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This paper presents a novel method for 2D and 3D shape matching that is insensitive to articulation. It
uses the eccentricity transform, which is based on the computation of geodesic distances. Geodesic dis-
tances computed over a 2D or 3D shape are articulation insensitive. The eccentricity transform considers
the length of the longest geodesics. Histograms of the eccentricity transform characterize the compact-
ness of a shape, in a way insensitive to rotation, scaling, and articulation. To characterize the structure
of a shape, a histogram of the connected components of the level-sets of the transform is used. These
two histograms make up a highly compact descriptor and the resulting method for shape matching is
straightforward. Experimental results on established 2D and 3D benchmarks show results similar to more
complex state of the art methods, especially when considering articulation. The connection between the
geometrical modification of a shape and the corresponding impact on its histogram representation is
explained. The influence of the number of bins in the two histograms and the respective importance of
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each histogram is studied in detail.
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1. Introduction

The recent increase in available 3D models and acquisition sys-
tems has created the need for efficient retrieval of stored models,
making 3D shape matching gain attention also outside the com-
puter vision community. Together with its 2D counterpart, 3D
shape matching is useful for identification and retrieval in classical
vision tasks, but can also be found in Computer Aided Design/Com-
puter Aided Manufacturing (CAD/CAM), virtual reality (VR), medi-
cine, molecular biology, security, and entertainment [1].

Shape matching requires to set up a signature that characterizes
the properties of interest for the recognition [2]. Depending on the
task, the invariance of this signature to local deformations such as
articulation is important for the identification of 2D and 3D shapes.
Matching can then be carried out over this (usually lower dimen-
sional) space of signatures.

1.1. Related work

Most shape descriptors are computed over a transformed
domain that amplifies the important features of the shape while
throwing away ambiguities such as translation, rotation or local
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deformations. For 2D shapes, the Fourier transform of the boundary
curve [3] is an example of such a transformed-domain descriptor
adapted to smooth shapes. Shape transformations computed with
geodesic distances [4,5] lead to signatures invariant to isometric
deformations such as bending or articulation. To capture salient
features of 2D shapes, local quantities such as curvature [6] or
shape contexts [7] can be computed. They can be extended to bend-
ing invariant signatures using geodesic distances [8,9]. Another pos-
sibility is to represent a shape as a collection of modestly
overlapping disk components, which contain both local geometric
and structural information [10]. More global features include the
Laplace spectra [11] and the skeleton [12]. Contour flexibility [13]
is a novel shape descriptor of planar contours, which obtains both
local and global features from a contour. It represents the deform-
able potential at each point along a contour. The rolling penetrate
descriptor [14] combines the advantages of contour-based and re-
gion-based methods, and provides a unified scheme to handle var-
ious shapes, geometrical transforms, noise, distortion and
occlusion. Some transformations involve the computation of a
function defined on the shape, for instance the solution to a linear
partial differential equation [15] or geometric quantities [16].
Among approaches matching 3D shapes, existing methods can
be divided into [1]: statistical descriptors, like for example geomet-
ric 3D moments employed by [17,18], 3D moment invariants [19],
and the shape distribution [16,20]. A novel shape representation
based on [19] is 3D gray level moment invariants [21], which are
independent of translation, scaling and rotation. Extension-based
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descriptors are calculated from features sampled along certain
directions from a position within the shape [22,23]. Volume-based
descriptors use the volumetric representation of a 3D shape to ex-
tract features (examples are Shape histograms [24], Model Voxeliza-
tion [25], and point set methods [26]). The 3D shape impact
descriptor [27] considers a 3D object as a distributed 3D mass
and it is indirectly computed from the resulting fields. The field
is described using both Newton’s and general relativity laws. In
[28], 3D shapes are sampled using a technique based on critical
points of the eigenfunctions of the Laplace-Beltrami operator. A
point-based statistical descriptor is used that incorporates an
approximation of the geodesic shape distribution and other geomet-
ric information describing the surface at that point. Matching is
carried out using Bipartite graph matching. Descriptors using the
surface geometry compute curvature measures and/or the distribu-
tion of surface normal vectors [29,30]. Image-based descriptors re-
duce the problem of 3D shape matching to an image similarity
problem by comparing 2D projections of the 3D shapes [31-33].
Reeb graphs have been used to match the topology of two shapes
[34,35]. Skeletons are intuitive shape descriptions and can be ob-
tained from a 3D shape by applying a thinning algorithm on the
voxelization of a solid object like in [36]. Descriptors using spin
images work with a set of 2D histograms of the shape geometry
and a search for point-to-point correspondences is done to match
3D objects [37]. In [38], 3D shapes are automatically decomposed
into parts using topological features of the Laplace-Beltrami Eigen-
functions. The parts of near isometric shapes are registered to each
other.

A generic class of approaches for 2D and 3D shape retrieval is to
define a metric between pairs of points on the shape, and compare
either directly these metric spaces or compare features extracted
from these spaces. An important goal of this metric space design
is to make the shape retrieval more or less invariant to bending
and articulations. The Gromov-Hausdorff framework directly com-
pares metric spaces [39], and can be used for shape retrieval in
conjunction with geodesic metric spaces [4] or diffusion spaces
that are more robust to topological noise [40,41]. Associated to
the diffusion metric, it is possible to define a metric using a dimen-
sionality reduction within a few eigenvectors of the Laplacian [42].
To speed-up retrieval applications, one can consider low dimen-
sional features extracted from these metric spaces. This can be
for instance the set of geodesic distances between critical points
of the Laplace eigenfunction [28], local distributions of geodesic
curves [8], statistical moments of a diffusion distance [15]. A pop-
ular class of approaches considers histograms, such as the distribu-
tion of Euclidean distances [16], of the mean geodesic distance [5]
or the maximum geodesic distance [43,44], or bags of features [45].
This article elaborates on this idea of building compact geodesic
descriptors using two different kinds of histograms to represent
faithfully the distribution of geodesic distances.

Considering the underlying transform on which our descriptor
is built, probably the most similar works in shape matching are
[5,34], where instead of the length of the geodesic to the point fur-
thest away (this work), the mean or the sum over all points are
considered. Distance based transforms are also used in
[15,12,46], where the length of random or shortest paths to an
(existing) boundary are computed. Describing a shape as a normal-
ized histogram of the values of a function at all points of the shape,
as in the case of the normalized ECC histogram in this paper, is con-
ceptually similar to the shape distributions in [16], where different
functions and histogram comparison methods are considered.

In [8] a model of articulated objects is presented. It is defined as a
union of (rigid) parts O; and joints (named ‘junctions’ by the
authors). An articulation is defined as a transformation that is rigid
when limited to any part O;, but can be non-rigid on the junctions.
An articulated instance of an object is an articulated object itself

(actually the same object) that can be articulated back to the origi-
nal one. The term articulated shape refers to the shape of an artic-
ulated object in a certain pose. In the context of shape matching
the concept of articulated shape means that shapes that belong to
articulations of the same object, belong to the same class. Assum-
ing that the size of the junctions is very small compared to the size
of the parts O;, it is shown that the variation of the geodesic dis-
tance! during articulation is small and that geodesic distances are
articulation insensitive.

Similar to the method in [8], our method does not explicitly in-
volve any part models. In [8] the part based articulation model is
used to support the analysis of the properties of the geodesic dis-
tance under articulation. We have briefly recalled it to aid the def-
inition of an articulated shape. Finding the correspondences
between all the parts of two shapes is an NP-complete problem
in graph theory (known also as the ‘matching’ of two graphs) and
requires the correct decomposition of the unknown object into
parts. A one-to-one correspondence (bijection) for all parts is not
always possible as some parts might be missing (e.g. due to seg-
mentation errors).

1.2. Contribution

The eccentricity transform of a shape associates to each of its
points the distance to the point furthest away. It is based on the
computation of geodesic distances and thus robust with respect
to articulation. It is robust against minor segmentation errors,
and salt and pepper like noise [47], and stable in the presence of
holes (i.e. it is defined in the same way for shapes with and without
holes, and does not require pre-selection of for e.g. a single closed
boundary to be processed).

