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Abstract. This paper discusses the connection between the texture operator LBP
(local binary pattern) and an application of LBPs to persistent homology. A shape
representation - the LBP scale space - is defined as a filtration based on the varia-
tion of an LBP parameter. A relation between the LBP scale space and a variation
of thresholds used in the segmentation of a graylevel image is discussed. Using
the LBP scale space a characterization of (parts of) shapes is demonstrated based
on simple shape primitives, the observations may also be generalized for smooth
curves. The LBP scale space is augmented by associating it with polar coordi-
nates (with the origin located at the LBP center). In this way a procedure of shape
reconstruction based on the LBP scale space is defined and its reconstruction ac-
curacy is demonstrated in an experiment. Furthermore, this augmented LBP scale
space representation is invariant to translation and rotation of the shape.

Keywords: LBP, persistence, scale space, filtration, shape analysis, shape recon-
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1 Introduction

Biasotti et al. note in [1] that a digital model of an object is quantitatively similar to
the object, while a description is only qualitatively similar. The authors further quote a
clear distinction between representation and description:

”An object representation contains enough information to reconstruct (an ap-
proximation to) the object, while a description only contains enough informa-
tion to identify an object as a member of some class.” [1, p. 5]

Following this definition we study in this paper a novel shape representation based on
topological persistence and on local binary patterns (LBPs): the LBP scale space. We
show that an approximate reconstruction of the shape is possible using the LBP scale
space. The shape representation is given as a vector of the persistence of LBP types
around a center pixel. It may as such also be used to classify and compare shapes and
can thus also be seen as a topological shape descriptor.
Shape description based on topological persistence is for example defined by the size
functions described by Verri et al. [2] which represent the persistent Betti number β0.
Carlsson et al. presented persistence barcodes for shape description and classification
[3]. For shape retrieval the shapes may for example be compared based on their per-
sistence diagram using the matching distance as presented by Cerri et al. [4]. Barcodes
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encode the persistent homology of a data set in the form of a parametrized version of a
Betti number [5]. Barcodes visualize the lifetime for which a features persist and there-
fore encode multisets of intervals in R. While a persistence diagram is ”a multiset of
points (u, v) whose abscissa and ordinate are, respectively, the level at which a new k-
homology class is created and the level at which it is annihilated through the filtration”
[4, p.2]. This filtration produces a sequence of nested spaces. While the filtration grows,
topological features appear (birth) or disappear again (death). The interval between the
birth and the death of such a feature, its lifetime, is its persistence. A filtration is for ex-
ample given by the level cuts of a Morse function on a manifold, as it is used to derive a
Reeb graph (another topological shape representation) [6]. The simplest way to obtain
a Reeb graph of an image or a 3D shape is to use a height function as a Morse function.
In the same way persistence diagrams or barcodes can be determined using a filtration
based on a height function. Such topological shape representations based on a filtration
are in general dependent on the filtration. Especially height functions are not invariant
to rotations of the shape and therefore lack in representational power.
The proposed LBP scale space represents a shape based on changes of the local topol-
ogy captured by LBPs of increasing radii1. Since the LBP takes a circle around a center
pixel into consideration, this representation is invariant to translation and rotation of the
shape. The LBP scale space can be further extended by associating polar coordinates
with the observed local topology. In this way the LBP scale space provides the possi-
bility of reconstruction of the shape (for a discrete LBP scale space up to the sampling
of the scale space) based solely on this shape descriptor.

The rest of the paper is structured as follows: Section 2 describes the way in which
the LBP texture operator captures local topology. In Section 3 filtrations using LBPs
are presented. The LBP operator is used to derive a shape descriptor based on its persis-
tence - the LBP scale space. Two experiments were conducted: a study of the behaviour
of the LBP scale space for special shapes (primitives) and an approach to shape recon-
struction based on the LBP scale space. These experiments and the results are discussed
in Section 4. Section 5 concludes the paper and gives an outlook to future work.

2 Capturing Topology Using LBPs

Although originally proposed as a tool of texture classification, LBPs have in the past
also been studied as tool of topological shape and image analysis. For a given grayscale
digital image I, the local-binary-pattern codification of I: LBP(I) again yields a grayscale
digital image. The grayvalues of LBP(I) are now LBP codes that are used to represent
the texture element at each pixel in I. However, the LBP codes not only capture local
texture information, they also describe the local topology observed.

