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Abstract. This paper introduces a shape descriptor based on a com-
bination of topological image analysis and texture information. Critical
points of a shape’s skeleton are determined first. The shape is described
according to persistence of the local topology at these critical points over
a range of scales. The local topology over scale-space is derived using the
local binary pattern texture operator with varying radii. To visualise
the descriptor, a new type of persistence graph is defined which cap-
tures the evolution, respectively persistence, of the local topology. The
presented shape descriptor may be used in shape classification or the
grouping of shapes into equivalence classes. Classification experiments
were conducted for a binary image dataset and the promising results are
presented. Because of the use of persistence, the influence of noise or
irregular shape boundaries (e.g. due to segmentation artefacts) on the
result of such a classification or grouping is bounded.
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1 Introduction

We present in this paper a shape descriptor based on local topology and per-
sistence in order to classify shapes. In prior work [7] we presented an approach
to derive Reeb graphs using skeletons and local binary patterns (LBPs). One
crucial decision when applying this approach is the choice of radius for the LBP
computation. The degree of detail respectively noise (e.g. segmentation arte-
facts) that is captured by the representation depends on this radius. In order to
analyse this influence of the parameter we conducted the following experiments:
For the critical points of a skeleton (branching and end positions) all possible
radii were tested. We can restrict the LBP analysis to these critical points as
the parts of a skeleton in between critical points form a continuous curve repre-
senting a ribbon-like shape. These skeleton segments in between critical points
correspond to edges in a Reeb graph and therefore do not represent any change
in topology.

The experiments we conducted not only allow us insight into the impact of
a change in the radius parameter but it also provides the basis for a new shape
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descriptor. According to this descriptor a shape is represented by the evolution
of LBP types for critical points of a skeleton and for varying LBP radii. This
approach is therefore related to persistence as introduced by Edelsbrunner et al.
[4]. In persistence, those features which persist for a parametrised family of spaces
over a range of parameters are considered signals of interest. Short-lived features
are treated as noise [5]. Such a range of parameters is for example given by
succeeding scales as it is done for scale-space representations [10]. The persistence
of a feature is given as its lifetime, that is the range of scales for which the
feature is present. The approach presented is based on persistence over scales. We
consider LBPs for ranges of radii and use the persistence of LBP types according
to these radii as shape descriptors. Similar shape descriptors based on topological
persistence are for example barcodes [1] or persistence diagrams [4]. The shape
descriptor presented in this paper was inspired by a method to compute Reeb
graphs. Nevertheless, for shape classification using a graph representation, graph
matching is needed, which is not trivial and may be computationally expensive.
A classification of shapes using the shape descriptor presented in this paper is
done by comparison of feature vectors using the edit distance. As these feature
vectors are only computed for a small number of characteristic positions within
the shape, the number of feature vectors for each shape is limited. Thus, a shape
classification based on the new descriptor can be done efficiently. These feature
vectors are built as a scale-space representation. The sampling of the scale-space
may of course limit the degree of detail of the representation. In the discrete
space a complete sampling over all possible scales can be done. However, as the
shape descriptor depends on this sampling of the scale-space it is not invariant to
the size of the shape represented. For shape classification using shapes of varying
sizes, a normalisation is needed beforehand.

The rest of the paper is structured as follows: Sect. 2 gives a short summary
of the theory of LBPs. The influence of the LBP parameters on our approach is
discussed in Sect. 3. In Sect. 4 a new shape descriptor based on the variation of
one such parameter is presented. Experimental results obtained for this shape
descriptor are given in Sect. 5. Section 6 concludes the paper.

2 Introduction to LBPs

LBPs were first introduced for texture classification [11] and since became pop-
ular texture operators: To determine the LBP for a pixel, this pixel is compared
to the subsampled neighbourhood around it. The according position in a bit pat-
tern is set to 1 if the value of a neighbouring pixel is larger than or equal to the
value of the center pixel and to 0 otherwise (Fig. 1a and b). The two parameters
P and R may be adjusted for the LBP operator. P fixes the number of sampling
points along a circle of radius R around the center pixel, for which the LBP
operator is computed [12]. Figure 1c shows different parameter configurations.

The bit pattern encodes the local topology. According to the LBP, the center
pixel can be classified as:

– (local) maximum (the bit pattern contains only 0s),
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(a) compar-
ison with
neighbours

(b) bit pattern (c) (P,R) = (8,1); (P,R) = (16,2); (P,R)
= (8,2) - according to [12].

Fig. 1. (a) and (b) LBP computation for center pixel c and (c) variations of the para-
meters P (sampling points) and R (radius).

