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Abstract—This paper discusses the use of topological image
analysis to derive characteristics needed in plant phenotyping.
Due to certain features of root systems (deformation over time,
overlaps of branches in a 2D image of the root system) a topolog-
ical analysis is needed to correctly derive these characteristics.
The advantages of such a topological analysis are highlighted
in this paper and root phenotyping is presented as a new
application for computational topology. Characteristics used in
plant phenotyping that can be derived from root images using
methods of topological image analysis are further presented. A
Reeb graph based representation of root images is shown as
an example for such a topological analysis. Based on a graph
representation a new, normalised representation of root images
is introduced.

I. INTRODUCTION

An organism’s phenotype is defined as the set of its
observable characteristics. In comparison, the genotype of an
organism is defined its genetic configuration. The phenotype
of an organism is based on the interaction of the genotype
with the environment. The genome (the entire DNA sequence)
of an increasing number of species is completely characterised
[11]. However, their phenome (the full set of phenotypes of
an individual species) can never be completely characterised
as phenotypes can vary strongly [7].
How genotypes translate into phenotypes is a major question
in Biology. Efficient extraction of characteristics for a large
number of individuals is a key aspect in this research.
For phenotyping of plants their root structure can be analysed.
The characteristics derived describe the branching pattern;
length and distance measurements are obtained as well. Zheng
et al. present in [14] a method to reconstruct the 3D volume
of a root system based on several 2D images. For analysis
of a single 2D image a medial axis based approach is for
example presented by Leitner et al. in [10].
Branched structures such as root systems, pictured as 2D
images, can be well represented using topological graphs
(based on a medial axis or for example Reeb graphs). The
characteristics used in root phenotyping are captured and
represented by these topological graphs. Within the scope
of this paper a representation of the root system based on
Reeb graphs (similar to the representation introduced in [8])
is presented. Branching points and endpoints of the roots are
represented by the nodes in the Reeb graph, the edges of
the graph represent the branches of the root system. Using a
geodesic distance as Morse function the length of individual

roots can be directly measured based on the Morse function
value of the according nodes in the graph. To allow for
other measurements of length or angles geometric attributes
as for example the position of the branching points can be
stored with the nodes. This representation of topological and
geometric characteristics in a Reeb graph is called augmented
Reeb graph according to Tung et al. [12]. The Reeb graphs
presented in this paper consider the positions of the nodes
in the graph and are therefore augmented Reeb graphs even
though the graphs are simply called Reeb graphs throughout
the paper.
Such a graph representation of a root system allows for
analysis of the root system’s characteristics as well as for
comparisons of root systems based on graph comparison.
Furthermore, the topological graphs can serve as a basis for
new representations. For a comparison of roots of the same
plant on different days of the growth cycle or of different
plants on the same day of growth a normalised representation
is needed. Additionally, such a normalised representation
provides a tool for the combination of different graphs.

The rest of the paper is structured as follows: Section
II provides information on plant phenotyping, while section
III presents a Reeb graph based representation of root
characteristics and section IV discusses advantages of such
a topological image analysis for the application of plant
phenotyping. A new root representation - a normalised
representation based on topological graphs - is introduced in
section V. Section VI summarises the results and concludes
the paper.

II. PLANT PHENOTYPING

As the phenotype of a plant is formed by the observable
characteristics of a plant, it is linked to plant performance
and plant productivity. These are especially important aspects
in food supply. Plant pehnotyping aims at analysing how the
genotype of a plant and the environmental conditions interact
and therefore promote a certain phenotype (see Figure 1).
In plant phenotyping, to understand phenotype to genotype
relations, model organism are often analysed first. The plant
Arabidopsis thaliana is for example used as a model organism
because it is of small size, has a fast life-cycle, it can be grown
in transparent media and its genome is fully sequenced [6].
The analysis done in plant phenotyping can be based on the



Fig. 1: Aim of plant phenotyping: Analyse how genotype
and environmental conditions interact to promote a certain
phenotype.

shoot system of the plant (stems and leaves). However, plant
phenotyping may also be based on the root system of the
plant. For root phenotyping the root structure is analysed. The
following characteristics may therefore be analysed: length of
individual roots, number of branches, positions of branches
(for example distance between first and last lateral root on a
primary root) and branching angles.
For root images the plants can be grown in a transparent media:
for young plants this can be a nutrient containing agar gel
surface in vertically oriented plastic petri dishes. For larger
root systems plants can be grown in a volume of a transparent
gellan gum system. Another option is to grow the plants in
soil and take them out of the soil for measuring and imaging.
Moreover, transparent substrates with qualities comparable to
soil were introduced [4].
To study the development of root systems younger plants are
imaged on successive days of their growth cycle. For each
plant a series of 2D images is taken over time.