In a common framework, we propose histograms built on the
eccentricity transform as a descriptor for 2D and 3D shape match-
ing. The descriptor consists of two histograms: the ECC histogram h
which is the normalized histogram of the eccentricity transform of
the shape, and the ECC structure histogram s which is the histogram
of the number of connected components of the level-sets of the
eccentricity transform. The descriptor is invariant to changes in
orientation, scale, and articulation. It requires only a simple repre-
sentation and can be efficiently matched.We present an in-depth
study of the properties of the approach (relation between shape
and descriptor, parameters), supported by experimental results,
and an analysis of the results and possibilities for improvement.
The descriptor is computed on four different domains using geode-
sic distances: inside 2D shapes, inside the volume, inside the bor-
der voxels, or on the surface meshes of 3D shapes, and compared to
state of the art methods. These numerical results support that the
proposed approach performs similarly and in some case better
than the state of the art on databases of articulated 2D and 3D
shapes. Initial results using only the ECC histogram h have been
presented for 2D in [43], and for 3D (volumetric representation
only) in [44].

To the best of our knowledge, this is the first approach applying
the eccentricity transform to the problem of shape matching.

1.3. Overview of the paper

The paper is organized as follows: Section 2 recalls the eccen-
tricity transform and discusses used variants and computation.
Section 3 explains the proposed matching method and discusses
pros and cons of the descriptor (Section 3.4). In Section 4 experi-
ments, and the effect of the parameters are presented, followed
by future work (Section 5) and conclusion (Section 6). The

! Called ‘inner-distance’ in [8].
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Appendix recalls the algorithm used to compute the eccentricity
transform.

2. Eccentricity transform

The following definitions and properties follow [47,48], and are
extended to n-dimensional domains.

Let the shape S be a closed set in R". A path 7 in S is the con-
tinuous mapping from the interval [0,1] to S. Let TI(p;,p2) be the
set of all paths between two points p,,p, € S, within the set S.

The geodesic distance d(p;,p-) between two points p,,p, € S is
defined as the length A(7) of the shortest path & € I1(p1,p>)

d(ps, p,) = min{A(7)|7 € TI(p;, P2)}, (1)

where the length A(7) is

1
Am(t)) = / ()] dt,

n(t) is a parametrization of the path from p; = 7(0) to p, = n(1), 7(t)
is the derivative of the curve with respect to ¢, and || || denotes the
Ly-norm.

Any path v € TI(p1,p2), satisfying A(v) = d(p1,p2) is called a geo-
desic (path).

The eccentricity transform of S is defined as, Vp € S

ECC(S,p) = max{d(p,q)|q € S}. (2)

To each point p it assigns the length of the geodesic path(s) to the
point(s) farthest away from it.

The definition above accommodates n-dimensional objects
embedded in R" as well as n-dimensional objects embedded in
higher dimensional spaces (e.g. the 2D manifold given by the sur-
face of a closed 3D object). The distance between any two points
whose connecting segment is contained in S, is computed using
the L,-norm, i.e. distances are not computed on a graph, but are
a discretization of the continuous geodesic distance. For a defini-
tion of the ECC of a graph see [47].

The ECC is quasi-invariant to articulated motion and robust
against salt and pepper noise, which creates small (typically 1 pix-
el) holes in the shape [47]. An analysis of the variation of geodesic
distance under articulation can be found in [8].

An eccentric point is a point q that reaches a maximum in Eq. (2),
and for most shapes, all eccentric points lie on the border of S [47].
An eccentric path of a point p is a geodesic to one of its eccentric
points. The (geodesic) center is the set of points that have the small-
est eccentricity (global minimum). The diameter of a shape S is the
maximum ECC, which is the length of the longest geodesic path in
S.

In this paper, the classes of 2n-connected discrete shapes S de-
fined by points on a square grid 7", n € {2,3}, as well as connected
triangular meshes representing the surface of the 6-connected 3D
shapes, are considered. Table 1 shows the types of manifolds used
in this article, for which ECC is computed. For ECCobj2D, ECCobj,
and ECCborder, paths need to be contained in the part of R" defined
by the union of the support squares/cubes for the pixels/voxels of
S. For ECCmesh, paths need to be contained in the 2D manifold

defined by the union of the triangles of the mesh (including the
interior of the triangles). The used (approximated) metric is in all
cases the Euclidean based geodesic distance d., i.e. the distance be-
tween the endpoints of any line segment included in the shape is
computed using the Euclidean distance. When the resolution of
the shapes increases ECCborder and ECCmesh converge to the
same value.

2.1. Similarity to other transforms

The eccentricity transform is part of a greater class of distance-
based transforms along with:
o the distance transform (DT) [50] defined as:
DT(S,p) = min{d(p,q)lq € Y C S},

where the set ) is called marker set and is usually taken as Y = 4S;
o the global geodesic function (GGF) [34] defined as:

Gm@mz/

Jqes

d(p,q)dq.

Shortest geodesics (DT) have the advantage that they locally
characterize the shape and are invariant to deformations in all
other parts of the shape. On the other side, the shorter a path,
the higher the perturbation that is created by a hole (obstacle).

ECC uses longest geodesics and has thus the highest stability
with respect to small holes. With respect to deformations, ECC is
invariant to non-isometric deformations that do not affect the
parts where eccentric points lie, i.e. as long as a certain part does
not contain any eccentric points it can even be removed, without
changing the values for the remaining points of the shape[51]
(e.g. for a shape like a “T” with the vertical line connected to the
center of an at least twice longer horizontal line, removing the ver-
tical line will have no effect on the eccentricity values on the hor-
izontal line).

Fig. 1 shows the changes in the mean and maximum values of
the three transforms when the shape of a hand from the Kimia
99 database [52] is changed. The DT is more local and thus insen-
sitive to the missing fingers, but comparable in the case of bound-
ary noise, and the highest variation with respect to missing points
inside. Due to the averaging that the GGF does, it has a maximum
variation which is in all cases smaller than that of the ECC, but al-
most all pixels change even for a minor change in the shape. The
variation of the ECC is larger than the one of the GGF, but with a
considerable amount of pixels keeping the same value before and
after a finger is removed.

Both the DT and the GGF have previously been used as a basis
for shape matching methods. The DT is closely related to the skel-
eton/medial axis/medial surface [46,53] of a 2D/3D shape, on
which shock graphs [12] are built. Matching of shapes can be car-
ried out by matching their shock graphs or medial surfaces. A con-
tinuous definition of the GGF has been used in [34] to match the
topology of 3D shapes based on the similarity of their Reeb graphs.
In [5] a discrete version of the squared GGF is used to build so
called “geodesic shape distributions”. Kernel density estimation

Table 1
Types of manifolds used for matching.
Name Input Computing on S (dg is used)
ECCobj2D 2D 2D: whole shape 4-connected binary 2D shape
ECCobj 3D 3D: whole shape 6-connected 3D voxel shape
ECCborder 3D 3D: border voxels 6 connected voxel surface in 3D, made out of voxels of
the shape that are 26 connected to a background voxel
ECCmesh 3D 2D: triangular mesh Connected triangular mesh of the surface of the 3D shape
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Vidoos iy

measure transf. 9 3 4 Zhape 6 7 8 9
DT 0.00 | 0.00 | 0.01 | 0.01 | 0.03 | 0.03 | 0.19 | 0.07
mean pixel diff. GGF 0.02 | 0.05 | 0.12 | 0.20 | 0.35 | 0.02 | 0.02 | 0.03
ECC 0.00 | 0.01 | 0.09 | 0.26 | 0.48 | 0.02 | 0.02 | 0.03
DT 0.20 | 0.20 | 0.21 | 0.24 | 0.39 | 0.12 | 0.99 | 1.00
max pixel diff. GGF 0.07 | 0.11 | 0.23 | 0.31 | 0.54 | 0.10 | 0.07 | 0.09
ECC 0.06 | 0.13 | 0.32 | 0.67 | 0.76 | 0.11 | 0.06 | 0.17
DT 98% | 95% | 90% | 85% | 68% | 46% | 30% | 80%
% same to 1 GGF 1% | 0% | 0% | 0% | 0% | 0% 1% 1%
ECC 88% | 76% | 41% | 22% 8% | 11% 0% 1%
DT 98% | 97% | 95% | 96% | 86%
% same to prev. | GGF 1% | 0% | 0% | 0% | 0%
ECC 88% | 76% | 43% | 34% | 27%

Fig. 1. Top: original hand followed by eight modifications: finger removal (2-6), boundary noise (7) (similar to [49]), random missing pixels (8), and adding a large hole (9).
Bottom: variation of the values of DT, GGF, and ECC due to the eight modifications. The mean and max values give the mean/max difference in the values of pixels in the
original and altered shapes, normalized by the difference between the highest and lowest value on the original shape. The “% same” values give for cases (2-6) the ratio of
pixels in the altered shape with values unchanged as compared to the whole hand and to the values in the previous shape (1-5), respectively.

is used to get a smooth function from the computed samples, and
the Jensen-Shannon divergence is used to match two distributions.
Our normalized eccentricity histograms are in spirit similar to the
geodesic shape distributions. Differences lie in the used function
(ECC vs squared GGF) and in the normalization and matching of
histograms (L,-norm). In addition we use a second histogram to
characterize the structure of a shape.

