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Abstract. This paper presents an approach to derive critical points of a shape, the
basis of a Reeb graph, using a combination of a medial axis skeleton and features
along this skeleton. A Reeb graph captures the topology of a shape. The nodes
in the graph represent critical points (positions of change in the topology), while
edges represent topological persistence. We present an approach to compute such
critical points using Local Binary Patterns. For one pixel the Local Binary Pat-
tern feature vector is derived comparing this pixel to its neighbouring pixels in an
environment of a certain radius. We start with an initial segmentation and a me-
dial axis representation. Along this axis critical points are computed using Local
Binary Patterns with the radius, defining the neighbouring pixels, set a bit larger
than the radius according to the medial axis transformation. Critical points ob-
tained in this way form the node set in a Reeb graph, edges are given through the
connectivity of the skeleton. This approach aims at improving the representation
of flawed segmented data. In the same way segmentation artefacts, as for example
single pixels representing noise, may be corrected based on this analysis.
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1 Introduction

Reeb graphs capture a shape’s topology: the connected components (the connectivity
of the shape) are represented by the edges, while positions of change in topology are
represented by nodes in the graph [1]. Reeb graphs are for example used as a tool of
skeletonisation in [2], a tool of segmentation in [3] or a tool of shape analysis in [4].
Moreover, the compact shape description provided by a Reeb graph may be used for
shape comparison and retrieval.
For a Reeb graph representation critical points are usually computed on the shape ac-
cording to a Morse function [1]. The obtained Reeb graph is dependent on the applied
Morse function and its properties. In contrast, we present a novel approach to derive the
edges of a Reeb graph through the topology (connectivity) captured by a medial axis,
the nodes are computed based on local features at certain positions in the shape.
In [4] we presented an analysis of roots for the purpose of plant phenotyping using Reeb
graphs. Our results showed that Reeb graphs are suitable for such an analysis. However,
the sensitivity of this representation to segmentation errors is likely to falsify results. To
reduce the influence of segmentation errors, the computation of the Reeb graph should
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not be based solely on segmented data.
In order to analyse a shape using a Morse function, the input image needs to be binary
segmented. Such a pre-processing may introduce artefacts e.g. spurious branches in the
graph representation. Post-processing methods applied to the graph representation, for
example graph pruning, may be used to discard spurious branches.
Instead of a post-processing procedure we propose an approach that is based on an
initial shape representation according to a segmentation of the input data. For this ini-
tial representation the medial axis is used. It is obtained as the centers of maximally
inscribed circles on a shape. The medial axis (in 2D and 3D) as well as the more so-
phisticated curve skeletons [5] are used as compact shape descriptor as they capture
the topological characteristics of a shape. However, the medial axis is sensitive to noise
due to segmentation artefacts. Thus, the skeleton is only used as a first representation to
guide the computation of a Reeb graph representation.
Based on the skeleton, critical points that form the node set of a Reeb graph, are com-
puted using Local Binary Patterns (LBPs) [6] centered along the skeleton. For the com-
putation of critical points according to a Morse function, Morse conditions need to be
kept. One such Morse condition requires the Morse function values of two different
critical points to differ in order to derive a unique graph representation. However, when
representing shapes in a discrete space (e.g. 2D pixel or 3D voxel space) this condition
is likely to be violated as discussed in [7].
LBPs analyse and represent an image region, the neighbourhood at certain radius,
around a pixel. A common application for LBPs is given by texture classification as
originally presented in [8]. Moreover, LBPs have been used for face recognition in [9].
We use LBPs to computed nodes of a Reeb graph. When determined as the critical
points of a Morse function, these nodes may be classified according to the different
changes in topology they represent. Here, the different types of nodes correspond with
the neighbourhood configurations that can be represented by an LBP1. LBPs allow to
base the representation on the original unsegmented data. Starting from an initial seg-
mentation and an initial skeleton representation LBPs may be computed on the unseg-
mented image. Segmentation artefacts may be detected and corrected in this way.

The rest of the paper is structured as follows: Section 2 provides an introduction to
LBPs, Section 3 to Reeb graphs. The computation of a Reeb graph through LBPs is
defined in Section 4. Results obtained are discussed in Section 5. Section 6 concludes
the paper and gives an outlook to future work.

2 Principle of Local Binary Patterns

LBPs were introduced by Ojala, Pietikäinen and Harwood in 1994 [8] as a tool of
texture classification. Due to its computational simplicity and its robustness to spurious
color gradients e.g. due to lighting conditions, LBPs are popular texture operators.
A simple example how LBPs work is shown in Figure 1: The center pixel is compared

1 Although identical names are used for Reeb graph node types and LBP types an identical
meaning is not guaranteed (e.g. an LBP of type saddle may not represent a saddle node in a
Reeb graph). We indicate Reeb graph node types by R, LBP types by L (e.g. saddleR, saddleL)
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sult
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(d) LBP operator
for center pixel c

Fig. 1: Simple LBP computation.