III. REEB GRAPH REPRESENTATION

The presented method computes Reeb graph
representations for segmented root images. Therefore an
image segmentation is needed as a pre-processing step. The
root region is defined as the foreground region.
On the segmented image critical points are computed
according to a Morse function. Reeb graphs describe the
topological structure of a shape (e.g. 2D or 3D content) as
the connectivity of its level sets [5]. For the root images the
topological structure is given as the branches of the roots that
are topologically persistent considering the connectivity and
are therefore represented by the edges in the Reeb graphs
[2]. Critical points of a Morse function represent a change in
topology, e.g. a change in the connectivity [2]. For the roots
this is the case at branching points and endpoints of roots.
These critical points form the nodes in the Reeb graphs.

The Reeb graph approach presented in this paper implements
the geodesic distance as Morse function. The geodesic
distance is defined as the shortest distance in a curved space
(manifold) or a restricted area measured between two points
of this area or space. It is measured from a source pixel,
which for this representation is selected to be located in the
very top of the root. As we assume the shoots to be in the
top half of the image and the roots in the lower half, the
source pixel is set to the center of the topmost pixel line in
the foreground region of the segmented root images.

According to Morse theory, Reeb graphs are defined in
the continuous domain as follows:
A smooth, real-valued function f : M → R is called a Morse
function if it satisfies the following conditions for a manifold
M with or without boundary:

• M1: all critical points of f are non-degenerate and lie
inside M ,

• M2: all critical points of f restricted to the boundary
of M are non-degenerate,

• M3: for all pairs of distinct critical points p and q,
f(p) 6= f(q) must hold [3].

However, as the presented approach computes Reeb graphs for
the discrete pixels of an image, a definition for discrete Reeb
graphs is needed. A similar approach to derive a Reeb graph
according to a geodesic distance from a source pixel as Morse
function was presented for discrete 3D data by Werghi et al.
in [13]. A definition for discrete Reeb graphs is given there as
well:

• Two point sets are connected if there exists a pair of
points (one point of each point set) with a distance
between these two points below a fixed threshold.

• If all non-empty subsets of a point set, as well as its
complements, are connected, such a point set is called
connective.

• A group of points that have the same Morse function
value and that form a connective point set, is called a
level-set curve [13].

The nodes in a discrete Reeb graph represent level-set curves,
the edges connect two adjacent level-set curves, therefore the
underlying point sets are connected [13].
In 2D the nodes in the resulting Reeb graphs are of type
minimum, maximum and saddle. We will further distinguish
the saddle nodes to be a saddle node of type split (increase in
the number of connected components) and saddle node of type
merge (decrease in the number of connected components) [3].
Based on these definitions critical points according to the

geodesic distance capture endpoints of roots as local maxima
of the geodesic distance. Saddle nodes in such Reeb graphs
either represent branching points in a root (saddle node type
split) or overlaps of root branches (saddle node type merge).
These saddle nodes are found as locations where parts of
the foreground region with the same geodesic distance to
the source pixel are split in two connected components or
are merged from two into one connected component. The so
found critical points then serve as nodes in the Reeb graphs
and are connected by edges according to the foreground (the



Fig. 2: Reeb graph representation of the root region in a
segmented image.

root). Figure 2 shows an example for such a Reeb graph
representation on a segmented image.
Due to the segmentation needed as a pre-processing step, seg-
mentation artefacts as frayed borders of the foreground region
may appear in the images. These artefacts introduce additional
critical points and spurious branches in the Reeb graphs. A
simple graph pruning approach based on the length of branches
(as for example described by Attali et al. in [1]) can be used to
reduce the number of spurious branches, as spurious branches
due to segmentation artefacts typically introduce short edges
compared to edges representing true branches. However, this
may not be generally true, false positives and false negatives
are possible: spurious branches may be accepted as true
branches during the graph pruning process, while true branches
may be discarded, as they resemble spurious branches. For the
result in Figure 2 graph pruning was already applied.
Another method to detect and discard spurious branches is
based on knowledge about the dataset and the topology of
the plants in the dataset. For the root analysis the imaged
Arabidopsis thaliana plants were grown up to 20 days at 10◦
Celcius. For plants of this age and grown at this temperature
there is usually a primary root and lateral roots that appear
as branches to the left and the right out of the primary root.
Therefore branches (lateral roots) do not branch again at this
age under these conditions. All short branches that may appear
as lateral roots of lateral roots can therefore be discarded as
artefacts. Evaluation results of this representation on a dataset
of Arabidopsis thaliana plants on day 7 and day 10 of their
growth cycle are presented in [9]. An example of a Reeb graph
representation that was built using this knowledge about the
root structure is shown in Figure 3. For this representation a
simple graph pruning based on length was additionally used
to discard spurious branches that appear as small lateral roots
of the primary root. However, due to this graph pruning two
small true branches were discarded as well here.