2.2. Computation

Furthest point computation has been approached in [54], where
an algorithm is presented which finds for each vertex of a simple
polygon the vertex that is furthest away (eccentric). Later,
[55,56] proposed an efficient algorithm for simply connected
shapes on the hexagonal and dodecagonal grid. The concept of
the eccentricity of a vertex can be found in classical graph theory
books [57,58], and the concept of the eccentricity transform? in re-
cent discrete geometry [59] and mathematical morphology books
[50]. Computation is not discussed and no references to holes in a
shape are made.

The straightforward approach to compute ECC(S) is: for each
point of S, compute the distance to all other points and take the
maximum. A faster computation and efficient approximation algo-
rithms are presented in [48]. For this paper the fastest one, algo-
rithm ECCO6, is used.

ECCO6 relies on the computation of the shape bounded single
source distance transform®> D°(p) (Fig. 2b), which is computed for
estimated eccentric point candidates in an iterative manner (see
the Appendix for more details). D°(p) associates to each point
q € S the geodesic distance to p. D° can be computed using Fast
Marching [60] (FM), without the need to explicitly build a neighbor-
hood graph. The runtime complexity of FM is O(Nlog(N)) steps, for
N = |S]| grid points, where | | denotes set cardinality. The complexity
for computing ECC(S) using ECCO6 and Fast Marching is
O(KNlog(N)), where 2 < K < |0S|, K € N depends on the shape and
is the number of eccentric point candidates that are evaluated.

Fig. 2 shows a comparison of the geodesic and Euclidean dis-
tances. Figs. 3 and 4 show the eccentricity transform of a 2D,

2 Known in the mathematical morphology community as the propagation function.
3 Also called geodesic distance function with marker set p.
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Fig. 2. Euclidean (a) and geodesic (b) distance function, for starting point po. Gray
values are distances modulo a constant.
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Fig. 3. ECC of example binary shape (point with smallest ECC marked).

respectively 3D, shape. For the 3D shape, the eccentricity trans-
form is presented for the whole shape (ECCobj), for the border vox-
els (ECCborder), and the surface mesh (ECCmesh). Fig. 5 shows the
difference between ECCobj and ECCborder, both using distances
computed on a voxel description of S.

3. Eccentricity histogram matching

To match two shapes we first create a shape descriptor for each
of them and then match these descriptors to obtain a similarity
measure. The proposed shape descriptor is made out of two com-
ponents: the first one characterizes the compactness (geometry)
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3D model:

ECCobj

ECC

volume rendering

ECCborder

W WF W

volume rendering

ECCmesh

surface rendering

Fig. 4. Top: 3D model of an ant. Bottom: ECCobj, ECCborder, ECCmesh (darker = higher ECC value). Notice that in all three cases, the transform has its minimum in the body of

the ant (center) and the values get larger as going to the extremities.

ECCobj ECCborder
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Fig. 5. Comparison between the two computations of ECC on voxels: ECCobj and
ECCborder. The figure shows two vertical cuts through the ant in Fig. 4.

of the shape (Section 3.1) and the second one its structure
(Section 3.2).

The descriptor is highly compact, which is an advantage for real
time retrieving and low memory devices, it is invariant under
many natural deformations, it can handle shapes without as well
as with holes? (Fig. 8g and h), and gives good results, comparable
to the presented state of the art methods (experiments follow in
Section 4).

3.1. ECC histogram

The first component of the shape descriptor is the histogram h
of the eccentricity transform ECC of the shape S. We use kj, bins for
the histogram. The eccentricity histogram is the vector h € R* de-
fined by: Vi=1,...,ky

. 1 i-1 ECCS,p)—m i

h(S,i) fﬁ#{l? € SlT S M-m <k—h}7

where |S] is the number of pixels/voxels/vertices in S, and m and M
are the smallest, respectively, largest eccentricity values over S. A
discussion about choosing the number of bins kj, follows in Sec-
tion 4.4. The obtained histogram only contains bins for the values
which exist in the eccentricity transform, i.e. from minimum to
maximum eccentricity, and the sum over all bins is 1. Figs. 6 and
7 show examples of eccentricity histograms for 2D and 3D shapes
with different geometric features. Note that the histogram h is
invariant under Euclidean transformations, scaling and isometric
bending of S (Fig. 8 shows examples).

4 As opposed to methods selecting a single boundary, usually the outer/longest one,
which cannot differentiate for example a disk from a 2D torus.

Yo, -

N
¥

4

Fig. 6. Top: ECCobj2D for some 2D shapes. Middle and bottom: corresponding
histograms h respectively s.

W

v

Fig. 7. Top: example 3D shapes. Middle and bottom: corresponding ECCobj
histograms h respectively s.

3.2. ECC structure histogram

The second component of our shape descriptor is a histogram of
the number of connected components of the discrete level-sets of
the eccentricity transform. A discrete level-set of ECC(S) is the
set of points of the shape having their eccentricity value in a cer-
tain domain (a,b]. More formally:

L(a,b) = {p € Sla < ECC(S,p) < b}.

The eccentricity structure histogram is the vector s € R* defined
by: Vi=1,...,ks
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S(S,1) = #c{L(eir,e)},

where #. denotes the number of connected components. We use 8
connectivity in 2D, 26 connectivity for the 3D voxel representations,
and vertex adjacency for the triangle meshes. For a function which
is based on Euclidean distances, to obtain at least 8 respectively 26
connected isolines/isosurfaces, the thresholds e; have to satisfy that
e;—ej_1 = g [61]. Where g=1 is the distance between two closest
grid points. For the case of the triangle meshes, we use g = /2,
which is the length of the longest edge in our meshes. Ife; —e; 1 <g
then the pixels covering the points of the same (connected) contin-
uous isoline will not be connected in the discrete level-sets. The val-
ues for e; are computed as:

e,»:m+(M—m)i7
ks

where as before m, M are the minimum respectively maximum
eccentricity. We take ep=m — €, € >0 to ensure that the geodesic
center is included in the first bin. If (M — m)/g < ks, which means
that e; — e;_; < g we compute s for k, = | (M — m)/g| and then resize
the obtained histogram to the required ks bins using bilinear
interpolation.

3.3. Comparison of histograms

To match the descriptors of two shapes S and S, it is necessary
to compute the distance between the corresponding histograms.
Let h, s and h,§ be the two histograms of S respectively S com-
puted as in given Sections 3.1 and 3.2. The distance between two
histograms h, h € R* is measured using the L,-norm:

3(h,h) L ||h - hy. (3)

One could use more elaborate metrics such as the y? statistic [7] or
those defined in [16]. In numerical experiments we found that all
these metrics give results similar to J, which is the easiest and fast-
est to compute (discussion follows in Section 5).

The dissimilarity A(S, S) of two shapes S and S is computed as a
weighted distance of their eccentricity histograms h, h and struc-
ture histograms s, s:

(s, )

AGS,S)Ew-s(hh) +(1-w) “min([|s[], [I5]))’

(4)
where w is a mixing parameter.

The histograms h € R lie in the k, — 1 dimensional simplex
with vertices h, = (hq,... hy,), hj=1 for i =r and 0 otherwise. Thus
we have 0 < §(h, h) < v2 for any h, h € R*. The values of the bins
s(S,i) > 1 and can be arbitrarily large depending on the number of
“parts” of the object. The expression min(|s|,||s||) > v/k;, and
6(s,S) = 0. For similar shapes (same or similar looking classes)
both terms in Eq. (4) have values around O (in the same range),
and extend the descriptive power of the other one. Matching very
different shapes (e.g are horses more similar to scissors then to
cars?) is not considered.

