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Abstract This paper presents an approach to analyze
plant root development by means of topological image anal-
ysis. For phenotyping of plants their root development, the
architecture of their root systems and thereby root charac-
teristics such as branches and branch endings are analyzed.
In order to simplify the examination of root characteristics
and enable an efficient comparison of roots, a representa-
tion of imaged root data by Reeb graphs is introduced. Reeb
graphs capture the topology of the represented structure -
in this case the locations of branches and branch endings
of the roots - and form a skeletal representation of the un-
derlying image data in this way. As the roots are pictured
as 2D image data, the projection of a 3D structure to a 2D
space might result in an overlap of branches in the image.
One major advantage when analyzing roots based on Reeb
graphs is posed by the ability to immediately distinguish be-
tween branching points and overlaps in the root structure.
This is not as easily possible by an analysis solely based on
contours.

1 Introduction

Reeb graphs are widely used as shape descriptors for 3D
structures. [2] gives a general overview on the use of Reeb
graphs for shape analysis. [10] uses Reeb graphs for a
pose independent segmentation of 3D data of human body
scans, while [8] provides a skeletal representation of point
clouds based on Reeb graphs. As a representation of 2D
data, Reeb graphs are for example used in [5] to provide a
data skeletonization of the image content. However, Reeb
graphs have not been applied to branched structures like
roots or blood vessels although they pose a well suited
representation. An analysis of branching patterns of roots
based on a 3D reconstruction of the root architecture of rice
plants is provided in [11].

One of the ultimate challenges of biology is posed by the
question how genotypes translate into phenotypes. There,

the major bottleneck lies in the ability to phenotype a large
number of individuals and genotypes with high accuracy.
This is particularly lagging in complex multicellular organ-
isms such as plants, in which specific biological processes
often occur only temporarily and are restricted to specific
organs, tissues or even individual cells. Efficient and unsu-
pervised image segmentation and the extraction of certain
characteristics are a key in approaching this goal. The
root of the small plant Arabidopsis thaliana is excellently
suitable for large-scale non-invasive phenotyping because
it can be grown on transparent media in large numbers and
its projections of the young root essentially capture all the
important biological features at the organ level.

When analyzing roots (for e.g. phenotyping), characteristics
such as the number of branches or the position and number
of branch-endings, are studied. These characteristics can
be efficiently described by (Reeb) graphs. Reeb graphs
describe changes in topology in the represented structure.
Reeb graphs are based on Morse theory and analyze
the (here) image content according to a function (Morse
function).

When growing, roots change their shape, branches are
formed - their topology changes. Moreover the projection
of the 3D root structure to the 2D image data might cause
overlaps of branches in the image. In a Reeb graph a
distinction between a branch and an overlap is immediately
possible as these changes in topology are captured by the
graph.

The Reeb graph is used as a simplified, skeletal representa-
tion of the image data that captures the intrinsic topological
structure of the data and allows for a comparison of
the image content. Especially for the root dataset these
comparisons allow for a description of the growth process:
the roots are imaged on consecutive days through their
growth period. In comparison with a simple standard
skeletonization approach as for example the Medial axis
transform, the skeleton derived by a Reeb graph not
only describes characteristics of the image content (here
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branches of the roots) but captures the actual positions of
these characteristics as well.

The paper is structured as follows: Section 2 gives an
introduction to Reeb graphs, Section 3 describes the dataset
used and Section 4 shows the computation of a Reeb graph
on the root dataset. The need for modifications of the Reeb
graphs and the types of modifications are discussed in
Section 5, Section 6 shows evaluation results on the root
dataset while a conclusion and a perspective to future work
are given in Section 7.

2 Reeb Graphs and Morse Theory

Based on critical points according to a scalar function a
Reeb graph describes the topological structure that is the
connectivity of level sets of e.g. 2D or 3D content [4]. In
order to build a Reeb graph, critical points, of the structure
to be represented, need to be computed.

A point (a, b) of a function f(z,y) is called a critical point
if both derivatives f;(a,b) and f,(a,b) are equal 0 or if one
of these partial derivatives does not exist [9].

Such a critical point can either—bg a degenerate or—a
non-degenerate—eritical—peoint. These two cases can be
distinguished via the Hessian matrix. The determinant of
the Hessian matrix at a critical point x is then called the
discriminant. If this determinant is zero then x is called a
degenerate critical point of f (or non-Morse critical point of
f). Otherwise it is non-degenerate (or Morse critical point

of f).