1 Note that our scale space therefore differs from a scale space obtained through Gaussian
smoothing with diverse variances.
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2.1 Introduction to LBPs

LBPs were first introduced for texture classification [7] and since then became popular
texture operators. An LBP computation around a pixel p = (x, y) studies the grayvalues
along a subsampled circle of a specific radius r around p. Each position in a bit pattern
(corresponding to the sampling points along the circle) is set to 1 if the grayvalue at the
sampling point (g(xi)) is larger than or equal to the grayvalue of the center pixel (g(p))
and to 0 otherwise (Fig. 1a and 1b):

s(xi) =

{
1 if |g(p)− g(xi)| ≥ 0

0, otherwise
(1)

The two parameters P and r determine the LBP computation: P fixes the number of
sampling points along a circle of radius r around the center pixel, for which the LBP
operator is computed [8]. Fig. 1c shows different parameter configurations. By varying
r we may examine concentric circles around p, the LBP is given by c(x, y, r).

2.2 Connected Components of a Graylevel Image

A binary segmentation of a graylevel image is easily obtained as level sets using a
threshold t or an interval around the threshold t:

|g(x, y)− t| ≤ ε (2)

Such a threshold interval is also used in the LBP computation of robust local binary
patterns (RLBPs) [9]:

s(xi) =

{
1 if |g(p)− g(xi) + t| ≥ 0

0, otherwise
(3)

According to equation (2) the image is then segmented into several connected compo-
nents Ci, i = 1, ..., n. One such connected component Ca consists of either:

1. grayvalues that are inside the defined interval around t± ε so called plateaus:
g(x, y) ∈ Ca : t− ε ≤ g(x, y) ≤ t+ ε,

(a) comparison
with neighbours

(b) bit pattern (c) (P,r) = (8,1); (P,r) = (16,2); (P,r) = (8,2) -
according to [8].

Fig. 1: (a) and (b) LBP computation for center pixel p and (c) variations of the parame-
ters P (sampling points) and r (radius).
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2. grayvalues that are larger than the threshold interval t+ ε so called maxima:
g(x, y) ∈ Ca : g(x, y) > t+ ε,

3. or grayvalues that are smaller than the threshold interval t− ε so called minima:
g(x, y) ∈ Ca : g(x, y) < t− ε.

The input image is thus segmented into connected components, each of them belonging
to one of the mentioned categories: plateau, minimum and maximum. The connected
components (which may have holes) are surrounded by closed boundaries b(x, y).

2.3 Local Topology based on LBP types

In previous work we defined a shape descriptor based on persistence of LBP types
around critical points of a shape [10]. For this purpose we analysed a binary shape based
on LBPs. We computed LBP types which describe the local topology of the foreground
region around the center pixel p. The LBP types are defined by the number of transitions
from 0 to 1, respectively vice versa (bit-switches) in the LBP code.

– (local) maximum (no bit-switches: the bit pattern contains only 0s),
– (local) minimum (no bit-switches: the bit pattern contains only 1s),
– plateau (no bit-switches: the bit pattern contains only 1s, but all pixels of the region

have the same gray value),
– slope (two bit-switches - compare uniform patterns [8]),
– saddle point (four or more bit-switches) [11].

In a segmented image these bit-switches BS correspond to the intersections of the
boundary of the connected component which holds p and the LBP circle of radius r:

BS = b(x, y) ∩ c(x, y, r) (4)

Note that the LBP types not necessarily correspond to the types of connected compo-
nents as defined in the previous section.

3 LBP based Persistence

In persistence, those features which persist for a parametrised family of spaces over a
range of parameters are considered signals of interest. Short-lived features are treated
as noise [5]. The persistence of a feature is given as its lifetime, the span in between the
birth and the death of a feature according to a filtration of a space which is ”a filtered
space, a nested sequence of subspaces that begins with the empty and ends with the
complete space” [12, p. 5].

3.1 Filtration based on LBPs

Using LBPs we may perform a filtration either:

1. by varying the radius r of the LBP computation c for a fixed boundary b,
2. or by varying the parameter ε of the segmentation thus varying b, for a fixed r.



Persistence based on LBP Scale Space 5

Fig. 2: Increasing the radius r for a fixed center p shifts the intersections with b along
the boundary b (blue arrows). Varying ε moves the intersections along the LBP circle
(orange arrows).