In the remainder of the paper, we will use eccentricity histogram
to denote h, structure histogram to denote s, and eccentricity based
histograms to refer to both.

3.4. Characteristics of the ECC based histograms: from S to h, s and
back

The eccentricity histogram h characterizes the compactness of
the shape (e.g. a flat histogram characterizes a very elongated
shape, a histogram with monotonically increasing values charac-
terizes a rather compact shape). The structure histogram s charac-
terizes the structure of the shape by representing the evolution of
the number of parts of the shape when going from the geodesic

center towards larger eccentricity values (e.g. for a spider the num-
ber will range from 1 to 8, and for an ant from 1 and 6). Intuitively,
one could say that h looks at the widths of parts and s at their
number. Fig. 8 shows the ECC based histograms for basic shapes,
with and without holes and articulation.

Effects of basic changes of the shape to the eccentricity histogram®
h. The histogram of the ECC of a simple open curve® S, with length
I =d(eq,e,) (Fig. 9a) is flat with a possibly smaller value in the first
bin. The continuous formula is:

h(So.i) = {i if 1 = min(ECC(S.))
£ if i > min(ECC(S,))
where min(ECC(S,)) = d(eq,¢) = d(e, ).

Consider S, obtained by adding a simple open curve of length
d(q,,q3) <1/2 connected at the point q; to S, (Fig. 9b). Let
q; €Sy s.t. d(q;.q3) = d(q,,q3) and d(qs,e;) = d(q3,e;). For the
points with eccentricity between d(e,,q;) and d(e;,qs3), the eccen-
tricity histogram of S, has increased by 50% (there is one addi-
tional point having each of the values in the domain). A shape
without cycles (e.g. Sq, Sp, Sc) has only one center point (ECC min-
imum) and the histogram value for the center is always one. All
other histogram values can be changed by adding branches as
above.

The histogram value for the center can be changed by introduc-
ing cycles. Consider S; obtained by adding a simple open curve
q.c'q; of length i(qq,q) to S, (Fig. 9d). The length d(e;,e,) is kept
the same and q;q; has the same length if going over ¢ or ¢'. Also
d(e,,c)=d(e,,c’)=d(e;,e;)/2. Two center points exist (¢ and c’),
and for the eccentricity values [d(c,e;),d(q,,e1)) there is one addi-
tional point.

For a given histogram, the steps used to create S, and Sy, can be
iterated to grow the continuous shape (for geodesics computed
along thin lines). For discrete shapes, the number of points is fi-
nite,” which limits the number of curves that can be put close to
each other and do not intersect. If the maximum shape size (number
of pixels/voxels) and the number of bins kj, is fixed, not all (real val-
ued) histograms can result as ECC histograms (it can also be seen as a
discretization problem: the lower the resolution/maximum size, the
higher the dependence between neighboring histogram bins).

Equivalence classes of ECC based histograms. A histogram has a
smaller dimension (in our case 1D) than the shape, and a whole
class of shapes is projected into the same histogram. Two shapes
S and S with the same eccentricity based histograms satisfy
A(S,S) =0, and are thus considered to be the same according to
our matching algorithm. Consider S, in Fig. 9c obtained from &,,
similar to S, but with two curves s.t. d(qq,q5)=d(q,q2),
d(q2,q95) = d(q2,93), and d(q;,qs) is equal in both S, and S.. Hence,
the two shapes S, and S, have the same eccentricity based histo-
grams h, s and cannot be differentiated using only the histograms.

When the following operations are applied to a shape they cre-
ate a shape in the same equivalence class, i.e. having the same or
similar histograms:

e scaling;

e rotation;

e isometric deformation that does not change the structure of the
shape (e.g. moving a finger, without touching another finger);

5 For the example class of shapes composed of 1D curves, h(S) and s(S) are equal (see
Fig. 9).

6 The term curve is used to denote a one dimensional and continuous manifold, and
includes both straight and non-straight lines.

7 Depends on the discretization and maximum shape size.
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e moving certain points: simultaneous thinning and thickening of
two parts with the same eccentricity values (e.g. making one
finger thinner while making another one thicker);

moving certain parts: taking a part and attaching it in another
point with the same eccentricity while keeping the eccentricity
values the same (e.g. moving a finger from the left hand to the
right hand, obtaining a human with 4 respectively 6 fingers on
his hands, also S, and S, in Fig. 9);

certain changes in topology without disconnecting the shape,
when the contact points in the shape without the hole® have
the same eccentricity value and no eccentric (longest) paths go
over the created/destroyed connection (e.g. if considering the
whole human as a shape, touching the tip of a finger with the
neighboring finger, with the fingers as straight as possible). This
change affects at least one bin of s, but could be only minimally
(one point contact as opposed to keeping two fingers touched
along the whole length). Disconnected shapes cannot be handled
by our descriptor.

8 Points that will be connected to make the hole appear.

One can say that the eccentricity based histograms are influ-
enced by the geometry and the structure of shapes, but they do
not uniquely characterize it. This can be both a positive or a nega-
tive aspect, as one would like to filter out for example noise, but
probably not “attaching a second head”.

4. Matching experiments in 2D and 3D

This section shows results on popular benchmarks and compar-
ison with state of the art methods. When comparing the results,
keep in mind that the proposed method is simple and matching
the computed descriptors is fast. An approximation of the ECC
can be computed for many shapes with as few as 50 distance prop-
agations (e.g. the average number for the ECCmesh on the McGill
database is 54), and determining é between two computed descrip-
tors (L,-norm) has practically no CPU time consumption.® Two

9 For example, on an Intel Xeon with 3 GHz, computing ECCmesh for the 255
shapes of the McGill database (see the Appendix) takes around 2.5 h in total i.e. an
average of 35 seconds per shape (code is partly matlab, partly c++). Computing A for
all pairs of descriptors (255 254 matches) takes less than 1 s in total.
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fixed-length vectors as descriptors can be a very efficient indexing
method. The approaches compared with are more complicated and
include the decomposition of shapes, aligning or finding correspon-
dences between features, etc.

4.1. 2D shape matching

For the experiments with 2D shapes we have used four shape
databases: Kimia 25 [62] (Fig. 13), Kimia 99 [52] (Fig. 10), MPEG7
CE-Shape-1 [63] (Fig. 11), and the articulated shape database of [8]
(Ling articulated) (Fig. 12). As a baseline we have added the results
obtained by using the shape index, which is computed as the length
of the boundary of the shape over its area.

A shape database is composed of q shapes {S;}{, and each
shape S; has a label L(i) € {1,...,Inax}. Each label value 1 <1 < lax
defines a class of shapes O(l) = {Si|L(i) = I}. The first columns of
the blocks in Fig. 13 show the shapes from the Kimia 25 database,
ordered by classes (such as fish, planes, rabbits, etc.). Any shape
matching algorithm o assigns to each shape S; a vector of best
matches @; where ®;(1) is the shape the most similar to S,
@{(2) is the second hit, and so on. Depending on the benchmark,
@; contains all shapes including the query shape S; (MPEG7), or
leaves S; out, i.e. the shape S; is not matched to itself and &; has
q — 1 elements (all other benchmarks presented).

For the Kimia 25 database I,,x = 6 and g = 25, and for the Kimia
99 database, Ihax =9 and g = 99. The efficiency of various matching
algorithms on Kimia databases is measured by the number of cor-
rect matches for each ranking position r:

Ralah Bl R Y 9.0 Ras
I SN EEREEEERER]
%W N NN R R % RN,
YWV VIEY Yy >

RRPKREXXRR AR
¢+ G0t 00900

I Z S S E SRR L ST,
“Shasnsaaw)as
S Tl T Y W

Fig. 10. The 99 shapes from the Kimia 99 shape database. Shapes in the same row
belong to the same class.