A smooth, real-valued function f: M; — R is called
a Morse function if it satisfies the following conditions for
a d manifold M, with or without boundary:

e all critical points of f are non-degenerate and lie inside
Ma,

e all critical points of f restricted to the boundary of My
are non-degenerate,

e for all pairs of distinct critical points p and ¢, f(p) #
f(g) must hold [3].

Critical points of such a real-valued function are those
points where the gradient becomes zero. The topological
information of a shape described by a Reeb graph based
on a function is related to the level sets of this function on
the shape [2]. A change in topology appears with a change
in the number of connected components in a level set. At
regular points no topology changes occur. Topological
changes occur at critical points only.

Reeb graphs are compact shape descriptors that preserve
the topological characteristics of the described shape [2].
Vertices of the Reeb graph correspond to critical points of
the function (points where the topology of M changes),
edges describe topological persistence [2]. In other words:
All nodes having the same function value are represented by
one node in the graph, connections between nodes describe
connections between segments of the underlying structure.
Reeb graphs are originally defined for the continuous space,
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Figure 1: Critical points computed based on the height function
and corresponding Reeb graph. The white image region shows the
foreground region described by the Reeb graph, black parts are
background.

but have been extended to the discrete domain: Here the
Reeb graph is defined on a piecewise linear Morse function
[4]. As the approach presented in this paper provides an
analysis of 2D image content, it is based in the discrete
domain (image pixels). The Reeb graphs that are built
on the root images are therefore discrete Reeb graphs and
are based on the following definitions. In order to define
a discrete Reeb graph, connective point sets and level-set
curves are defined first:

e Two point sets are connected if there exists a pair of
points (one point of each point sets) with a distance be-
tween these two points below a fixed threshold.

e If all non-empty subsets of a point set, as well as therg -
complements, are connected, such a point set is called
connective.

e A group of points that have the same Morse function
value and that form a connective point set, is called a
level-set curve.

The nodes in a discrete Reeb graph represent level-set
curves, the edges connect two adjacent level-set curves,
therefore the underlying point sets are connected [10].

In 2D critical points and corresponding nodes in the
Reeb graph are minima, maxima or saddles [3]. The
saddle nodes can be further distinguished: a saddle node
that appears with a reduction in the number of connected
components is further called merge (saddle) node, a split
(saddle) node describes an increase in the number of
connected components. = When considering these two
different types of saddle nodes that might appear in a Reeb
graph, four different types of critical points and according
nodes in the graph can be distinguished: maximum node,
minimum node, split (saddle) node, merge (saddle) node.
Besides these nodes corresponding to critical points, regular
nodes can be added at any position and atjany edge in the
Reeb graph as they do not describe a change in topology.
Nevertheless regular nodes can for example be used to
describe changes in the color of the foreground region (see
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The approach described in the following sections uses
the height function as Morse function p. In 2D the
height function is the function f that associates for each
point P = (z,y) the value y as the height of this point:
f(z,y) = v.

Figure 1 shows an example for a Reeb graph based on a
height function, containing all five types of nodes and the
actual image the graph was computed on. Each edge in the
Reeb graph describes a connected component. Therefore
the edges of a Reeb graph are formed by connecting the
node representing the birth of a connected component
to the corresponding node representing the death of this
component.

3 Root dataset

For the root dataset images of the plant Arabidopsis thaliana
were taken. This plant is a model organism, which is widely
used in plant sciences, due to the small size of its genome,
the small size of the plant itself and its rapid life-cycle
[6]. The plants are grown on a nutrient containing agar gel
surface in plastic petri dishes that are vertically oriented. All
plants in one plate belong to one dataset. One dataset/plate
consists of 2 rows of 12 plants. The plates are placed in
a growth chamber that allows for controlled conditions as
constant temperature or humidity.

The images are taken using an image scanner. A special
fixture allows for two datasets to be placed in an exact
known position inside the scanner. The images are acquired
with a scan at 1200 dpi resolution with 8bit color depth,
therefore one image is of approximately 6000x6000 pixels
in size. The images are stored as bmp files of about 150MB.
Along time several successive images are acquired this way,
as each plate is scanned at several successive days of the
growth process. A 3D stack of 2D images over time is thus
created for each root.