(a) max (b) min (c) plateau (d) slope (e) saddle (f) ridge

Fig. 2. Local topology encoded by an LBP at the radius marked in red (Color figure
online).

– (local) minimum (the bit pattern contains only 1s),
– plateau (the bit pattern contains only 1s, but all pixels of the region have the

same gray value),
– slope (the bit pattern of the region contains one connected component of 1s

and one connected component of 0s - compare uniform patterns [12]),
– saddle point otherwise [6].

We further define a special case of saddles, the ridge to contain two connected
components of 1s and two connected components of 0s. Figure 2 shows all these
neighbourhood configurations.

3 Impact of the LBP Radius

In [7] we used a combination of LBPs and the medial axis to derive a graph
representation of a binary image. The shape is first represented using a skeleton.
Each skeleton pixel is then considered the center pixel of an LBP computation
and the LBP type is determined. The LBP is computed for a radius R′ that is
larger than the radius r of the maximally inscribed circle stored for every medial
axis pixel, in order to consider also the shape boundary: R′ = r + ε.

The graph representations obtained using this method depend strongly on
the chosen LBP parameters. While adapting the number of sampling points P
results in no or only minor changes of the graph, if the sampling density is high
enough to capture the finest details, variations of the radius R have a strong
influence on the resulting graph since many details inside the circle may be
ignored.
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The medial axis radius r of a certain skeleton pixel needs to be enlarged for
the radius R′ used in the LBP computation in order to take the shape bound-
aries into account (this also compensates for possible segmentation artefacts).
Therefore, R′ = r + ε. In this process ε controls the radius and thus the level of
detail that is captured or discarded. Enlarging ε may be compared to a smooth-
ing operation along the shape’s boundary. The impact on the resulting graph can
be best described as graph pruning. Branches shorter than r + ε are discarded
by this approach. However, how to choose factor ε is a crucial decision.

The choice of ε in general depends on the dataset. Moreover, ε should not
be set to a fixed number of pixels for all skeleton pixels of the shape or even of
the dataset. It should rather be defined as an adapting factor dependent on the
medial axis radii. When varying the LBP radius, the LBP type of a skeleton pixel
changes: For ε = 0 the LBP sampling points are located along the maximally
inscribed circle of the medial axis. Therefore, for a binary segmented image the
according LBP is of type plateau. For a slightly increased radius the LBP in
general equals the connectivity of the skeleton pixel (branching point, end point
or ridge). For further increasing ε the LBP may change its type [2]. LBPs of the
following types: plateau, slope, saddle and ridge may occur. The largest analysed
radius is reached once an LBP of type maximum is observed. This configuration
appears, once the whole shape is covered by the circle spanned by radius R′. For
this maximal radius R′

max the following condition holds:

R′
max ≤

{
diameter

2 for center of shape
diameter everywhere

(1)

Some examples of maximally inscribed circles with radius r and circles according
to an enlarged radius R′ are shown in Fig. 3. While the LBPs for maximally
inscribed circles encode a plateau, the local topology according to the LBP of
the larger circle shows a saddle (Fig. 3a) and a slope (Fig. 3b).

(a) plateau → sad-
dle

(b) plateau →
slope

Fig. 3. LBP for increasing radius captures evolution of local topology.

krw@prip.tuwien.ac.at



170 I. Janusch and W.G. Kropatsch

4 Shape Descriptor: Persistence of Critical Points

We further analyse the evolution of the LBP types for increasing radii R′ starting
with the medial axis radius r:

r ≤ R′ ≤ diameter. (2)

The evolution, respectively persistence of the LBP types of critical points of a
skeleton (e.g. branching points and end points) can be described using a vector
(LBP persistence vector) and a graph visualisation. We compute the LBP type
for a range of radii and store it for every radius analysed. The persistence of
such an LBP type is defined as its lifetime. In case of our persistence vector
the lifetime is given as the length of an uninterrupted sequence of identical LBP
type entries. We use the graph and the underlying LBP persistence vector as a
shape descriptor and as a tool for shape classification.

For a binary shape, the approach presented in this paper proceeds as follows:

1. obtain topology preserving skeleton (using morphological thinning)
2. derive medial axis radii (Euclidean distance from boundary)
3. locate branching points of the skeleton
4. compute LBP persistence vector for each branching point
5. shape matching: compare LBP persistence vectors using the edit distance [9]

More details and properties of this approach are discussed in the following sub-
sections.