Varying the radius r of the LBP computation c corresponds to a movement along the
boundary b (blue arrows in Fig. 2), while varying ε (varying the boundary b) leads to
a movement along the circle defined by r and p (orange arrows in Fig. 2). By continu-
ously increasing the radius r the intersection points are moving towards or away from
each other along the boundary b. For a certain radius the circle will not intersect the
boundary anymore but touch it in one point. By further increasing the radius a pair of
intersections will disappear or, ultimately the whole shape will be inside the circle of
radius r, this corresponds to an LBP of type maximum.
The persistence of an LBP type can be measured by the movement of the intersection
points along the boundary b: For a certain radius r the circle of the LBP computation

Fig. 3: Configurations of intersections observed when varying the radius allow assump-
tions about a shape’s connected components.
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Fig. 4: Characterisation of shape parts based on the LBP scale space.

c intersects the closed boundary b 2n times (apart from osculation points). These inter-
sections divide the shape in n+ 1 regions and 2n boundary segments (in a persistence
diagram: a ”‘birth”’ for each region / segment). By increasing r the intersection points
are moving along b. Once two intersection points coincide the LBP type changes (in the
persistence diagram the ”‘death”’ of the respective segment / region).
Assumptions about a connected component’s structure can be made by varying the ra-

dius r of the LBP computation c with fixed center p. By analysing the configurations of
intersections (bit-switches BS) observed when increasing r a conclusion about charac-
teristics of the shape’s boundary can be drawn (see Fig. 3). Moreover, further connected
components in the vicinity can be detected. A connected component is divided into sev-
eral parts that are either covered by the LBP circle of a certain radius or not. These parts
can be characterized as follows (see also Fig. 4):

1. inside a shape (interior): The shape is simply connected and corresponds to the
bounded connected component of the Jordan curve theorem. Parts inside a shape
are identified by intersection points that are moving closer to each other along the
boundary for increasing LBP radii until they converge in osculation points.

2. outside a shape (exterior): This connected component is unbounded, indicated by
intersection points that diverge along the boundary for increasing LBP radii.

3. holes: A hole in the foreground connected component can show no intersections
with the LBP circle because it is fully contained inside the LBP circle or not at all
covered by the LBP circle. A hole that is intersected by the LBP circle needs special
consideration: the shape is divided in parts inside and outside the LBP circle. Since
the hole is intersected by the LBP circle, the hole is reduced to concavities along
the boundaries of these individual shape parts - the topology changes.

3.2 LBP scale space

The LBP scale space is a novel shape representation proposed in this paper. For a chosen
pixel or point of a shape or connected component (as LBP center) we compute the LBP
over a range of scales (range of LBP radii). We may start with a radius of 0 and increase
it either continuously or in the discrete case according to a predefined sampling scheme
(for example increasing always by 1 to cover all integer radii, which corresponds to the
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(a) regular sampling (b) sampling at critical points

Fig. 5: LBP scale space in the (a) a discrete case showing an example sampling scheme
and (b) in the continuous case - the osculation points marked along the red LBP circles
are critical points at which the topology changes.

full pixel resolution). Fig. 5 illustrates the LBP scale space for regular sampling and
sampling at critical points.
We are interested in the local topology captured by the LBPs for varying radii. We
therefore consider the number of bit-switches observed for each of the LBP radii anal-
ysed. This shape representation can be stored as a vector or matrix (depending on the
sampling and whether the radii need to be explicitly stored as well). The LBP scale
space may be used as a shape descriptor for classification or recognition purposes, as
we showed for a similar shape descriptor in [10]. Moreover, the LBP scale space en-
ables the reconstruction of a shape based on this representation. For this purpose, we
extend the LBP scale space by polar coordinates. This procedure is discussed in more
detail in the experiments section 4.2.

4 Experiments

The conducted experiments include a thorough study of characteristics of the proposed
LBP scale space on simple shapes (primitives) and an application to shape represen-
tation and reconstruction based on the LBP scale space. As test dataset for the shape
reconstruction we use a dataset of binary shapes.

4.1 Shape Analysis - Special Cases

We study two simple shapes (primitives): we start with the simplest shape - a circle,
before moving on to an already more generalised shape - an ellipse. For this experiment
we study the shape primitives using our LBP scale space with the center pixel of the
LBP computation located inside the shape. Based on the LBP scale space derived for
varying LBP center locations inside the shape, we categorize parts of the shape accord-
ing to the LBP scale space. This experiment is related to a shape descriptor based on the
LBP scale space that we presented in previous work [10], since it may identify locations
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within the shape which are well suited as well as parts that may not be suitable at all as
centers for this shape description.
This study although conducted on circles and ellipses is not limited to these shapes:
By computing the medial axis of a shape and splitting the shape into parts at skeleton
branching points we can derive a normalised shape representation by straightening the
skeleton segments. Any shape may therefore be represented by circles (according to the
medial axis) or more general by ellipses. In addition, we show that some observations
made for the shape primitives can be generalised to smooth curves.