Fig. 3: Reeb graph representation using knowledge about
root structure to avoid spurious branches due to segmentation
artefacts. Two small true branches were wrongly discarded
during graph pruning.

IV. TOPOLOGICAL CHARACTERISTICS IN PLANT
PHENOTYPING

When growing, roots may transform non-rigidly: they may
for example bend around an obstacle. Moreover, when plants
that were grown in soil are imaged, they need to be taken out
of the soil. Roots may thereby be bended or rearranged. The
root’s shape and therefore the root’s geometric properties are
changed by these actions. However, the connectedness and
the branching structure of the root are not affected by these
actions - the roots topological properties are invariant to these
deformations of the root. Topological properties therefore
provide a stable representation of root characteristics that can
be used in plant phenotyping.

Advantages of topological properties over geometric
properties regarding key aspects of root phenotyping are
discussed in more detail in the following subsections:

A. Deformation of Roots

Roots posses the ability to transform non-rigidly. When
running into an obstacle roots may bend and grow around that
obstacle. Although the usual primary direction of growth of a
root is the direction of gravity, some environmental conditions
or chemical perturbation of plant growth cause roots to grow
agravitropically (i.e. not in the direction of the vector of



Fig. 4: Agravitropically growing Arabidopsis thaliana root.

gravity). Figure 4 shows an example for such a root structure.
While geometric properties (as for example the positions
of endpoints of roots) change with a bend of the root, its
topological properties (for example its connectedness) stays
the same. Topological characteristics are not altered by such
non-rigid transformations.

B. Detection of Branches

Based on geometric properties branches can be detected by
an analysis of the root contour. Methods for corner detection
are a possible option. However, a sharp bend in a root may
also be detected as a branching point by such an analysis.
Using topological properties, such a bend will not be mistaken
for a branching point. Branches appearing in the root structure
change the topology of the root. These changes in topology
can for example be detected as critical points according to a
Morse function (for example the geodesic distance) or based on
a medial axis skeleton. For the medial axis a branching point
is found as a pixel in the skeleton with three neighbouring
pixels (while regular skeleton pixels have two neighbours and
endpoints of roots have only one neighbour). According to
the geodesic distance as Morse function, a branching point is
found as the location for which a part of the foreground region
of one geodesic distance is split in two components, while for
smaller distances, there is only one connected component. This
critical point is represented by a saddle node of type split in
a Reeb graph.
A first attempt to represent the branched structure of roots
using Reeb graphs based on the height function is given in [8].
The results given in [8] show that all major branches (primary
root and long lateral roots) were correctly detected. However,
for 23.5% of the images in the dataset presented in this paper
smaller branches were wrongly discarded as they resembled
spurious branches due to segmentation artefacts.
For the root shown in Figure 3 two of the lateral roots were
discarded as spurious branches in the graph representation as
well. Six lateral roots are visible in the graph representation,

while the root image shows in total eight lateral roots.

C. Length Measurements

The length of individual roots is used as a characteristic in
plant phenotyping. Additional length of roots due to bends in
the roots should be taken into account for length measure-
ments. The distance between the start point of a root (for
example a branching point for a lateral root) and the endpoint
of the root measured as Euclidean distance may not provide
an accurate measurement for deformations (for example de-
flections as shown in Figure 4) in the root. The geodesic
distance however measures the distance as the shortest path
from a source pixel to any other pixel of the root inside the
root region. Additional length due to curvature of the root is
taken into account by this measurement.
As the geodesic distance is used as Morse function in the
approach presented in this paper, the length according to the
geodesic distance is implicitly given by this Morse function.
The length of lateral roots can be easily computed as the
difference in the geodesic distances of the branching point and
the endpoint of the root.
An approach using Reeb graphs based on the geodesic distance
as a Morse function was presented in [9]. Moreover, root
lengths measured using the Reeb graph approach are compared
to manually obtained ground truth measurements. The results
presented in [9] show in general longer roots for length
measurements based on the Reeb graph approach compared
to the ground truth measurements. The ground truth lengths
of individual roots are well approximated by the Reeb graph
measurements, the mean deviation from the ground truth is
0.8% at maximum for the dataset evaluated.