4.1 LBP Persistence Vectors

We iteratively analyse the local topology captured by the LBP operator for the
critical points using increasing LBP radii R′. We start with the radius r of the
medial axis R′

0 = r and increase the radius in each iteration. This computation
terminates as soon as the circle spanned by radius R′ covers the entire shape.
Therefore, we start with an LBP of type plateau R′

0 = r and stop at an LBP of
type maximum. In between these two states the LBP type may alternate between
ridge, saddle, and slope. An LBP of type minimum can not appear, as for this
the LBP center pixel as well as all sampling points along the LBP radius would
need to be in the background region, which is not possible since the LBP center
pixel is a branching point of a skeleton and therefore always inside a shape.

For every critical point we store in the persistence vector the LBP type of
every radius analysed. Thus, an LBP type of high persistence is captured as
sequence of uninterrupted, repeated entries of the same LBP type. Alternatively
the interval of radii for which one LBP type stays the same may be stored. In the
persistence graph we assign the LBP types to one axis and plot the according
radii along the second axis. Figure 4 shows a small toy example for a simple
shape.
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(a) Simple shape and some LBP
radii marked in red.

(b) Persistence graph and LBP persis-
tence vector v.

Fig. 4. Toy example for LBP persistence vector plotted as graph (Color figure online).

4.2 Critical Points of the Skeleton

Critical points of the skeleton (branching and end positions) represent changes
in topology: the number of connected components changes when walking along
a skeleton and passing a critical point. The skeleton segments in between these
critical points correspond to topological persistence, the number of connected
components does not change when moving along these segments. For these skele-
ton segments the LBP centered at a skeleton pixel is always of type ridge, upon
discarding intersections of parts of the shape that are not in the same connected
component as the center pixel for the LBP computation. Branching points thus
serve as suitable locations within a shape to compute LBP persistence vectors.
However, for some shapes no branching points will exist. In this case the skele-
ton is given as single curve with two endpoints. A skeleton given as a single
point (medial axis of a perfect circle) or a closed curve (medial axis of a per-
fect ring) are special cases which are not considered here. For skeletons without
branching points a representation of the shape is possible using LBP persistence
vectors computed for the end points. The LBP persistence vectors then allow
to deduct information about the curvature of the shape’s boundary. Taking the
sequence of LBP types for increasing radii along a branchless medial axis into
consideration, bounds for the degree of curvature of the medial axis can be esti-
mated (Fig. 5a and c). Furthermore, changes in thickness are detectable using the
medial axis radius stored for the skeleton pixels (Fig. 5b). Shocks as introduced
by [13] present a suitable alternative to analyse and represent such shapes.

4.3 Shape Classification

Since we compute the proposed shape descriptor (the LBP persistence vector)
centered at the branching points of the skeleton, one for each branching point,
we derive several shape descriptors representing one shape. We tested different
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(a) straight medial axis,
constant radius

(b) straight medial axis,
alternating radius

(c) curved medial
axis, constant ra-
dius

Fig. 5. Examples for shapes with no branching points in the skeleton.

approaches on how to choose from them or how to combine them in order to
classify a shape in our experiments and present them in Sect. 5. However, the
LBP persistence vectors corresponding to the different branching points of a
single shape all individually cover the whole shape. Therefore, it is sufficient to
choose just one of the branching points and its corresponding persistence vector
as shape descriptor. Nevertheless, some branching points may be better suited
as center of a shape descriptor (e.g. because they require less iteration to cover
the whole shape). Future research may therefore be focused on methods and
properties to judge the suitability of a branching point.

For classification of shapes the LBP persistence vectors are compared using
the Levenshtein distance (edit distance) [9] as a measure of similarity which is
also used by Sebastian et al. when comparing shock graphs [13]. Since every
shape descriptor starts with an LBP of type plateau and ends with an LBP
of type maximum, edit operations only alter the LBP types in between. These
are of type saddle, slope or ridge. LBPs of these three types may alternate in
an LBP persistence vector, therefore every edit operation generates a valid LBP
persistence vector. The LBP type is stored as entry in the LBP persistence vector
for every radius analysed, a sequence of identical entries represents an LBP type
of high persistence. To transform such a vector to a sequence of alternating LBP
types (therefore low persistence) many edit operations are needed. Thus, the
information about the lifetime of one LBP type over a range of radii is taken into
account when using the edit distance. In addition, this shape descriptor is robust
in regard to small changes of the shape (e.g. small perturbations along the shape’s
contour), since such details do not persist over a large range of scales (radii) and
thus have low persistence. These small changes therefore lead to changes of short
sequences in the LBP persistence vector. Regarding a comparison using the edit
distance, differences in such few entries are inexpensive and therefore the two
shapes (with one of them showing small perturbations) will show high similarity.

