of the points on a circle, all points are eccentric and they all make up the center).

The smallest eccentricity is called theradiusof the shape, and the highest one is called thediameter.

2This definition can be generalized to any dimension, continuous and discrete objects.
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Figure 1. Two shapes and their eccentricity transform.

Properties:
The variation of geodesic distances is bounded under articulated deformation to the width of the
’joints’ [12]. The eccentricity transform uses geodesic distances and is bounded in the same way.

The transform is very robust with respect to noise, and the positions of eccentric points and the center
are stable [11]. They change only if all supporting pixels for a certain eccentric point are removed or
if the diameter changes i.e. the shape is modified around the points with the highest eccentricity.

See Figure 1 for examples of shapes and their eccentricity transform.

2.2. Irregular Graph Pyramids

A graph pyramidP [7] is a stack of successively reduced graphsP = {G0, . . . , Gh}. Each level
Gk = (Vk, Ek), 1 ≤ k ≤ h, is obtained bycontractingandremovingedges in the levelGk−1 below.
Successive levels reduce the size of the data by a reduction factorλ > 1. Edges and vertices of the
graphsGk can be weighted.

Thereduction windowrelates a cell at the reduced level with a set of cells in the level directly below.
The contents of a lower resolution (in a higher level) cell are computed by means of areduction
function, the input of which are the descriptions of the cells in the reduction window. Higher level
descriptions should be related to the original input data inthe base of the pyramid. This is done by
thereceptive fieldof a given cellv ∈ Gk. The receptive field ofv aggregates all cells in the base level
of whichv is an ancestor.

Each level represents a partition of the base level into connected subgraphs i.e.connected subsets of
pixels, if the pyramid is build in the context of an image. The construction of an irregular pyramid
is iteratively local [13]. On the base level (level 0) of an irregular pyramid the cells represent single
pixels and the neighborhood of the cells is defined by the 4/6/8-connectivity of the pixels. A cell
on level k + 1 (parent) is a union of neighboring cells in levelk (children). This union is controlled
by so called contraction kernels (CK) [9], a spanning forestwhich relates two successive levels of a
pyramid. Every parent computes its values independently ofother cells on the same level. Thus local
independent (and parallel) processes propagate information up and down and laterally in the pyramid.

In [10], methods for optimally building irregular pyramidsare presented. Methods like MIS and



MIES ensure logarithmic height by choosing efficient contraction kernels i.e. contraction kernels
achieving high reduction factors.

3 Shape Decomposition based on ECC isoheight Lines

The level setof a differentiable functionf : R
n → R corresponding to a real valueh is the set of

points{p ∈ R
n : f(p) = h} [19]. If n = 2 the level set is a set of plane curves.

A height levelof the eccentricity transform ofS is the level set:

HL(e) = {q ∈ S|ECC(S,q) = e}, (3)

with e ∈ [min{ECC(S,p)}, max{ECC(S,p)}] an eccentricity value.HL(e) can be a single closed
curve or a set of disconnected open curves. The connected components ofHL(e) are calledisoheight
lines, HS ⊆ HL(e), HS connected.

Given a shapeS, a decomposition ofS into simply connected regionsis the set{R1, . . . , Rn} s.t.⋃
Rk = S, k = 1, . . . , n; Ri

⋂
Rj = ∅, ∀i, j ∈ {1, . . . , n}; andRi is a simply connected region.

HD(S) = {R1, . . . , Rn} is aa decomposition ofS based on the connectivity of the ECC isoheight
lines if HD is a decomposition into simply connected regions (as definedabove), and∀Ri and∀e ∈
[min{ECC(S,p)}, max{ECC(S,p)}]⇒ Ri

⋂
HL(e) is a connected region, andn, the number of

regions, isminimal. HD(S) exists for any connected shapeS.

Given a discrete shapeS and its eccentricity transformECC(S), HD(S) can be computed by:

1. in a graph theoretical framework: Algorithm 1 creates a graph pyramid s.t. the top levelGh

is an oriented region adjacency graph describing the topology of the decompositionHD(S).
Edges ofGh are oriented from regions with lower eccentricity to regions with higher eccentric-
ity. Each vertex contains the length of the longest isoheight segment in its receptive field.

2. sequential approach: ’follow’ the isoheight lines from the minimum eccentricityto the max-
imum eccentricity. Whenever an isoheight line gets disconnected, or merged, new regions are
started for the formed isoheight line part(s). (This approach is more intuitive, but needs build-
ing the adjacency graph for the decomposition ’over’ it. In addition, it is lacking the fast access
advantages when searching for the pixel with a known coordinate.).

Figure 3 shows example decompositions based on the connectivity of isoheight lines.