Circle: For a circle with radius rc we can distinguish the following two cases:

1. LBP center coincides with center of the shape (circle):
In this case there are either no intersection points between the LBP circle and the
shape (the LBP radius is smaller or larger than rc) or the whole boundary of the
shape intersects with the LBP circle (the LBP radius equals rc).

2. LBP center at any location within the shape, other than the circle’s center:
We observe one intersection point t1 for the LBP circle with radius equal to the
smallest distance to the boundary and this boundary itself. When increasing the
LBP radius we observe two intersection points which move away from t1 until
they converge at the second osculation point of the boundary and the LBP circle t2.
We thus observe the following sequence of number of intersections: 0-1-2-1-0.

Ellipse: For an ellipse there are four cases to distinguish. We start with the most general
case (1) since all others (2-4) are special cases of it:

1. The LBP center is located inside the ellipse but not on the ellipse’s axes:
We observe one intersection point between the LBP circle and the shape’s boundary
(LBP radius equal to the smallest distance of the LBP center to the shape bound-
ary). For increasing radii we observe two intersection points which move away from
each other and for further increasing radii three intersections (one of them a degen-
erate intersection). Increasing the radius even further yields four intersections. The
intersection points in each case in pairs move away from each other and towards
each other along the shape’s boundary, until two of them converge. Here we ob-
serve three intersections, for increasing radii again two intersections until these two
as well converge in one osculation point for the maximum radius. The sequence of
number of intersections therefore is: 0-1-2-3-4-3-2-1-0.

2. The LBP center is located at the major axis of the ellipse:
The smallest distance to the shape’s boundary is smaller than or equal to the radius
of the circle of curvature for a major apex: In this case we observe one intersection
point between LBP circle and shape’s boundary (at one major apex). For increasing
radii we observe two intersection points which move away from one major apex to-
wards the other. The intersection points converge again in the second major apex.
Thus, we observe the following sequence of number of intersections: 0-1-2-1-0.
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The smallest distance to the shape’s boundary is larger than the radius of the cir-
cle of curvature for a major apex: We observe two osculation points of the shape’s
boundary with the LBP circle. For increasing radii we observe four intersection
points, which converge pairwisely towards the major apexes. Once two of them
converge in an apex, we observe three intersections. For further increasing radii we
observe two intersections until these two converge in the second major apex. The
sequence of number of intersections is as follows: 0-2-4-3-2-1-0.

3. the LBP center is located at the minor axis of the ellipse:
We observe one osculation point at a minor apex in which the LBP circle intersects
the shape’s boundary. For increasing radii we observe two intersections. When in-
creasing the radius further a third intersection at the second minor apex can be
observed, followed by four intersections. The intersection points pairwisely move
away from the minor apexes until they converge pairwisely in the major apexes and
only two intersections remain - the maximum LBP radius is reached. The sequence
of number of intersections is: 0-1-2-3-4-2-0.

4. the LBP center coincides with the center of the ellipse:
We observe two osculation points of the shape’s boundary with the LBP circle
located at the minor apexes of the ellipse. For increasing radius four intersection
points are observed which move away from the minor axis towards the major axis
along the shape’s boundary. The intersection points converge in the major apexes.
This yields the following sequence of number of intersections: 0-2-4-2-0.

Smooth Curves: Some observations made for circles and ellipses in this experiment
apply also for smooth curves in general. For a continuously increasing radius we ob-
serve intersection points at the shape’s boundary that move along the boundary and
cover the boundary completely when considering the complete LBP scale space. Oscu-
lation points are degenerate intersection points since two intersection points coincide at
such an osculation point. We can determine the osculation points as the points along the
shape’s boundary for which the LBP circle’s and the boundary’s tangent in that point
coincide. These osculation points are critical points and describe a birth or death of a
component. LBP circles of radii in the interval in between those radii associated with
osculation points yield true (non-degenerate) intersections. The interval of radii spanned
by such critical points thus describes the lifetime (persistence) of a component.

4.2 Shape Reconstruction

We compute an LBP scale space for a fixed center point inside a shape. The LBP scale
space consists of the intersections (bit-switches see equation 4) of the shape boundary
with the LBP circle for radii ranging from 0 to the radius for which no intersection ap-
pears anymore (largest Euclidean distance from the LBP center to the shape boundary).
We further associate angles measured around the LBP center with the intersections. In
this way we obtain polar coordinates of all intersections and can restore the boundary
and thus the shape based on this LBP scale space. For a discrete LBP scale space the
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quality of the reconstruction is of course dependent on the sampling of the LBP radii
and the angle measurement as well as on the chosen center point.
This LBP scale space representation is invariant to translation and rotation of the shape.
The rotation leads only to a change in the angles associated with the intersection points.
All angles measured for a shape are altered by a constant α which complies with the
angle of the rotation applied to the whole shape (for the discrete case deviations from α
may be observed because of the sampling).