In a preprocessing step the 24 plants per plate are cropped
to single images: one image per plant with an image size in
the range of 500x1300 to 800x1300 pixels resolution and a
file size of 1,5-2,5Mbyte. Example images of this dataset
are shown in Figure 2.

(a) (d) (©) (C))

Figure 2: Example images of the root dataset: root004 - (a) day 8;
(b) day 12; (c) day 16; (d) day 20.
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Figure 3: Four different types of critical points computed accord-
ing to the height function: (a) maximum / birth; (b) saddle (split);
(c) minimum / death; (d) saddle (merge).

The whole set of plant images used here consists of 9
sets of time series. Each set holds 6 images of one plant
taken over time (day 1, day 4, day 8, day 12, day 16 and day
20 of the growth period). Of these 54 images, 34 images
are analyzed, the other images are too early in the growth
process and therefore to small in structure to be represented
by a non-trivial Reeb graph.

All images analyzed are segmented in a preprocessing step
and consist of 2 foreground regions (leaves and roots, only
the roots are analyzed for this approach) and up to 2 holes
in the foreground structure. For reasons of the needed
preceded segmentation, the dataset is restricted in its size,
as the segmentation approach was done semi-automatically
and required a lot of time (up to 1.5h for one image).

4 Computation of Reeb graphs

As the roots are imaged in their natural direction of growth
(leaves in the top part of the image, roots growing down-
wards in a vertical direction) and branches occur mostly
in this direction of growth, the height function is a suit-
able measuring function. Critical points indicate a change
in topology, therefore they might only appear on the bor-
der of a region but not within the region. The borders of
flat-regions in the image are analyzed to locate these critical
points.

Figure 3 shows the four different types of critical points that
are computed for the image content using a height function.

To compute the critical points a segmentation of the
image needs to be done during a preprocessing step. As
the height function is used to compute the critical points,
the foreground region borders are analyzed with regard to
horizontal borders as these might describe a change in the
number of components. The so found critical points are
located at the center of such a horizontal border.

There are two main problems encountered using this ap-
proach:

4.1 Critical points at same height

Due to the resolution of the image, the discretization of the
root and further distortions during the segmentation process,
it is possible that several critical points at different horizon-
tal positions in the image are at the same vertical position
(same height) in the image (see Figure 5(a) for an example).
In this case the second criteria of Morse theory (see Section
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361 2)1is not met. A Reeb graph cannot be built, as a decision
362 on how to connect the nodes in order to build the graph can-
363 not be taken. Figure 4 shows an example: The solid lines
364 illustrate the only two fixed connections in this example, the
365 dashed lines indicate all possible connections. In this Reeb
366 graph four edges are needed: one from each black (maxi-
367 mum) node to a red (saddle) node and one edge from a red
368 (saddle) node to the green (minimum) node. A decision con-
369 cerning these connections needs to be taken for the black
370 center node as well as for the two red nodes. A solution
371 to build a Reeb graph, despite several critical points at the
372 same height, is discussed in Section 5.1

373__

374__
375  Because of the segmentation prior to the computation of the

37 critical points, segmentation artefacts appear in the images.
377  The most common problem are frayed borders of image re-
375  gions (see Figure 5(b) for an example). Especially for im-
379 ages of day 16 the segmentation creates noise and distorted
350  region borders. When analyzing the images of day 16 one
331  notices a high humidity between the plates in the form of
382 water drops, which creates a highly texturized background
383 that complicates the segmentation.

384 These frayed borders in the segmented images result in addi-
395  tional critical points that describe no actual split or merge of
355  the root structure. These artefacts alter the Reeb graph and
357  complicate a comparison or matching of graphs. One possi-
3gg  bility on how to deal with these additional critical points is
389  described in Section 5.2.