(a) maxL (b) minL (c) plateauL (d) slopeL (e) saddleL

Fig. 2: Neighbourhood configuration detected by LBPs. The red circle indicates the
neighbourhood used in the LBP computation for the pixel at its center.

to its subsampled neighbourhood. The relations of this comparison are stored as a bit
pattern: In case the value of a neighbouring pixel is larger than or equal to the value of
the center pixel its bit is set to 1 otherwise to 0. The neighbourhood pattern is encoded
as the position of each neighbourhood pixel in a binary data item [8].
Moreover, the configuration of the neighbourhood around a pixel encodes the local
topology. The region may be a (local) maximumL (the bit pattern contains only 0s), a
(local) minimumL (the bit pattern contains only 1s), a plateauL (the bit pattern contains
only 1s, but all pixels of the region have the same gray value), a slopeL (the bit pattern
of the region contains one connected component of 1s and one connected component
of 0s) or a saddleL point otherwise [10]. Figure 2 shows examples for these region
configurations that may be encoded by LBPs. The approach presented in this paper
uses the different region configurations to derive critical points of a shape in order to
represent it using a Reeb graph.
LBPs are not only defined for the eight immediate neighbours of a pixel. These eight
direct neighbours of a center pixel are at radius 1 from the center pixel but the radius at
which an LBP operator is computed may also be larger than 1.

3 Morse Theory and Reeb Graphs

Reeb graphs describe the topological structure of a shape (e.g. 2D or 3D content) as the
connectivity of its level sets [11]. A shape is analysed according to a Morse function
to derive a Reeb graph. Two common Morse functions are the height function and the
geodesic distance. The nodes of a Reeb graph correspond to critical points computed
on a shape according to a Morse function. At critical points the topology of the anal-
ysed shape changes, thus the number of connected components in the level-set changes.
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Edges connecting critical points represent the connected components and thus describe
topological persistence.
A point p = (a, b) of a function f(x, y) is called a critical point if both derivatives
fx(a, b) and fy(a, b) are equal to 0 or if one of these partial derivatives does not exist.
Such a critical point p is called degenerate if the determinant of the Hessian matrix at
that point is zero, otherwise it is called non-degenerate (or Morse) critical point [12].

A Morse functions is defined in the continuous domain as follows:
A smooth, real-valued function f :M → R is called a Morse function if it satisfies the
following conditions for a manifold M with or without boundary:

– M1: all critical points of f are non-degenerate and lie inside M ,
– M2: all critical points of f restricted to the boundary of M are non-degenerate,
– M3: for all pairs of distinct critical points p and q, f(p) 6= f(q) must hold [13].

Although originally defined in the continuous domain, Reeb graphs have been extended
to the discrete domain:

– Two point sets are connected if there exists a pair of points (one point of each point
set) with a distance between these two points below a fixed threshold.

– If all non-empty subsets of a point set, as well as its complements, are connected,
such a point set is called connective.

– A group of points that have the same Morse function value and that form a connec-
tive point set, is called a level-set curve [3].

The nodes in a discrete Reeb graph represent level-set curves, the edges connect two
adjacent level-set curves, therefore the underlying point sets are connected [3].
In 2D three types of nodes in a Reeb graph correspond to critical points: minimaR,
maximaR or saddlesR [13]. MinimumR and maximumR nodes are of degree 1, due to the
conditions for Morse functions (especially condition M3) saddleR nodes are of degree
3. An example Reeb graph containing all possible types of nodes is shown in Figure 3.

Fig. 3: Reeb graph of a ring according to the height function; the foreground region is
colour labeled according to the connected components.
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4 Computation of Reeb Graphs based on LBPs

Reeb graphs are derived on binary segmented 2D or 3D data using an analysis based on
a Morse function. Different Morse functions applied to the same image may result in
different Reeb graphs. Moreover, the computed Reeb graph depends on the properties
of the Morse function used. A height function for example is not rotational invariant.
Due to the rotational invariance property of the medial axis, Reeb graphs computed
according to the approach presented in this paper are rotational invariant (apart from
artefacts due to the discrete pixel space).
In order to analyse unsegmented data local descriptors, as for example LBPs, may iden-
tify the critical points directly on this data. For Reeb graphs based on a Morse function
Morse conditions [13] apply. When computing the critical points (the nodes in a Reeb
graph) according to LBPs, the following conditions apply: a critical point is determined
by an LBP of type maximumL, minimumL, slopeL or saddleL as described in Section
2. For LBPs of type saddleL the neighbourhood configuration of the LBP may not be
divided into more than six connected components (therefore three foreground regions,
as saddleR nodes are of degree 3). LBPs of type plateauL do not represent critical points
but regular points which do not represent any change in topology.
The approach presented here works on a segmented image as an input. The computa-
tion may be extended to unsegmented data. Nevertheless, a segmented image may still
be needed as a first input to guide the computation of the critical points. In case the
position of the critical points can be estimated (e.g. in video data based on the position
in a previous frame) the segmentation is not necessary.
The computation of a Reeb graph according to LBPs in general works as follows:

1. initial binary segmentation and medial axis representation of foreground
2. computation of LBPs along skeleton pixels
3. determination of critical points
4. connection of critical points according to skeleton to obtain Reeb graph

Theorem 1. This approach determines a Reeb graph representing the foreground shape.