D. Overlaps of Branches

A common problem that may arise for root images are
overlaps of branches in the images. The roots grow as 3D shape

Fig. 5: Overlap of branches in the root image is indicated by
a saddle node of type merge (highlighted in red) in the Reeb
graph representation.



but are imaged as a projection to a 2D image. Branches of the
roots may overlap in the root image due to this projection.
Using geometric properties an overlap of branches is detected
the same way a branching point is. But these two, overlaps
and branching points, cannot be distinguished without further
processing: the direction of growth may for example be taken
into account. If several images over time exist for one plant,
these images can be used to distinguish an overlap from a
branching point to represent the root structure correctly.
Using a topological analysis, overlaps and branching points
share properties as well: in a topological graph both are
represented by saddle nodes. Using a skeleton representation
of a root an overlap is detected just the same way a branching
point is. As it is the case for geometric properties, a branching
point and an overlap cannot be immediately distinguished
based on the derived skeleton, without further processing of
the skeleton.
The major advantage that a Reeb graph representation provides
for root images is that branching points and overlaps can be
distinguished immediately. When computing critical points ac-
cording to the geodesic distance as a Morse function, overlaps
are detected as locations for which a part of the foreground
region of one geodesic distance forms one connected com-
ponent, while for smaller distances there are two connected
components. This critical point is represented by a saddle node
in the Reeb graph, as is a branching point. However, in a
Reeb graph saddle nodes can be further distinguished to be
split or merge saddle nodes. While split saddle nodes represent
branching points, merge saddle nodes represent overlaps in the
root structure. These overlaps can therefore be distinguished
from branching points simply by the node type.
Figure 5 shows an example of a root image with overlapping
branches and the according Reeb graph representation. The
saddle node of type merge, that indicates and represents the
overlap, is highlighted in red.

E. Persistence in Time Series of Images

As the plants are imaged on successive days of the growth
cycle a stack of 2D images over time is available for the plants.
Figure 6 shows an example - the same plant was imaged every
fourth day, the images show day 12, day 16 and day 20 of the
growth cycle. Figure 7 shows the according Reeb graphs built
for the segmented images of the plant images shown in Figure
6.
Based on such a time series of images the persistence of
topological properties can be exploited. When growing, plants
form new branches but do not (naturally) lose branches,
therefore the knowledge about the topology of the plant on
an older day can be used to verify the topology of a plant on
an earlier day. In this way noise and segmentation artefacts
can be detected.
A small branch on an earlier day can for example be verified
as a true branch or discarded as spurious branch based on the
fact whether this branch exists in an image of an older day as
well.
As mentioned before, overlaps can be easily detected in a
Reeb graph based on the saddle node of type merge, that is
introduced for such an overlap. However, to correctly represent
the root structure an overlap not only needs to be detected but
resolved as well. Based on an image at a point in time before
the overlap appeared, the general direction of growth of the

(a) day 12 (b) day 16 (c) day 20

Fig. 6: Plant imaged on three days during the growth cycle. A
stack of 2D images over time is available for each plant.

(a) day 12 (b) day 16 (c) day 20

Fig. 7: Reeb graphs according to the geodesic distance on the
segmented images of the plant images shown in Figure 6.



two branches is known. Assuming the direction of growth to
be consistent for the small time frame of two images (one
before the overlap, one showing an overlap), the overlap can
be resolved. The merge node is doubled and is in each case
connected as a node of degree 2 to the respectively succeeding
node in the two branches. Nodes of degree 2 are regular nodes
and do not represent any topological changes, as critical points
do. The saddle node of type merge is changed to a regular node
when resolving an overlap. It can therefore be smoothed out
of the graph after clearing the overlap.

V. NORMALISED REPRESENTATION

In this section a normalised representation for root
structures is presented. This normalised representation is
based on a graph representation (as for example a Reeb
graph) of a root image.
For the normalised root representation the roots are organised
as branches (lateral roots) of a main root (primary root).
The main root is determined as the longest branch in the
root structure. The main root and all side branches are
drawn as straight lines of their actual length. Branches occur
perpendicular to the left or the right of the main root.
This normalised representation therefore captures the overall
branching pattern which is the number of branches, the side
to which a branch forms (to the left or the right of a main
root), distances at which branches appear are included, as
are the lengths of the branches. This representation does
not represent branching angles, although the angles can be
computed for the original graph and stored as node attributes
in the normalised representation. Moreover, curvature and
bends of roots are not represented.