If the shapeS is simply connected, the obtained region adjacency graph (top level of the pyramid) is
a tree (Theorem 7.9 in [8]), with the root being the vertex whose receptive field contains the (unique)
center pixel. Also, the edges oriented toward each vertex and the ones oriented away are nicely
grouped together.

Note that such a decomposition can be done in the same way, forother transforms also (e.g. the single
source shape bounded distance transform). We use the eccentricity transform because its center is a
stable [11] and there is no need to give a starting point.



Algorithm 1 HD - Decomposition ofS based on the connectivity of ECC isoheight lines
Input: Discrete shapeS.

1: iECC = ⌊ECC(S)⌋ /*compute ECC, round = at least 8 connected isoheight lines*/
2: G0 ← oriented neighborhood graph ofiECC /*ensure proper connectivity of isoheight lines

while keepingG0 planar, orient from small to high eccentricity*/
3: k ← 0
4: for all v ∈ Vk do v.maxlength← 1, v.ecc← [ECC(v), ECC(v)], /* init max length of isoheight

lines and eccentricity interval for each vertex*/
5: repeat
6: A← {e = (vi, vj) ∈ Ek|vi.ecc = vj .ecc} /*merge isoheight segment parts*/
7: A ← A

⋃
{e = (vi, vj)|deg(vi),deg(vj) ≤ 2 and closed(vi)=closed(vj)} /*same region,

closed(v)=true⇐⇒ receptive field of v contains only closed isoheight lines*/
8: if |A| > 0 then
9: K ← contraction kernels as subset ofA /*use MIS or MIES [10] to optimally breakA into

valid contraction kernels*/
10: Gk+1 ← contract(Gk, K) /*contract edges inK and simplify*/
11: for all v ∈ Vk+1 do computev.maxlength, v.ecc from Gk /*use reduction window*/
12: k ← k + 1
13: end if
14: until |A| = 0
15: h← k

Output: Graph PyramidG0, . . . , Gh.

Motivated by the need to match partially occluded shapes, 2Dshape matching related research has
recently moved toward shape decomposition and part matching (e.g. [14]). A study of the decom-
position of shapes based on ECC isoheight lines in the context of shape matching is planned, but is
outside the scope of this paper.

4 The Non-rigid Coordinate System

A system ofcurvilinear coordinates[18] is a coordinate system composed of intersecting surfaces. If
the intersections are all at right angles, then the curvilinear coordinates are said to form anorthogonal
coordinate system(e.g. two-dimensional Cartesian coordinates and polar coordinates). If not, they
form askew coordinate system.

Based on the above, to define a planar system of curvilinear coordinates, two classes of curves need to
be defined - one for each coordinate. For any pointp ∈ S there exists exactly one curve of each class
passing through it. Also, any defined coordinates identify one curve of each class, and the intersection
of the two curves gives a unique point.

The proposed coordinate system is intuitively similar to the polar coordinate system, with theradial
coordinater being a linear mapping from the eccentricity value and theangular coordinateθ being
mapped to the isoheight lines of the eccentricity transformbased on the structure of the shape. The
first approach presented in this paper forms a skew coordinate system (see Section 4.1.). The second
approach has disconnected ’angular’ coordinate curves, thus it does not correspond to the definition
of curvilinear coordinates. Note thatθ is not really an angle, just denoted intuitively so.



Figure 2. Mapping of points from neighboring isoheight lines

r(p) = ECC(S,p)−min{ECC(S,p)} (4)

Figure 3 shows the isoheight lines of the eccentricity transform i.e. ofr(p).

4.1. Setting the angular coordinate

As mentioned above, the angular coordinateθ is not really an angle - it has been intuitively named like
this. This section focuses on simply connected shapes and their properties. For non simply connected
shapes, the result of the decomposition is much more complex(general graph with cycles, etc.) and
more complex algorithms are required.

Figure 2 shows three adjacent isoheight segments (A, B, G) of different regions.A has eccentricity
e, andB, G havee + k. If k → 0 thend→ 0, and maximum smoothness ofθ is achieved when each
point of B has the sameθ as his projection onA. This assumption puts the valuesθ for A andB

into relation. An approximation can be made by projecting the endpoints ofB ontoA, to find theirθ
values, and interpolating alongB (see Figure 2 for the notation):

θ′1 = θ1 +
(θ2 − θ1)

∫ p

s
dl∫ e

s
dl

(5)

The obtained relation can be used to controll the smoothnessof θ along region boundaries.

In the following, two algorithms for assigningθ are presented.

Center to Periphery

The root vertex ofG = Gh from Section 3, contains only closed isoheight lines and is the only such
vertex. The angle interval associated to vertices with closed isoheight lines is 360 degrees. The other
vertices have an associated ’input interval’ and 0 or more ’output intervals’ (edge orientation inG).
Smoothness along region boundaries is assumed as above, andintervals ofθ inside each region are
kept constant.