Proof. A conventional Reeb graph is defined as a topological graph which describes the
evolution of level-sets of a real valued function on a manifold. The medial axis captures
the topology of a shape. It is used in the presented approach to guide the graph com-
putation and to define the connectivity. The obtained graph therefore is a topological
graph. Our proposed method follows the pixels along a skeleton. The geodesic distance
(along the skeleton, starting from an arbitrary skeleton pixel) serves as the function
analysing the shape. Although, here one level-set only consists of single skeleton pixels
at a certain distance to the starting point, the evolution of the level-sets is just as well
described by the branching points and end points of the skeleton.
Changes of topology (e.g. an increase in the number of connected components due to a
branch) are detected at the boundary of the shape when computing a Reeb graph accord-
ing to a common Morse function (e.g. the height function or the geodesic distance). The
medial axis guides our approach; critical points are positioned on the skeleton, therefore
inside the shape. Our identification of critical points further considers LBPs along this
skeleton. These LBPs are computed according to the medial axis radii, plus an increase
of ε. Therefore, the boundary of the shape is taken into account. ut
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4.1 Initial Skeleton

An initial binary segmentation of the input image is needed to compute the medial axis
for the foreground region. This axis is formed by the centers of maximal circles that
cover the shape completely. Therefore, the medial axis implicitly provides a measure
of width, for each point pi along the medial axis the radius ri of the inscribed maximal
circle (the distance to the boundary) is known [14]. Figure 4a shows a segmented exam-
ple image (from the the mythological creatures database [15]) together with the medial
axis representing it.

4.2 LBPs along Skeleton

LBPs are computed for each skeleton pixel. According to the radius ri stored with each
skeleton pixel pi, the LBP is computed for each pi with a radius of ri∗1.5. This enlarge-
ment by ε = 50% was experimentally determined. ε may be adjusted according to the
desired output, as it regulates the detection of spurious branches. It serves as Nyquist
limit, as branches smaller than ε are discarded by this approach.
This radius is likely to be 15 pixel or more for the images in our dataset and in general.
Therefore, it may not be possible to store the final LBP operator: For a radius of 15 pixel
the LBP is (in our case) computed based on 64 neighbours along a circle of radius 15.
As described in Section 2 the final LBP operator is obtained by converting the binary
data item representing the neighbourhood of a pixel to the decimal system. This may
result in numbers larger than 264, which cannot be represented in most programming
languages. However, this LBP operator is not needed for the presented approach. In-
stead of computing LBP operators, we only compute the type of LBP neighbourhood
configuration for each skeleton pixel. Figure 4b shows the skeleton pixels colour la-
beled according to the LBP neighbourhood configuration around these pixels.
In contrast to the LBP neighbourhood configurations shown in Figure 2 we only en-
counter the following three neighbourhood configurations (shown in Figure 5) when

(a) Binary segmented input image
and its medial axis drawn in red.

(b) LBPs: red = slopeL, green =
ridgeL, blue = branchL.

Fig. 4: Computation of LBPs along the skeleton.
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(a) slopeL (b) ridgeL (c) branchL

Fig. 5: Possible LBP neighbourhood configuration along skeleton pixels of a binary
segmented image (LBP radius according to the medial axis radius but enlarged).

computing LBPs along a skeleton of a binary segmented image: slopeL, ridgeL (special
case of saddleL) and branchL (again special case of saddleL). They are determined as
follows: the LBP bit pattern according to the pixels along the LBP radius consists of
one connected component of 0s and one connected component of 1s for a slopeL, two
connected components each for a ridgeL and three each for a branchL.

4.3 Critical Points according to LBPs

To determine the position of critical points, the skeleton pixels are analysed according
to the type of LBP and the number of neighbouring skeleton pixels. A critical point of
type saddleR is detected as skeleton pixel for which the LBP shows a branchL and which
has three neighbouring skeleton pixels. Critical points of type minimumR/maximumR

are given as skeleton pixels with a corresponding LBP of type slopeL and only one
neighbouring skeleton pixel. Skeleton pixels with an LBP indicating a ridgeL and two
neighbouring skeleton pixels correspond to regular points. At such positions nodes of
degree two may be added along an edge in a Reeb graph. However, as nodes of degree
two do not describe any changes in topology, they are typically disregarded in a topo-
logical representation.