5 Experiments

We tested the proposed shape descriptor on a subset of the Kimia 99 dataset
[13]. For the subset used in our evaluation of shape classification we chose shape
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(a) class1 (b) class2 (c) class3 (d) class4 (e) class5 (f) class6

Fig. 6. Representative image for each class in the dataset together with its skeleton
and branching points marked in red (Color figure online).

classes for which at least four images are in the class. Furthermore, we did
not use the partially occluded shapes of the dataset. Following this rules, our
dataset contains 38 images, which are grouped into six classes holding four to
eleven images each. Figure 6 shows one representative image together with its
skeleton and branching points of the skeleton (marked in red) for all classes of
the dataset1.

To evaluate the classification efficiency of our shape descriptor we performed
a leave-one-out cross validation for each of the 38 shapes in the dataset and for
the 105 LBP persistence vectors corresponding to the 105 branching points in
the dataset. For every shape several descriptors (LBP persistence vectors), one
corresponding to each branching point of the skeleton, may exist. The shape can
be classified using one of these descriptors or a combination of them. We tested
the following approaches:

1. according to the LBP persistence of only one branching point,
2. according to the average LBP persistence of all branching points of the shape,
3. according to the combined LBP persistence of all branching points of the

shape using a majority vote,
4. according to the combined LBP persistence of all branching points of the

shape using a weighted majority vote.

5.1 Classification Using Single LBP Persistence

Every image is classified by a comparison of the LBP persistence vector of only
one of its branching points to all other LBP persistence vectors. For the dataset
used in this experiment 105 branching points and respectively 105 LBP per-
sistence vectors represent the 38 images. Figure 7a shows the confusion matrix
for the distances between all 105 vectors. For every LBP persistence vector the
class with the smallest edit distance, is chosen as resulting class. We evaluated
this classification using leave-on-out cross validation for the 105 vectors. Only
15 out of 105 LBP persistence vectors were wrongly classified, 86 % were cor-
rectly matched. The confusion matrix in Fig. 7a shows that smallest distances
correspond mostly to comparisons within one class for class 1, 3 and 6. This is
1 The complete dataset with marked skeletons and branching points can be found at:

prip.tuwien.ac.at/staffpages/ines/docs/dataset dgci16.pdf.
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(a) distances between all LBP persis-
tence vectors

(b) average distances of the LBP persis-
tence vectors of all images

Fig. 7. Confusion matrix: distances of the (a) 105 LBP persistence vectors and (b) 38
average LBP persistence vectors. Blue: low distances; red: high distances. The lines
separate the individual classes: class1 to class6 from left to right and top to bottom
(Color figure online).

well visible by the dark blue blocks along the diagonal. Especially for class 5
distances are in general high both for comparisons within and outside the same
class. This may be due to the high variation of the shapes within this class.

5.2 Classification Using Average LBP Persistence

Here we compute the distance of one image of the dataset to all other images as
the average of the edit distances of all LBP persistence vectors representing one
image. We then classify every image using leave-one-out cross validation. Again
the class of the image with the smallest distance is taken as classification result
The confusion matrix for this experiment is shown in Fig. 7b. For classes 1, 3,
4 and 6 the smallest distances are found within the same class. This is again
visible by the blue blocks along the diagonal. 8 of the 38 images were wrongly
classified, 79 % of the images are correctly classified. The classification error is
slightly higher in comparison with the method presented in Sect. 5.1.

5.3 Classification Using a Majority Vote for Combined LBP
Persistence

For this experiment we do not combine the distances. We first determine for
all LBP persistence vectors of one image the class of smallest distance (as it is
done in Sect. 5.1). The final classification is obtained using a majority vote on
these classes. In case no majority can be found a choice is made randomly. We
again classified all 38 images of the dataset using a leave-one-out cross validation:
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Table 1. Classification results using a majority vote (result1) and a weighted vote
(result2). Wrongly classified samples are highlighted in bold font.