Figure 8 shows an examples of the normalised representation
for the three roots in Figure 6. For day 12 there are no
side branches therefore the plant is only represented by one
straight line representing the main root. For day 16 side
branches appear and they are longer and better visible for
day 20. As can be seen in the original images in Figure 6
the plants of day 16 and day 20 are very similar as are their
normalised representations. The growth of the side branches
is immediately visible. The difference in the distance of the
branching points on the main root is due to the discretisation
during the segmentation.
Figure 9 shows a possibility to efficiently compare the root
structure of a plant on different days of the growth cycle. This
overlay of the normalised representations especially highlights
the development of the root through the growth period. The
individual representations shown in Figure 8 are drawn as an
overlay. The representations of the three days are therefore
matched at their starting points (at the origin). Day 12 is
represented by red nodes, day 16 by blue nodes and day 20
by green nodes; black nodes belong to the representations of
more than one day. There is an artefact clearly visible in this
representation: the first lateral root to the right is closer to the
starting point for day 20 than for day 16. As negative growth
does not exist for plants, this does not correctly represent
the root development but represents an artefact, due to the
segmentation and the selection of the start point of the root.
Apart from the starting points of the roots, the normalised
representations can just as well be aligned at the branching
points, in case all representations share a common branching

(a) day 12

(b) day 16

(c) day 20

Fig. 8: Normalised Representations for the root images in
Figure 6.



Fig. 9: Overlay of the three normalised representations shown
in Figure 8. Day 12 is represented by red nodes, day 16 by
blue nodes and day 20 by green nodes. Black nodes belong to
the representations of more than one day.

point. As the starting point of the root is determined at
the transition between shoots and roots based on the color
information there, its position may not be stable through the
images of several days. The branching points may in this
case provide a more stable landmark to align the different
representations.
As the roots may not be imaged every day but only every
nth day, the presented normalised representation finds further
application in a simulation of the root structure on days
that were not originally imaged. An interpolation between
the representation of two originally imaged days allows to
build a root representation of a day in between. This can
help to more reliably compare images of different datasets
for which the plants were not imaged on the same days of
their growth cycle. Furthermore the growth of a root (e.g.
its length) can therefore be associated with a point in time.
Root growth can be mapped to time and vice versa. Using
this interpolation between several images, respectively their
graph representations, stages of development of the root
can be projected to the oldest recording of the root and the
development of the root can be visualised on this image.

The normalised representation presented in this paper is
well suited for small branched structures as it is the case
for root images in plant phenotyping up to day 20 in the
growth cycle. For larger structures, with a higher number
of branches, the representation may for repeated branching
cause overlaps of the side branches due to the orthogonal
branching representation. However, keeping the true branching
angles, instead of the artificial orthogonal branching angles
used for this representation, may not eliminate this problem
completely: branches, that overlap in the images, still
overlap in the representation and a solution of overlapping
branches through this new arrangement of the branches is
no longer given. A trade-off between clear representation
of the branching structure, correct presentation of distances
and length and prevention of overlaps needs to be found
depending on the represented dataset and the size of the

branched structures within.

VI. CONCLUSION

The representations presented in this paper employ topo-
logical image analysis to obtain properties used within the ap-
plication of root phenotyping. Root structures are represented
by Reeb graphs, the nodes in the graphs represent branching
points and endpoints of roots, while edges represent the actual
branches. Characteristics needed in plant phenotyping as the
branching structure, number of branches, lengths of branches
and distances between them are capture by this Reeb graph rep-
resentation. Compared to geometric properties the advantages
of topological properties lie in their invariance to deformations
of the root (as for example bends when growing around an
obstacle) and the ability to overcome the common problem of
overlapping branches in root images. As reasoned in Section
IV geometric properties are not suitable for capturing and
representing characteristics used in plant phenotpying. Due to
the ability of roots to transform non-rigidly, plant phenotyping
poses a suitable application for methods of topological image
analysis.
Additionally, a new normalised representation of root struc-
tures is presented in this paper. This representation focuses
on the branching pattern of the roots and captures lengths
and distances, while branching angles are neglected. Thus, the
normalised representation allows for a simplified comparison
of a plant’s development on different days of growth or of
various plants on the same day of growth. Especially the
option to draw several different representations aligned by one
node as an overlay highlights the differences in the plant’s
development.
For future work the temporal correlation of the root images
needs to be taken into account. The roots are imaged on several
days of their growth cycle. A stack of 2D images over time
is provided for each plant. The persistence of the topological
properties over time provides additional knowledge to detect
noise and artefacts. To distinguish a small true branch from
a spurious branch due to artefacts may for example not be
possible based on one image. A later image of the same root
may help with this decision. The information and knowledge
about a root gained on the images of later days in the growth
cycle can be used for decisions on earlier images.
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