-

q
Matchr(@) dif' Z ]L((D,-(r)):L(i) < q. (5)
i=1

Tables 2 and 3 give the value of Match,, for various shape matching
algorithms. We also show results when using only one of the two
histograms: h or s.
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Fig. 12. The 40 shapes from the Ling articulated database. Shapes in the same
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In the case of the MPEG7 database, which contains [y.x =70
classes with 20 images each (q =70 x 20 = 1400), the efficiency of
matching algorithms is computed using the standard Bullseye test:

1 40

1 q
Bullseye(®) < 20q > 2 luamto = 20q > _Match, (). (6)
r=1

r=1 i=1

This test counts the number of correct hits (same class) in the first
40 hits. For each image there can be at most 20 correct hits and a
maximum of 20 x 1400 hits can be obtained during the benchmark
and thus Bullseye(®) < 1. Table 4 gives the value of Bullseye for
various shape matching algorithms.

The Ling articulated shape database was created specifically to
show results in the presence of articulation. The database contains
q =40 shapes of articulated objects from I,x = 8 classes. The effi-
ciency of an algorithm is measured by the number of correct
matches Match,(®) for each ranking position r (Eq. (5)). Table 5
gives the value of Match, for various shape matching algorithms.

Case study - Kimia 25. Fig. 13 shows the retrieval results for Ki-
mia 25 when using only h, only s or both terms. The first columns
show the 25 shapes S; (1-4 fish, 5-8 greebles, 9-13 hands, 14-17
airplanes, 18-21 rabbits, 22-25 tools). The following columns r
show @(r), the rank-r shape associated to S;.

The Kimia 25 database has shapes from six classes: five classes
with four images each, and one (hands) with five images (1 simu-
lating a segmentation error). If considering only h (Fig. 13, top) the
class with the best results are rabbits, followed by tools, hands,

fishes, airplanes and greebles. Two questions immediately rise
when looking at these results:

—_

. Why are the greebles considered to be more similar to the
hands than to other greebles?

. Why does a rabbit appear in so many cases when the matching
has failed?

N

For the first question, consider the ECC histograms h of the
greebles and the not occluded hands (Fig. 14). The histograms
are similar even though the shapes are of different classes, e.g.
the histogram of the first greeble (Fig. 14, top-left) looks more sim-
ilar to the hands, than the second and third greeble. This is due to
the abstraction of a 2D shape to a 1D histogram which, in the case
of h, disregards certain structural properties of distances/paths
(studied in detail in Section 3.4). The structure histogram s can bet-
ter discriminate between these shapes, and adding it to the
descriptor compensates for this effect.

For the second question, consider the shapes in Fig. 15 (a rabbit
- S19, and two tools - Sys and S;;). When matching Sss, the rabbit
has a smaller distance of h than S,,, even though one might say
that the histograms h of S,5 and Sy, reveal more similar distance
characteristics than the histogram h of Si9 (see Fig. 15). Both Sy
and S»; have more long distances than medium, and short, while
S19 has a peak in the medium. This effect is due to typical histogram
matching methods, which are inherently low level and fail to capture
the high level context of the task. Note that similar examples could
be constructed also using s. Discussion follows in Section 5.

Global geometrical and structural statistics of the shapes are
well captured by our low dimensional descriptors. However, more
detailed structural properties like part decomposition, ordering
and adjacency of parts, and the geometrical features corresponding
to these parts are not considered by our signature extraction.

4.2. 3D articulated shape matching

A widely used 3D object retrieval database is the Princeton
Shape Benchmark [66]. It contains 1,814 3D object models orga-
nized by class and is effective for comparing the performance of
a variety of methods. However, the majority of the models corre-
sponds to rigid, man-made objects. Only a limited number of
shapes in the database have articulated parts. As one of the main
advantages of using the eccentricity transform is its robustness
with respect to articulation, we have turned to the McGill Shape
Benchmark [53]. It contains several models from the Princeton
repository and others added by the authors. The main advantage
of this benchmark is that from its 455 3D shapes, 255 have signif-
icant part articulation. We show the results on the g = 255 shapes
grouped into the [, =10 classes of articulated shapes (Fig. 16).
Shapes are not matched to themselves and so &; contains q — 1
shapes.

We compare results with:

o medial surfaces (MS) [46];
e spherical harmonic descriptor (HS) [67];
e shape distributions (SD) [16].

MS computes the medial surfaces of a voxelized shape and
decomposes them in parts. The similarity of two shapes is obtained
from the matching of the directed acyclic graphs describing their
parts. HS transforms rotation dependent spherical shape descrip-
tors into rotation invariant ones. It describes spherical functions
on the shape in terms of the amount of energy they contain at dif-
ferent frequencies. The L,-norm is used to match two descriptors.
SD computes the similarity of two shapes by the comparison of
two probability distributions sampled from a shape function mea-
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Fig. 13. Retrieval results on Kimia 25 using top: h, middle: s, bottom: both h and s. Each row shows the query shape, followed by the first three matches.

Table 2
The value of Match{®) for various algorithms on the Kimia 25 database (q =25
shapes from [, = 6 classes).

Algorithm o r=1 2 3

Shape index 14 10 10
ECCobj2D, s only 18 19 17
ECCobj2D, h only 20 16 14
ECCobj2D 22 20 17
Sharvit et al. [62] 23 21 20
Gdalyahu et al. [64] 25 21 19
Shape context [7] 25 24 22
ID-shape context [8] 25 24 25

Table 3

The value of Match(®) for various algorithms on the Kimia 99 database (q =99
shapes from [,x = 9 classes).

Algorithm o r=1 2 3 4 5 6 7 8 9 10
Shape index 43 51 58 52 52 49 51 47 45 44
ECCobj2D, s only 84 68 65 67 56 57 51 50 41 31
ECCobj2D, h only 87 74 66 64 49 52 45 38 33 33
ECCobj2D 94 85 81 73 81 73 64 59 56 35
Shape context [7] 97 91 88 8 84 77 75 66 56 37
Gen. model [65] 99 97 99 98 96 96 94 83 75 48
Shock edit [52] 99 99 99 98 98 97 96 95 93 82

ID-shape context [8] 99 99 99 98 98 97 97 98 94 79

suring geometric properties of the 3D model. Best results are ob-
tained with a function called D2 which represents the distribution
of Euclidean distances between pairs of randomly selected points
on the surface of a 3D model.

Three ECC based descriptors are evaluated (Fig. 4):

1. ECCobj - eccentricity of the whole shape (all object voxels);

Table 4
The value of Bullseye(®) (Eq. (6)) for various algorithms on the MPEG7 database
(g = 1400 shapes from I,.x = 70 classes).

Algorithm o Bullseye(®) (%)
Random 2.86
Shape index 25.46
ECCobj2D 54.56
Shape context [7] 64.59
ID-shape context [8] 68.83

Table 5

The value of Match,(®) for various algorithms on the Ling articulated shape database
(q = 40 shapes from I, = 8 classes). See [8] for a description of these algorithms.

Algorithm o r=1 2 3 4
Shape context+DP [8] 20 10 11 5
Shape index 24 17 17 18
ECCobj2D 40 33 29 22
ID-shape context+DP [8] 40 34 35 27

2. ECCborder - eccentricity of the border/boundary voxels;
3. ECCmesh - eccentricity of the triangular mesh of the surface of
the shape.

ECCborder is the eccentricity transform ECC(9sS), where 98 is
the six connected voxel boundary of S. ECCmesh is computed on
the 2D manifold defined on the boundary of the 3D shapes. ECC-
border uses distance computation in the 3D volume, ECCmesh in
the 2D surface. If the resolution of the shapes is increased, ECCbor-
der and ECCmesh converge to the same value. For a similar resolu-
tion, ECCmesh needs less memory, as cells not part of the boundary
do not have to be stored (e.g. interior of the shape), and it can be
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more accurate when approximating the eccentricity of the surface,
as the computation is done on the surface itself, not on an approx-
imating (thicker) volume.

The size of the voxel models used for ECCobj and ECCborder is
below 128 x 128 x 128 (the size of the binary 3D images is
128 x 128 x 128).