4.2 Additional critical points

390__

391 5 Modifications on the graphs

992 To overcome the problems discussed in Section 4.1 and Sec-
232* tion 4.2 the following techniques were used:

395 5.1 Controlled shift of critical point coordinates

396 Due to the discrete pixel-space, the coordinates z and y of
397 apixel p = (x,y) are integers. Critical points at the same
398 height (same y-coordinate) occur for 35% of all images in
399 the root dataset and are shifted. The height of such critical
400 points is changed by an added factor f, 0 < f < 1. A
401 critical point p = (z,y) is shifted to p’ = (z,y + f), fis
402 computed using the following formula: f = L (z—1), with
403 giving the width of the image. The y-coordinate is thereby
404__
405__
406__
407__
408__
409__
410__
411__
412__
413__
414__
415__
416__

417__
418 Figure 4: Critical points at same height: the solid lines show con-

41 97 nections that are fixed, dashed lines indicate all possible connec-
4207 tions - a decision needs to be taken for these.

4

__421
__422
_ 423
__424
_ 425
__ 426
__427
(@) (b) __ 428

__ 429

Figure 5: Problems encountered on the root dataset: (a) several 430
critical points on same height; (b) frayed borders due to segmenta- 4731

tion artifacts. 432
__ 433

. . . ..o 434

changed from an integer to a floating-point number. Critical 435
points at the same height are moved downwards in a left- 436
to-right order, thus for two critical points p; = (z1,y) and 437

p2 = (z2,y) with 21 < o, it is valid that, after shifting the 438
points to pj = (x1,y1) and p) = (z2,y2), y1 < y2 holds. 7439
The actual order of heights is preserved by this correction 0
procedure as only critical points that were primarily at the
same height are changed. All critical points are at different

__ 442
heights, although when rounding down the y-coordinate of
the critical points to an integer, they stay in the actual pixel 444
line. A Reeb graph can therefore be built. o 445
It is important to shift the heights in a fixed approach. A 446
random decision choosing one of two critical points at the 447

same height when building the Reeb graph cannot be used, 4
as the results may vary with repeated tests. Reeb graphs : 449
built on such random decisions are not unique and therefore 450
useless for e.g. comparison of two images. 4
Figure 6 shows a Reeb graph built on the marked critical

452
points / nodes. Compared to Figure 4 where there are several
critical points at the same height, Figure 6 shows critical 454
points on different heights. The connections in this graph are 455
unique. By shifting the critical points in Figure 4 according
to the approach described in this section, the critical points 457
are shifted to a configuration similar to the one shown in 458
Figure 6. 459
5.2 Graph pruning —460

461

Due to the segmentation done as a preprocessing step, seg- 462
mentation artefacts falsify the number of critical points and 4
therefore the number of nodes and edges in the Reeb graph. 464

465
466
467
468
— 469
_470
__471
__472
__473
__474
__475
__476
__477
__478
__479
480

Figure 6: Critical points at different heights, the connections in
this Reeb graph are unique.
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488__
489__
490__
491__
492__
493__
494__
495__
496__
497__
498__
499__
500__
501__
502__
503__
504__
506__
506__
507__
508__
509__
510
511__
512__
513__
514__
515__
516__
517__
518__
519__
520__
521__
522__
523__
524__
525__
526__
527__
528__
529__
530__
531__
532__
533__
534__
535__
536__
537__
538__
539__
540

Number of nodes in graph

Type of node birth | split | merge | death || sum
no graph pruning | 111 | 129 84 156 480
graph pruning 38 54 13 79 184

Table 1: Total number of each type of nodes in the Reeb graphs of
the root dataset with and without graph pruning.

In order to use the extracted graphs as a skeletal representa-
tion, branches that arise with artefacts need to be removed
from the Reeb graph.

For each pair of nodes adjacent nodes in the graph the Eu-
clidean distance between these two nodes is computed. If
this distance is less than 1,5% of the image height such
connections are discarded and nodes are relinked if needed.
Regular nodes that may be introduced by this approach. As
these regular nodes do not contain any needed information,
they are removed after relinking. This threshold proved to
be the best choice in the experiments. This graph prun-
ing results in a reduction of the overall number of nodes
in the Reeb graphs of the root dataset by 62%. Table 1
shows the numbers of nodes for all Reeb graphs in the root
dataset with and without graph pruning and Figure 7 shows
an example of the Reeb graph and the modified Reeb graph
for root 05, day 16. All the nodes in the lower part of the
root for the Reeb graph without graph pruning indicate spu-
rious branches detected due to noise in the segmented im-
age. These spurious branches are correctly discarded by the
graph pruning approach.