Image img1 img2 img3 img4 img5 img6 img7 img8 img9 img10 img11 img12 img13

Class 1 1 1 1 1 2 2 2 2 2 3 3 3

result1 1 1 1 1 1 1 1 1 1 1 3 3 3

result2 1 1 1 1 1 2 1 1 1 1 3 3 3

Image img14 img15 img16 img17 img18 img19 img20 img21 img22 img23 img24 img25 img26

Class 3 3 3 3 3 3 3 3 4 4 4 4 4

result1 3 3 3 3 3 3 3 3 4 4 4 4 4

result2 3 3 3 3 3 3 3 3 4 4 4 4 4

Image img27 img28 img29 img30 img31 img32 img33 img34 img35 img36 img37 img38

Class 4 4 4 5 5 5 5 6 6 6 6 6

result1 4 1 2 5 5 5 5 6 6 6 6 6

result2 4 1 2 5 5 5 5 6 6 6 6 6

7 images were wrongly classified, thus 82 % of the dataset were correctly classi-
fied. Table 1 shows the classification results in row result1. All samples of class 2
were wrongly classified as class 1. This may be due to the quite high similarity
of the shapes apart from symmetry (see Fig. 6). However, all samples of class 5,
which has a high variation within the class, are correctly classified in contrast
to the two classification procedures presented in Sects. 5.1 and 5.2.

5.4 Classification Using a Weighted Vote for Combined LBP
Persistence

This classification procedure works similar to the one presented in Sect. 5.3.
However, here the LBP persistence vectors of one image are not equally involved
in the voting but have a weighted vote according to their distance values. We
compute the weight as the ratio of the distance of one LBP vector to the sum
of distances of all vectors belonging to one image. Smallest distances are asso-
ciated with the highest weights. The final class of an image is determined as
the class with the highest vote when summing up the weights. The 38 images
of the dataset were classified using leave-one-out cross validation. The results
are shown in Table 1 in row result2. 6 images were wrongly classified, a correct
classification was obtained for 84 % of the dataset. This result is very similar to
the one obtained using a majority vote, except for one shape, which was wrongly
classified using the majority vote, but is correctly classified using the weighted
vote.

5.5 Discussion of the Experiments

Because of multiple branching points in a skeleton, several shape descriptors may
exist for one shape when using the presented approach. We tested four methods
to choose one or to combine these shape descriptors when classifying a shape.
Choosing just one shape descriptor based on a branching point of the shape
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randomly yields the best results as the shape descriptor of one branching point
in any case takes the whole shape into account. Combinations of the descriptors
seem to introduce noise and therefore reduce the representational power.

The experiments show the classification capability of the presented approach:
79 % to 86 % of the dataset (subset of the Kimia 99 dataset [13] - occluded shapes
and single shapes were not considered) are correctly classified. The authors of
[13] report a 100 % (respectively 87 %) correct shape classification when using
their shock graphs and considering the top 3 (respectively top 10) matches. Using
only the best match and a variation of the dataset, 86 % accuracy in shape classi-
fication are reached by our algorithm. However, the authors of [13] also mention
the high computational time needed to classify a shape. The classification pre-
sented in this paper is very efficient as it is computed only for a small number of
locations or even only one location, within the shape. Furthermore the approach
presented does not analyse all points of a shape, but employs the efficient LBP
approach and computes the shape descriptor only on a subset of the shape’s
points (given as subsampling of a circle with origin inside the shape).

6 Conclusion and Outlook

The presented approach uses the persistence of LBP types computed at char-
acteristic positions within the shape to classify it. It therefore derives informa-
tion about local topology and persistence using a texture operator at increas-
ing scales. The feature vectors used for classification are given as the evolution
respectively persistence of the LBP types as LBP persistence vectors. For each
shape the computation is guided by a skeleton representation of the shape. LBP
persistence vectors are only computed for a very limited number of locations -
the branching points of the skeleton.

For future work we would like to further test our shape classification using
partially occluded shapes. Besides the edit distance, used in the experiments of
this paper, further distance measurements need to be tested. For the decision on
critical points that are used in the shape descriptor computation, we will evaluate
methods to judge the suitability of the critical points. We may for example
consider the diameter of the shape that is based on the maximum eccentricity
of a shape [8]. Branching points of the skeleton close to the boundary mainly
represent small irregularities of the shape boundary, e.g. segmentation artefacts.
This estimation of the position of branching points in the shape can be used
to rate the importance of branching points according to Eq. 1. Thus, the set of
critical points can be reduced to the most important ones.

Moreover, as LBPs are not limited to binary images, we would like to test
an application of the presented approach on gray-scale images. An initial seg-
mentation may still be needed to derive the skeleton which guides all further
operations. However, to reduce the impact of segmentation artefacts the LBP
computations may then be done on the original gray-scale data. Couprie et al.
presented grayscale skeletons [3] that may be used as an alternative to an initial
segmentation. Moreover, a gray-level image can be interpreted as a landscape
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according to the gray-values. Critical points of this landscape as they are com-
puted by Cerman et al. [2], may be used as an alternative and a segmentation
and skeleton representation may no longer be needed.
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