Algorithm 2 shows the algorithm for assigning theθ intervals to each vertex. These can then be
down projected in the pyramid. The Algorithm should be called with the top level of the pyramid in
Algorithm 1 as the parameterG, the root vertex of the treeG asv, and[0, 360] as[θ1, θ2].



Algorithm 2 CtoP - Assign real valued intervals forθ, for all vertices ofG
Input: GraphG(V, E) as produced by Algorithm 1, vertexv, interval[θ1, θ2].

1: v.θ1 ← θ1, v.θ2 ← θ2

2: A← isoheight segment ofv with highest eccentricity
3: /* for all edges oriented away fromv*/
4: for all e = (v, vo) ∈ E do
5: B ← isoheight segment ofvo with lowest eccentricity
6: [θ′1, θ

′

2]← projectB to A and compute from[θ1, θ2] as in Equation 5 and Figure 2
7: call CtoP (G, vo, [θ

′

1, θ
′

2])
8: end for

Output: GraphG, with θ intervals[v.θ1, v.θ2] computed for each region

This approach works only with real valuedθ, as two isoheight segments of the same region can contain
a different number of pixels and still get the same interval assigned.

For the origin ofθ, a path connecting the center (minimum eccentricity) with apoint having the
maximum eccentricity can be used. This path is called thezero path. Note that the zero path does
not necessarely have to be a part of the diamether, as the diamether does not always pass through
the center. The zero path is used in the inner most region (root vertex ofGh) to set the0 for the
theta of each isoheight line. Outside this region, the propagation of θ and linear interpolation, as
described above, are applied. The point with maximum eccentricity can be given, or automatically
chosen using any of the existing shape orientation methods,see for example [20], even though an
orientation method taking into consideration the desired deformation freedom would be optimal.

Periphery to Center

An ordering of the pixels in each isoheight line can be used toassign integer values ofθ to each pixel.

During the process of decomposing the shape into regions (see Section 3), each vertex is assigned the
highest number of pixels in an isoheight segment included inits receptive field.

Algorithm 3 starts from the leaves of the RAG of the decomposition ofS and propagates the allocated

Algorithm 3 PtoC - Assign integer intervals forθ for all vertices ofG
Input: GraphG(V, E) as produced by Algorithm 1.

1: for all v ∈ V, deg(v) = 1 do v.widthθ = v.maxwidth,
2: repeat
3: for all vo ∈ V , with vo.θ computed∀(v, vo) ∈ E do
4: v.widthθ = max{v.maxwidth,

∑
(v,vo)∈E vo.widthθ} /*compute maximum number of val-

ues required forθ for the subtree rooted atv*/
5: end for
6: until all v.widthθ are computed
7: having the interval widthv.θ2 − v.θ1 = v.widthθ for all v ∈ V , computev.θ1 (the interval

beginning) starting with the root, like in Algorithm 2

Output: GraphG, with θ intervals[v.θ1, v.θ2] computed for each region
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Figure 3. Decomposition, zero path, and isolines for the two shapes in Figure 1.

values to the center. A ’zero’ value has to still be decided for (see section above). The value ofθ for
each pixel can be computed by doing an additional parsing from the root to all vertices, and then,
down the pyramid to all pixels.

5 Experiments

An implementation for Algorithms 1, 2, and 3 has been made. Figure 3 shows for two poses of a hand
from the Kimia99 database [15] their segmentation into parts (Algorithm 1). It also shows the used
zero path, the isoheight lines of the radial coordinater, derived from the eccentricity transform, and
isoheight lines of the two mappings forθ computed with Algorithms 2 and 3.

In the case of Algorithm 2, the jagged isoheight lines ofθ are due to the smoothness/roughness of the
shape boundary i.e. curvature of the shape boundary at the endpoints of isoheight lines, and partly due
to the simple implementation (point projection by closest point search, integral along line estimation
by sum of line segment lengths, etc.).

In the case of Algorithm 3, the jagged isoheight lines ofθ are due to the smoothness/roughness of the
shape boundary. Around the region boundaries, it is due to the way integer values forθ are set (in this
case,θ is not smooth over the region boundaries). Correspondencesbetween connected subparts of
the shapes have to be found in order to find correspondences between the integerθ values.

In both cases improvements can be made by a more global decision of theθ interval allocated for each
region and each isoheight line.

Quantitative error measurements for the mapping from one pose to the other are planned.



6 Conclusion and Outlook

This paper presents a concept for mapping a polar-like coordinate system to a non-rigid binary shape.
Initial experimental results are presented. More global decisions can be used to obtain smoother
angular isoheight lines, and additional correspondences between part structures can help to solve
failed correspondences. Further quantitative evaluationand extension to non simply connected shapes
is planned.
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