(a) (b)

Figure 7: Reeb graph for root 05 day 16. (a) without graph prun-
ing; (b) with graph pruning.
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6 Results and evaluation on the root dataset 541
_ 542

_ 543
Figure 8 shows the resulting Reeb graph for root 07 of 544

the dataset with both modifications implemented, drawn 545
as an overlay. There is a cycle in the Reeb graph for day 545
16 and day 20 (Figure 8(c) and 8(d)). In the image of day 547
12 (Figure 8(b)) there are three branches: The first and 543
the second branch overlap at sometime during the growth 549
process between day 12 and day 16. Because of this overlap 550
in the 3D space these two branches appear merged in the 551
2D projection of the image, therefore a cycle is formed in 552
the Reeb graph. 553

_ 554
Figure 9 shows the Reeb graphs for root 12 of the 555
dataset (both modifications are used). Some small branches 555
are not represented in the Reeb graphs of day 12, 16 and 20 557
as they resembled branches due to noise and were discarded 553
during the graph pruning process (see Section 6.1). Againa 559
cycle appears in the Reeb graph for day 20 as two branches 550
overlap. _ 561

562

_ 563
For the 34 single images of the root dataset the following 554

criteria have been evaluated: _ 565
__566

__ 567

__568

__569

_ 570

__ 571

__ 572

__ 573

__574

__ 575

__ 576

__ 577

__ 578

__579

__ 580

__ 581

() (b) o
__ 583

__584

__585

__586

__ 587

__ 588

_ 589

_590

__ 591

_ 592

_ 593

_ 594

__595

__596

(©) (d) 597
Figure 8: Resulting Reeb graph for root 07 (a) day 8; (b) day 12; —>598
(c) day 16; (d) day 20. —228
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604__
605__
606__
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608__
609__
610__
611__
612__
613__
614__
615__
616__
617__
618__
619__
620__
621__
622__
623__
624__
625__
626__
627__
628__
629__
630
631__
632__
6337

6357
636__
637__
638__
639__
640__
641__
642__
643__
644__
645__
646__
647__
648__
649__
650__
651__
652__
653__
654__
655__
656__
657__

658 Figure 9: Resulting Reeb graph for root 12 (a) day 8; (b) day 12;

659 (c) day 16; (d) day 20.
660__

6

wrong decisions on graph pruning _1661

images | false negatives | false positives | 662

graph pruning 8 10 0 1663
extension 1 18 4 36 _| 664
extension 2 13 10 9 1665
—_666

667

Table 2: Branches wrongly discarded (false negative) and wrongly 555
accepted (false positive) in the graph pruning approach with two 669
different corrections based on pixel-color. o

__670

__ 671

__672

6.1 Are all branches correctly detected and 673
represented by the Reeb graph? 674

All major branches were correctly detected. Table 2 shows — 675
the number of images for which branches were wrongly dis- — 676
carded (false negatives) or wrongly accepted (false positive). — 677
For 23,5% of the images smaller branches were discarded — 678
due to the graph pruning as they resembled the frayed bor- — 679
der artefacts caused by the segmentation. To keep these — 680
small branches that describe actual root structures, their an- — 681
gle could be taken into account, as true branches seem to — 682
inscribe a larger angle than branches due to noise. However, — 683
this assumption is based on the dataset presented and may — 684
not be true for other datasets. Therefore another approach - 685
was tested: for a small branch with a critical point of type — 686
split, the color values at three pixels: at the critical point (a), — 687
one row below the critical point (b) and two rows below the — 688

critical point (c) were compared: — 689
_ 690

1. the color of (a) and (c) were taken from the segmented —591
image, while the color value of (b) was taken from the - 092
unsegmented image - 098

__ 694

__ 695

2. all three color values were taken from the unsegmented 696
image 697
__698

Branches are kept if the color value of (b) is closer to (a) —699
than to (c). Table 2 shows the results for these two tests. —700
While the first option discards less true branches (false neg- —701
atives) it keeps spurious branches for more than 50% of all —702
images. The second option keeps less spurious branches, —703
but does not reduce the number of false negatives compared —704
to the graph pruning approach without these color compar- —705
isons. Taking into account not only the color values of these —706
three pixels but of several neighbors, as it is done with Local —707