Experimental results. In the following, results of the three vari-
ants on shapes of the 10 articulated classes of the McGill Shape
Benchmark are given. The notation from Section 4.1 is used. The
following measures are considered.

t

1
Recall(<15,-7 t) = W Z 1L(l1§,-(r)):L(f)

r=1

The recall computes the ratio of models in the database in the same
category as the query, with indexing rank <t, to the total number of

Y W
%‘(\a = 30 ants (ant)

S
25 spectacles (spe)
L 29 humans (hum)

20 pliers (pli)

31 spiders (spi)

Fig. 14. Histograms for greebles and not occluded hands, top: h, bottom: s.

shapes in the same category (never including the query itself). The
average results and standard deviation for several rank thresholds
(t=10,20,...), over all classes, are given in Fig. 17.

1 =
AvgRank(®;) = EO)E Z T Ty r)=ti)
r=1

For all queries in a class, the average of the ranks of all other shapes
in that class are computed. Fig. 18 shows the average and the stan-
dard deviation of the ranks for each class (lower average is better).

Table 6 shows the average score for all pairs of classes. Each
shape in the database is matched against all other shapes and each
cell shows the average of the score (Eq. (4)) between all combina-
tions of shapes of the two classes defined by the row and column.

t

.. 1
Precision(®;, t) = n Z 1,1

r=1

Precision refers to the ratio of the relevant shapes retrieved, to the
total number retrieved. Fig. 19 shows the precision-recall curves for
each of the 10 classes.

Precision-recall curves are produced by varying the parameter t.
Better results are characterized by curves closer to the top, i.e. re-
call = 1 for all values of precision. Precision and recall are common
in information retrieval for evaluating retrieval performance. They
are usually used where static document sets can be assumed. How-
ever, they are also used in dynamic environments such as web
page retrieval [68].

As can be seen in Figs. 17-19, and Table 6, ECCobj does in most
cases a better job than ECCborder and ECCmesh. The recall of the

30 crabs (cra)

fﬁ}’/i 20 hands (han)
25 octopuses (oct)
25 snakes (sna)

20 teddy (ted)

Fig. 16. The object classes from the McGill 3D shape database having significant part articulation. The number of instances in each class are given.
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Table 6
Average matching results multiplied by 100 (smaller means more similar). For each row, the first and second smallest value are printed in bold.

Ants Crabs Hands Humans Octopus Pliers Snakes Spectacles Spiders Teddy
ECCobj
Ants 2.99 7.74 7.93 8.15 8.31 7.90 15.73 19.49 7.25 10.57
Crabs 7.74 2.60 9.09 9.85 5.88 10.37 20.85 20.17 4.75 11.24
Hands 7.93 9.09 4.39 5.34 10.15 5.36 10.83 13.02 9.76 5.72
Humans 8.15 9.85 534 3.62 10.11 4.08 8.88 10.60 9.51 5.21
Octopus 8.31 5.88 10.15 10.11 5.10 10.46 19.94 17.55 5.60 11.97
Pliers 7.90 10.37 5.36 4.08 10.46 145 6.58 9.44 10.44 4.53
Snakes 15.73 20.85 10.83 8.88 19.94 6.58 140 6.29 20.78 7.80
Spectacles 19.49 20.17 13.02 10.60 17.55 9.44 6.29 3.00 19.60 9.29
Spiders 7.25 4.75 9.76 9.51 5.60 10.44 20.78 19.60 298 11.91
Teddy 10.57 11.24 5.72 5.21 11.97 4.53 7.80 9.29 11.91 347
ECCborder
Ants 240 5.62 6.51 6.39 4.83 6.26 14.33 16.84 4.93 8.32
Crabs 5.62 2.58 7.83 9.27 5.78 10.14 19.65 22.26 4.71 11.20
Hands 6.51 7.83 3.97 4.91 7.97 5.01 10.09 12.33 8.30 5.60
Humans 6.39 9.27 4.91 3.01 8.73 3.62 7.73 10.37 8.68 4.53
Octopus 4.83 5.78 7.97 8.73 4.49 8.48 17.74 18.12 4.44 10.57
Pliers 6.26 10.14 5.01 3.62 8.48 1.57 6.45 8.84 8.85 4.08
Snakes 14.33 19.65 10.09 7.73 17.74 6.45 149 5.63 18.89 6.35
Spectacles 16.84 22.26 12.33 1037 18.12 8.84 5.63 2.60 19.70 8.92
Spiders 493 4.71 8.30 8.68 4.44 8.85 18.89 19.70 2.80 10.72
Teddy 8.32 11.20 5.60 4.53 10.57 4.08 6.35 8.92 10.72 3.74
ECCmesh
Ants 245 5.90 5.86 6.31 4.52 6.01 13.76 15.62 4.77 7.31
Crabs 5.90 2.86 8.02 9.62 5.52 10.42 20.03 22.16 4.49 10.77
Hands 5.86 8.02 4.20 5.19 7.39 497 10.38 11.98 7.74 5.50
Humans 6.31 9.62 5.19 3.01 8.67 3.61 7.41 9.78 8.74 4.53
Octopus 4.52 5.52 7.39 8.67 4.19 8.39 17.63 18.20 4.16 9.61
Pliers 6.01 10.42 4.97 3.61 8.39 1.71 6.43 8.30 8.76 3.87
Snakes 13.76 20.03 10.38 7.41 17.63 6.43 1.56 4.73 18.76 6.87
Spectacles 15.62 22.16 11.98 9.78 18.20 8.30 4.73 2.58 19.69 8.78
Spiders 4,77 4.49 7.74 8.74 4.16 8.76 18.76 19.69 2.65 9.75

Teddy 7.31 10.77 5.50 4.53 9.61 3.87 6.87 8.78 9.75 3.70
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Fig. 19. Precision-recall for the articulated shapes from the McGill dataset (q = 255 shapes from In,x = 10 classes). Left two columns: ECCobj, ECCborder, ECCmesh. Right two
columns (image taken from [46], with kind permission of Springer Science and Business Media): results of three other methods on the same database: medial surfaces (MS)
[46], spherical harmonic descriptor (HS) [67], and shape distributions (SD) [16]. Precision: horizontal axis, recall: vertical axis.

three methods is very similar, with slightly better results from EC- age ranks, ECCobj does better with the ants, octopus, spiders,
Cobj (noticeable on the first three bars). With respect to the aver- teddy, is equal to one of ECCborder and ECCmesh with the crabs,
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Fig. 20. Best and worst precision-recall curves for the results of ECCobj, MS, HS, and SD (picture synthesized from Fig. 19).

humans, pliers, snakes, and is slightly worse than one of the other
methods with the humans and spectacles. None of the three vari-
ants produces an average class rank higher than 21% of 255 (aver-
age rank 42, 53, and 52, for the octopus, for ECCobj, ECCborder, and
ECCmesh, respectively). ECCobj has the smallest average class dis-
tance (highest similarity) correct for all 10 classes. For both ECC-
border and ECCmesh the smallest average class distance is
correct for nine classes, while the correct class is the second small-
est one for the remaining class, the octopus (see Table 6). A discus-
sion considering the differences between the three ECC variants
follows at the end of this section.

Fig. 19 shows comparative precision-recall results of ECCobj,
ECCborder, ECCmesh, MS, HS, and SD. ECCobj, ECCborder, and ECC-
mesh are close, except for the teddy bears, where ECCobj is supe-
rior to the other two. The best results (higher precision vs. recall)
are reached by the ECC variants for the snakes, by MS for the crabs,
and HS and SD for teddy. For these best results the MS and the EC-
Cobj have almost identical precision-recall, followed by HS and SD
(Fig. 20). The worst results are achieved by ECCobj, ECCborder, and
ECCmesh for the octopus, MS for the pliers, HS for snakes, and SD
for the hands. The results of MS for the pliers are superior to EC-
Cobj for the octopus, which are in turn superior to the HS, superior
to SD (Fig. 20). In comparison to all other three methods (MS, HS,
SD), the eccentricity based methods score better on the pliers,
spectacles and snakes, and ECCobj is on par with the best on ants,
hands, and spiders.

MS searches for a concrete mapping between the parts of artic-
ulated shapes, which explains the overall superior results. The ECC
variants are articulation insensitive and able to characterize the
compactness (geometry) of the shapes quite well. However,
describing the structure of the shape using a histogram does not
capture the connections between the parts (e.g. one could detach
a finger from a hand and attached it to the other one, without
changing the descriptor of the human). The descriptor computed
by HS is invariant to the independent rotation of parts, even if
the shape gets disconnected. SD uses a function which is based
on Euclidean distance and not invariant to articulation.