We tested the accuracy of the LBP scale space reconstructions on the Kimia99 dataset
[13]. The reconstruction obtained using a discrete LBP scale space is highly dependent
on the chosen LBP center. This is well visible in the comparison of reconstructions
based on different locations of center points (see Fig. 6).
For the experiments on the whole dataset, we used two different LBP centers. We de-
fined the LBP center for each shape as (1) the location of minimum eccentricity [14] and
(2) the location of maximum distance transform. We used a regular sampling scheme
of 1 pixel radius increases, thus covering all integer radii in the range of the LBP scale
space of a shape. Based on the LBP scale space obtained for a shape, we reconstructed
the shape again. An input shape together with the reconstruction based on the LBP scale
space is shown in Fig.6. For all shapes in the dataset we evaluated the reconstruction
quality for the boundary only and for the whole shape. For this purpose we computed
the reconstruction error considering the set of pixels: Mb which are the boundary pix-
els of the reconstruction matching the boundary pixels of the input shape respectively
Mshape all shape pixels of the reconstruction matching the input shape - the true pos-
itives. We computed the precision using the set of boundary pixels of the input shape
bin and as well as the set of pixels of the whole input shape shapein:

1. precision boundary: Mb/bin
2. precision shape: Mshape/shapein

Fig. 7 shows the precision of the reconstruction of the boundary and the whole shape
for all 99 shapes in the dataset. The precision for the boundary is low, due to the fact
that deviations from the exact position of boundary pixels even by only 1 pixel in the
reconstruction are considered an inaccurate reconstruction. The boundary precision is
at maximum 0.67 for the center at the location of maximum distance transform (Fig. 7:
boundary1) and maximum 0.72 for the center at the location of minimum eccentricity
(Fig. 7: boundary2). Since the goal of this approach is to reconstruct the whole shape

(a) (b) (c) (d) (e) (f)

Fig. 6: Reconstructions - green, input - red, matching boundaries - yellow. LBP center -
white: (a) max. distance transform, (b) min. eccentricity, (c)-(f) chosen manually.
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Fig. 7: Precision of the reconstructed boundary (boundary 1 and 2) and the reconstructed
shape (shape 1 and 2) for the 99 shapes in the dataset and two different LBP centers.

not only its boundary, we used morphological operations, to close gaps in the boundary
and to fill the shape region. The precision for the whole shape is considerably higher:
up to 0.99 for the LBP center at the location of maximum distance transform (Fig. 7:
shape1) and 1.00 for the LBP center at the location of minimum eccentricity (Fig. 7:
shape2). As visible in Fig. 7 the precision of the reconstructed shape is low for some
shapes of the dataset - in these cases the boundary reconstruction showed larger gaps,
which did not allow to reconstruct a connected boundary that could be filled. In general
the reconstruction of the whole shape works well: a precision of 0.9 is reached for 92%
of the shapes for the LBP center at the maximum distance transform and for 81% of the
shapes for the LBP center at the location of the minimum eccentricity.

5 Conclusion and Future Work

The novel shape representation - the LBP scale space - is based on persistence, studying
a shape by creating a filtration using the LBP operator over a range of scales (radii). The
experiments presented in this paper show that the LBP scale space may be easily aug-
mented using polar coordinates around the LBP center. Based on this extended shape
representation not only classification of a shape but also a reconstruction is possible.
In future work we would like to perform experiments including noise flawed input
shapes, since we can employ the persistence information to exclude noise from the re-



12 I. Janusch, W. G. Kropatsch

construction. The LBP scale space may also be extended to the 3D space using spheres
instead of circles. Of course the intersection points used for the LBP scale space in 2D
are also extended to intersection curves between the LBP sphere and the 3D shape then.
Moreover the presented approach may be used in future work as a tool of quality con-
trol in obtaining binary image segmentations, similar to the MSER (maximally stable
extremal regions) approach [15]. The segmentation is defined by the threshold t as well
as the interval defined by ε. By fixing the LBP parameter r and varying the boundary b
we may for example determine parameters t and ε that yield a segmentation of a given
number of connected components with stable boundaries regarding the persistence of
LBP types when varying the radius r of the LBP computation c slightly.
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