Binary Patterns, might present an option for future work. —708
_709

6.2 Are additional branches (due to e.g. noise) _710
detected? 711

As shown in Table 2 all additional branches (due to segmen- *;1 :23
tation artefacts) are correctly discarded by the implemented *71 4
graph pruning approach. *71 5
__716

_ 717

For a series of images of one plant during the growth e

process the following factors have been analyzed: *;123



Number of nodes / edges / cycles
day 8 day 12 | day 16 day 20

root04 | 2/1/0 | 4/3/0|6/5/0| 8/8/1
root05 | 2/1/0 | 4/3/0|4/3/0| 8/8/1
root07 | 2/1/0 | 6/5/0|6/6/1| 8/8/1
root09 | 2/1/0 | 6/5/0|6/5/0| 6/5/0

root12 | 2/1/0 | 4/3/0|6/5/0 | 12/12/1
root 17 - 2/1/016/5/0| 6/5/0
root19 | 2/1/0 | 4/3/0 | 8/8/1 | 14/15/2
root20 | 2/1/0 | 4/3/0|4/3/0| 12/12/1
root 24 - 2/1/0 | 4/3/0| 10/9/0

Table 3: Total number of nodes, edges and cycles in the modified
graph (graph pruning without corrections) of each root image in
the defined dataset.

6.3 Is an automatic grouping of images of one plant
from different days possible?

As the roots grow downwards in a vertical direction, there
are only minor changes in the position of the starting point
of the actual root (transition between leaves an roots) - not
accounting for actual movement of the plant (e.g. sliding
down the plate). Therefore the starting point was used for
this comparison. The average minimal Euclidean distance
between all starting points is 14,4 pixels. Using this dis-
tance measurement to group one image of a root with earlier
or later images of the same root, the grouping is correct for
71% of all images. However, images of day 16 falsify these
numbers, as the plate of day 16 appears slightly enlarged in
the image compared to the images of other days. As the im-
ages were automatically cut into single plant images in a pre-
processing step, this scaling is not corrected. Excluding the
images of day 16, the average minimal Euclidean distance
decreases to 11,6 pixels and one image is grouped correctly
with earlier or later images of the same root in 88%.

6.4 General assumption: ,,Parts of a plant that appear
in an early image of a plant do not disappear for a
later image of the same plant.*

This assumption proved to be correct for the images in the
root dataset. The topology of a root only changes with the
creation of new components (e.g. branches) over time. Ta-
ble 3 shows the number of all nodes, edges and cycles in
each (modified) graph of the root images.

However, there is one exception to this assumption, which
is based on the projection of a 3D structure to a 2D space.
A branch in an early image of a plant might stay in the im-
age of a later day, it may branch again but its ending may
also disappear in the 2D image as it is merged with another
branch due to an overlap of these two branches in the 3D
space.

7 Conclusion and future work

Reeb graphs proved to be suitable descriptors for root
structures as they capture the main characteristics of roots,
namely branches and branch endings that are used in the
phenotyping of plants, well. A Reeb graph provides a

Ines Janusch, Walter G. Kropatsch, and Wolfgang Busch

skeletal representation of a root that allows for fast analysis
of root characteristics and efficient comparison of images
and the contained root structure. Overlaps in 3D that appear
as a merge of two branches in a 2D image are hard to
distinguish from a branching point when analyzing only
contours of image regions. Exploiting the topology of the
root, actual branching points and overlaps in 3D can be
immediately distinguished, as an overlap forms a cycle in
the corresponding Reeb graph.

A future application in plant phenotyping is possible.
However, for future work the segmentation approach
needs to be changed to a less time-consuming (or even
automatic) approach in order to allow for a larger dataset
to be analyzed. Moreover different functions will be used
as Morse functions. Functions that should be taken into
consideration are for example a medial axis as in [7] or
distance functions: for example the distance to a fixed point
in a structure, the sum of geodesic distance (both are used
in [10]) or the distance to an existing graph (as for example
a medial axis).

Open questions for future work (on the root dataset) are:
How does the chosen Morse function influence the correct
detection of branches in the root structure? Is the detection
of all branches, respectively the detection of additional
branches due to noise, dependent on the Morse function
used? Which Morse functions are able to correctly represent
roots with a complex pattern of growth (e.g.: change in the
main direction of growth)?

Furthermore this approach proofed to be suitable to extract
plant characteristics used in the phenotyping of plants,
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