The differences in the results of ECCobj vs. ECCborder and ECC-
mesh, can be linked to the compactness of the shapes and the
width of their joints. During articulation, the variation of the geo-
desic distances is larger when computed on the ‘skin’ (boundary)
compared to computed inside the shape (smaller). In the case of
2D shapes the eccentricity of the boundary is a constant. In 3D it

manages to capture some of the properties of the shape, but it is
more unstable, e.g. the eccentricity transform of a simply con-
nected volume has in most cases a single stable center (minimum),
while the eccentricity transform of its boundary will have a discon-
nected center or at least one with a more complex structure. A
more concrete example of such instability with only minor defor-
mation of the shape is the ECC of the surface of:

e a sphere: all points make up the center;
¢ an ellipsoid with two equal radiuses and a slightly longer third
one: the center is one circle.

As a last experiment we show results of ECCmesh on the
Robustness Benchmark from the SHREC'10 dataset [69].'° The
dataset consists of 1184 shapes given as triangle meshes. The query
set consists of 13 shape classes taken from a subset of the dataset
with simulated transformations applied to them. For each shape,
transformations are split into 10 classes (isometry, topology, small
and big holes, global and local scaling, noise, shot noise, partial
occlusion, sampling, and a combination of all transformations). In
each class, the transformation appears in five different strength lev-
els. The total number of transformations per shape is 55 plus the null
shape (neutral pose), and the total query set size is 728 shapes. The
reported results are mean average precision (mAP).

The given triangle meshes are possibly disconnected and non-
manifold (e.g. more than 2 triangles can share an edge). As the
ECC is computed on a single connected component and our geode-
sic distance computation requires manifolds, for each shape we se-
lect the largest subset of triangles (based on area), which are
connected and approximate a manifold.

Table 7 gives the results of ECCmesh on the SHREC'10 robust-
ness benchmark. The transformation “partial” reduces the shape
to a disconnected subset of the original triangles, consisting of
many components. Our method cannot handle such disconnected
shapes and computes the descriptor of one of the connected mesh
parts instead. Thus we also give the average score over only the
transforms which keep the query shape connected (without “par-
tial” or “all”). When computing the shape descriptors we did not
refine the meshes or sample from them uniformly, but took the
ECC values for the given vertices of the mesh. The resolution of

10 See http://tosca.cs.technion.ac.il/book/shrec_robustness.html for images of the
shapes in the dataset.



A. Ion et al./ Computer Vision and Image Understanding 115 (2011) 817-834 831

Table 7

Retrieval results on the SHREC'10 Robustness Benchmark (total g = 1184 shapes, with
a query set of 728 shapes from I,.x = 13 classes). The reported performance is mean
average precision. Rows indicate the type of transform that the query shape was
altered with, columns indicate the maximum strength of the applied transform.
“avg”: results over all queries in the dataset. “avg (connected)”: results only with
connected shapes (without transformations “partial” and “all”).

Transformation Strength
1 <2 <3 <4 <5

[sometry 94.23 88.62 86.66 81.82 81.10
Topology 80.45 67.73 65.26 64.57 64.84
Holes 85.26 80.45 81.28 78.14 73.40
Microholes 94.23 94.23 94.23 94.23 94.23
Scale 87.01 90.62 91.82 90.18 89.20
Localscale 94.23 91.67 88.61 84.92 79.47
Sampling 88.46 77.12 58.15 43.97 35.26
Noise 94.23 94.23 92.95 91.99 90.64
Shotnoise 94.23 94.23 94.23 92.31 89.74
Partial 9.61 8.20 7.53 6.53 6.17
All 0.63 13.34 36.25 41.00 37.61
Avg 94.11 89.68 86.84 83.50 80.33
Avg (connected) 98.06 95.52 93.02 90.13 87.54

the meshes is not uniform and explains why the results for “scale”
are not 100%, as expected from the normalization. The sensitivity
of the histograms to the non-uniform sampling of the vertices is re-
flected in the results for the transformation “sampling”.!' For an
evaluation of different methods on the SHREC'10 benchmark see
[69].

4.3. Discussion: 2D and 3D

The computed shape similarities are robust with respect to scal-
ing, rotation, and part articulation. The matching results are good,
especially when considering the straightforward approach, and dat-
abases of shapes undergoing articulation. Our histogram represen-
tation is invariant to articulation, thus achieving state of the art
performance on these databases. In contrast, the most efficient
shape matching algorithms [8,46] are more complicated and re-
quire extraction of salient features and local signatures that need
to be aligned or registered. E.g. the method in [8] describes shapes
by a collection of local descriptors sampled at different locations on
one selected boundary of the shape. Each descriptor is a 2-dimen-
sional histogram, and is based on the computation of geodesic dis-
tances and the angle made by the tangent to the geodesic with the
tangent to the shape boundary at the point of the descriptor. Sim-
ilarities are computed using dynamic programming as the cost of
the best matching of the descriptors along the boundary. In [46],
first a medial surface is obtained by doing topology preserving
thinning on the average outward flux computed on the distance
transform of the shape. The obtained medial surface is segmented
into components and using saliency a directed acyclic graph (DAG)
is built to describe the shape. To match a query DAG with a data-
base, first an indexing strategy is used to quickly select a few can-
didates, followed by a bipartite graph matching to compute node
correspondences and the matching score. In addition to the match-
ing score both methods [8,46] can provide correspondences be-
tween the used parts/points. Also the higher quality results of [8]
can be explained by the usage of local descriptors together with
a score computation which considers their order - this gives more
detailed geometric information with a higher tolerance to missing
parts.

1 Refining the meshes to obtain a uniform sampling for the locations of the vertices
could in principle be added as a pre-processing step.

The limitations of our approach include: (1) Eccentricity struc-
ture histograms s are not able to fully capture the part structure of
the shape and thus histograms of different shapes can be very sim-
ilar. (2) Histogram ‘matching’ (whether using the L,-norm or more
sophisticated methods) is inherently low level and does not con-
sider the higher level context in which it is applied.

One can identify the limitations discussed before (see Fig. 19
and Table 6): for classes with simple topology (e.g. snakes and
spectacles), the results are very good. For classes where part
decomposition and detailed geometry play an important role
(e.g. octopus, hands, humans), the discrimination capabilities are
reduced.

4.4. The Parameters kp, ks and w

The approach has three parameters: the number of bins kp, ks, of
the histograms h, s, and the mixing factor w. In all presented exper-
iments 2D and 3D, kp =200 and ks = 100 where used. The values
where chosen based on a few initial trials on a small set of shapes
(Kimia25). Table 8 shows the results on Kimia99 for different val-
ues of the parameter k, when using only h as a shape descriptor,
i.e. when w = 1. For s, a difference of at least 1 (2D, and voxel rep-
resentations in 3D) respectively v/2 is required between the cen-
ters of two neighboring bins. Thus any value of ks larger than
half the average of the geodesic diameters of the shapes is enough.
The used value for w was 0.94 and was selected based on a few tri-
als on the Kimia25, Kimia99, and Ling databases (note that h and s
use a different normalization scheme, which explains the appar-
ently large bias toward h). Table 9 shows results for different val-
ues of w.

As the shapes are discrete, the number of distance values of the
ECC is finite. Let h® be the ordered set of eccentricity values com-

Table 8

The value of Match,(®) for ECCobj2D, h only (w=1 in Eq. (4)), on the Kimia 99
database using descriptors with different number of bins. See Table 3 for comparison
with other methods.

Number of bins, k  r=1 2 3 4 5 6 7 8 9 10

10 85 69 66 59 52 51 40 46 42 30
25 87 74 68 63 48 53 45 38 35 33
50 87 74 67 68 45 51 43 38 37 31
100 87 74 66 65 48 53 44 38 34 32
200 87 74 66 65 49 51 45 39 33 33
500 87 74 67 64 48 53 45 38 33 33
1000 87 74 67 64 48 54 44 37 34 33
2000 87 74 67 64 48 53 44 38 34 33
Table 9

The value of Match(®), r=1, 2, 3 for ECCobj2D on the Kimia 25, Kimia 99, and Ling
databases using kj =200, ks=100 and different values of w. See Section 4.1 for
comparison with other methods.