(a) Nodes based on LBPs: red
= saddleR, green = minR/maxR.

(b) Final Reeb graph based on
LBPs along the skeleton.

(c) Reeb graph using geodesic
distance as Morse function.

Fig. 6: Computation of the Reeb graph according to the LBPs along the skeleton and
according to the geodesic distance as Morse function.
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In case the LBP and the number of neighbouring skeleton pixels do not correspond ac-
cording to the above given definition, artefacts may be detected: In case a skeleton pixel
with three neighbouring skeleton pixels has an LBP of a type different from branchL,
small curvature changes along the boundary may have introduced a spurious branch in
the skeleton. By computing the LBP using the enlarged medial axis radius, small spu-
rious branches can be detected and discarded. Artefacts are further caused by circular
curvature changes along the boundary that may assign an LBP of type branchL to a
skeleton pixel with only two neighbouring skeleton pixels. Such pixels are corrected to
be not represented as a critical point but as a regular node in the Reeb graph (note that
regular nodes are discarded in the final graph representation).
Figure 6a shows the critical points compute for the skeleton and the LBPs in Figure
4. Depending on the size of the LBP radius at a certain skeleton pixel, branches may
be detected as spurious branches. In the example image this is visible at the tail of the
mythological horse. Here a saddleR node (red) was labeled as minimumR/maximumR

node (green). Such branches are discarded in the final graph representation (Figure 6b).

4.4 Reeb Graph according to Skeleton and LBPs

The critical points are used as nodes in the Reeb graph. Edges are determined by the
skeleton: The skeleton is traced from each branch point (saddleR) to all neighbouring
nodes. The resulting graph for the example image is shown in Figure 6b. For comparison
Figure 6c shows a Reeb graph obtained using an alternative approach based on the
geodesic distance as Morse function [4]. Apart from a difference in the positions of the
nodes, the numbers of the represented connected components are equivalent.

5 Results

The approach presented in this paper shows work in progress. The results are therefore
preliminary results.
Our approach was tested on the 99 images of the shape database presented in [16] and
on the 15 images of the mythological creatures database [15]. Out of these 114 images
the obtained Reeb graph correctly represents the topology for 60 images. In case the
shape was not correctly represented, this can be ascribed to the graph pruning that is
automatically included and dependent on the chosen LBP radius. Moreover, compact
shapes with a circular boundary line may corrupt the representation. Table 1 shows
Reeb graphs computed using the presented approach for 10 images of the evaluated
database [16]. For simplicity the edges of the Reeb graph are drawn as straight lines
although their precise geometry can be taken from the medial axis. For image 6 the
head of the animal is not represented in the final graph . Due to the circular contour
line the according skeleton segment was incorrectly detected as a spurious branch and
therefore rejected. For image 10 no graph representation could be found, as well in this
case the circular contour line rejected a branch in the skeleton as a true branch. Such
representational artefacts may be avoided by computing more than one LBP operator
according to different radii around one skeleton pixel, as well as computing the LBP
operators on an unsegmented grayscale image instead of the segmented binary image.
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Table 1: Reeb graph representation obtained for silhouette images.

1 2 3 4 5

6 7 8 9 10

However, this Reeb graph representation, just as any other topological graph represen-
tation is best used for elongated, branched or articulated objects. Compact shapes with
a smooth, rounded contour line (circular, no elongation and no dents along it) hold only
little characteristic topological information (no significant branches) with therefore lit-
tle discriminative power. Thus, also the representational power of a topological graph
representing such a shape is limited. Compact shapes do not present suitable applica-
tions for Reeb graphs in general, but are well suited for shock graphs [16].

6 Conclusion and Future Work

The presented approach does not analyse the binary segmented input image using a
Morse function to compute a Reeb graph. Instead the computation of the Reeb graph is
based on LBPs along a skeleton. In this way critical points, which form the node set of
the Reeb graph, and the connectivity of the nodes (the edges) representing the shape’s
topology can be derived. The results show that this approach derives Reeb graph rep-
resentations for shapes that may be well represented using a graph (for example articu-
lated objects).
In contrast to Morse functions, which need to be evaluated for every pixel of the shape,
this new approach determines the Reeb graph by evaluating a much smaller number of
locations: only the axis points. A future goal is to further limit these evaluation posi-
tions (e.g. to use the end points and branching points of the axis only).
The silhouette images that were used in the experiments only present a first test dataset.
For future work the intended input data are grayscale images. An initial segmentation
may still be needed in order to derive the skeleton which guides the Reeb graph com-
putation. Nevertheless, the LBP computation may be performed on the unsegmented
data. In this way segmentation artefacts may be detected in the graph and discarded.
The segmentation may even be corrected based on the observed LBP operators.
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