Database w r=1 2 3

Kimia 25 0.93 22 19 16
Kimia 99 0.93 95 84 79
Ling 0.93 40 33 27
Kimia 25 0.94 22 20 17
Kimia 99 0.94 94 85 81
Ling 0.94 40 33 29
Kimia 25 0.95 22 20 18
Kimia 99 0.95 93 86 81
Ling 0.95 40 33 29
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puted for a shape S, i.e. each distinct value that exists in the ECC of
the discrete shape S. We have min(h®) equal to the ECC value of the
center (minimum ECC) and greater or equal to half the diameter of
the shape (max(h®) = max(ECC)). The largest distance between two
neighboring (grid) points is equal to one (shapes are required to be
4 respectively 6 connected). For the ECC histogram of a shape not
to contain any empty bins, the number of bins kj; has to satisfy:

k < max(ECC(S)) — min(ECC(S)).

Depending on the shape, k;, could be much higher and still have no
empty bins in h, e.g. for S a disk with radius u in Z* and the Euclid-
ean distance, there are more distinct values than u (consider the
discrete approximation of the Euclidean circle). An absolute upper
bound is k, = |S]. If this number is exceeded, there will be empty
bins in h.

As kj, decreases, the description capability of the histogram also
decreases. In the extreme case, a single bin would just contain |S|,
and for the normalized histogram it would contain the value 1.
Two bins can give the equivalent of a simple compactness measure
(similar to the circularity ratio or shape index), which relates the
area of the shape to the area of the circle with the same diameter.
Three bins could be considered as a relative measure for short/
long/medium distances and can characterize more than the simple
compactness measure.

A higher number of bins increases the dimension of the space in
which distances are computed, and gives more flexibility in the
relations, e.g. in 2D there can be maximum 3 points s.t. they are
pairwise at the same Euclidean distance (equilateral triangle),
and this number increases to 4 in 3D (regular tetrahedron). Assum-
ing that the number of classes and their pairwise (average) dis-
tances are known, a lower bound for the number of bins is equal
to the smallest dimension in which the classes can be embedded
s.t. the distances computed in the histogram space are equal or
close to the given distances.

5. Potential extensions

Topological changes in the shape. Geodesic distances are sensitive
to changes in the topology of the shape. For example, it is enough
to touch the index fingers of two hands in one point to drastically
change the geodesic distance between the points of the two palms:
before we had to go over the arms and torso, now we only have to
travel over two fingers. This problem has been approached in
[42,41] by using diffusion distance as an alternative to geodesic
distance. Diffusion distances consider all possible paths by which
two points can be connected and are expected to be more stable
to changes in topology (in the previous example, the high number
of paths going through the thicker arms will still be dominant over
the path(s) going over the small size contact area between the two
fingers). The definition of the eccentricity transform (Eq. (2)) is de-
fined over a metric space and diffusion distances could also be
used.

Describing and matching part structure. One of the problems
identified in Section 3.4 and during the experiments (Sections 4.1
and 4.2) is that the histograms s do not capture the exact struc-
ture/topology of the shape. Classical methods to describe the topol-
ogy of a shape (e.g. Reeb graphs [70], and homology generators
[71]) do not capture geometrical aspects. An approach to deal with
this problem is presented in [72]. Two descriptors are used to de-
scribe a shape: a geometric one, based on the Global Geodesic Func-
tion (GGF) [34], which is defined for a point as the sum of the
geodesic distances to all points of the shape multiplied by a factor,
and a topological one, the Reeb graph of the shape using the GGF as
the Morse function.

Initial steps in combining the eccentricity transform with Reeb
graphs have been presented in [73].

A better histogram matching. The problem of having a matching
function that is aware of the context in which it is applied can be
approached in two ways: (1) use expert knowledge about the con-
text to create an algorithm that considers the proper features, or
(2) learn the important features by giving a set of representative
examples (e.g. [45]). In [74,75], a survey of current distance metric
learning methods is given. The purpose of distance metric learning
is to learn a distance metric for a space, from a given collection of
pairs of similar/dissimilar points. The learned distance is supposed
to preserve the distance relation among the training data. Example
training data would be: S; is more similar to S, than to Ss. The re-
sult is a distance function that would replace the L,-norm in Eq. (3)
with a new measure, which is adapted to the task of computing the
distance of eccentricity histograms as given by the training
examples.

Partial shape similarity. The presented approach matches
“whole” shapes and will work in the presence of only minor occlu-
sion. Even though the eccentricity values remain the same when
certain parts of a shape are removed, removing parts will change
the histograms, proportional to the size of the removed parts. Par-
tial shape similarity could be approached by first decomposing a
shape into parts (like in the approaches in [12,46]) and then
matching the parts to each other. This way one can obtain part cor-
respondences and higher robustness with respect to occlusion.

Higher dimensional data. 4D data has started to be available in
the medical image processing community (e.g. 3D scans of a beat-
ing heart, over time). The presented method is general and should
work in any metric space. This includes 4D, but also gray scale
images (e.g. gray values can determine the distance propaga-
tion speed in the respective cells). A study in this direction is
planned.

6. Conclusion

We have presented a method for matching 2D and 3D shapes.
The method is based on the eccentricity transform, which uses
maximal geodesic distances and is insensitive to articulation.
Descriptors are composed of two terms: a normalized histogram
of the eccentricity transform and a histogram of the connected
components of the level-sets of the eccentricity transform. They
characterize the compactness and structure of the shape, are com-
pact and easy to match. The method is straightforward but still
efficient, achieving state of the art results on databases of shapes
undergoing articulation. Articulation is indeed the main invariance
provided by our histogram representation. Experimental results on
popular 2D and 3D shape matching benchmarks are given, with
computation on binary 2D images, binary 3D voxel shapes, and
3D triangular meshes. The parameters of the method, and the rela-
tion between changes to a shape and its corresponding eccentricity
histogram are discussed in detail. Adding extended structural
information to the descriptor and searching for correspondences
between parts would help to overcome the cases where shapes
of different classes have similar histograms. Matching can be im-
proved by adding context in the histogram similarity computation
e.g. through metric distance learning.
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Appendix A

Algorithm 1. ECCO6(S) - Estimate eccentricity transform by
progressive refinement.

Input: Discrete shape S.
: for all q € S,ECC(q) < O [x initialize distance matrixx/
: p— random point of S/x find a starting pointsx/

: [xPhase 1: find a diameterx/
: while p not computed do

ECC — max{ECC,D°(p)} [+accumulate & mark p as
computedx/
p < argmax{ECC(p)|p € S} [+ highest current ECC
(farthest away )/
8: end while
9:
10: [+Phase 2: find center points and local maximasx/|
11 pECC — 0/% make sure we enter the loopx/|
12: while pECC # ECC do
13: pECC— ECC
14: C « argmin{ECC(p)|p € S} [+points with min. ECCx/
15: for all c € C, ¢ not computed do

A s WN =

~

16: D — D%(c) [xcompute distances from the centersx|

17: ECC — max{ECC,D} [+accumulate & mark c as
computedx/

18:

19: M «— {q € S|D(q) local max. in S & q not computed}

20: for all m € M, m not computed do

21: ECC — max{ECC,D°(m)} [xaccumulate & mark m as
computeds/|

22: end for

23: end for

24: end while
Output: Distances ECC.

For completeness, the algorithm ECCO6 [47] used to compute
the eccentricity transform for the shapes in our experiments is in-
cluded (see [48] for an analysis of the speed/error performance).
ECCO6 (see Algorithm 1) tries to identify points of the geodesic cen-
ter (minimum ECC) and use those to find eccentric point candi-
dates. Computing D%(c) for a center point ¢ € C(S) is expected to
create local maxima where eccentric points lie. In a first phase,
the algorithm identifies at least two diameter ends by repeatedly
‘jumping’ (computing D°(p)) for the point that had the highest va-
lue in the previous estimation. In the second phase, the center
points ¢; are estimated as the points with the minimum eccentric-
ity and all local maxima m of D°(c) are marked as eccentric point
candidates. For all m, D°(m) is computed and accumulated. When
no new local maxima are found (i.e. with D°(m) not previously
computed), the algorithm stops.
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