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Abstract. This paper presents a boundary-based, topological shape de-
scriptor: the distance profile. It is inspired by the LBP (= local binary
pattern) scale space – a topological shape descriptor computed by a fil-
tration with concentric circles around a reference point. For rigid objects,
the distance profile is computed by the Euclidean distance of each bound-
ary pixel to a reference point. A geodesic distance profile is proposed for
articulated or deformable shapes: the distance is measured by a combina-
tion of the Euclidean distance of each boundary pixel to the nearest pixel
of the shape’s medial axis and the geodesic distance along the shape’s
medial axis to the reference point. In contrast to the LBP scale space, it
is invariant to deformations and articulations and the persistence of the
extrema in the profiles allows pruning of spurious branches (i.e. robust-
ness against noise on the boundary). The distance profiles are applicable
to any shape, but the geodesic distance profile is especially well-suited
for articulated or deformable objects (e.g.applications in biology).

Keywords: distance profile, shape description, local topology, persis-
tence, local binary patterns, LBP scale space, medial axis

1 Introduction

Shape is a widely used feature to describe and distinguish objects for a vari-
ety of computer vision tasks such as image retrieval, object classification and
recognition, segmentation or tracking. A shape descriptor should be invariant
to transformations, distortions and occlusions of the shape. Furthermore, it is
desirable for a shape descriptor to be independent of the application and to be
low in computational complexity (especially for online image retrieval).

Zhang et al. [21] divide shape descriptors into two classes: region-based and
boundary-based (contour-based) approaches. Each class can be further divided
into structural and global approaches. Structural approaches describe shapes by
segments while global approaches describe shapes as a whole.

The distance profiles presented in this paper are boundary-based descriptors
for 2D shapes without holes. They allow a global description of the shape, but
are also able to divide the shape into segments based on intervals of topological
persistence (see Section 2.2 and 3.2). Two distance profiles are presented: (I)
Euclidean distance profile (DP) and (II) geodesic distance profile (DP∗).
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These profiles are based on the idea of the LBP scale space [11] (see Sec-
tion 2), which describes a shape based on a filtration process from a chosen
reference point. This filtration yields a translation- and rotation-invariant topo-
logical description of the shape.

In comparison to the LBP scale space, the distance profiles (Euclidean and
geodesic) in this paper speed up the computation of the descriptor and are in
addition invariant against scaling, articulation and deformation (in case of DP∗).
Furthermore, they allow the pruning of spurious branches based on persistence.

1.1 State of the Art

The proposed distance profiles are mostly related to topological shape descrip-
tors, shape signatures and spectral descriptors.

Verri et al. [20] use topological persistence for shape description in the form
of size functions, which represent the persistence of the connected components.
Carlsson et al. [4] propose persistence barcodes for shape description and clas-
sification. Barcodes visualize the lifetime for which features persist. For shape
retrieval, shapes may be compared based on their persistence diagram using the
matching distance as presented by Cerri et al. [5]. Another topological shape
representation are Reeb graphs [1]. The simplest way to obtain a Reeb graph
of a 2D or 3D shape is to use a height function as Morse function. In the same
way persistence diagrams or barcodes can be determined using a filtration (see
Section 2.2) based on a height function. Topological shape representations in
general depend on the filtration. Height functions for example are not invariant
to rotations and therefore lack in representational power.

Distance profiles are also related to shape signatures, which are one dimen-
sional functions derived from the shape’s boundary. There are different kinds of
shape signatures [19, 7, 21]: centroidal profile, complex coordinates, centroid dis-
tance, tangent angle, cumulative angle, curvature, area and chord-length. Shape
signatures are sensitive to noise on the boundary. Small changes in the boundary
may cause large errors when matching the shapes (e.g. image retrieval). Consid-
ering the persistence of extrema, it is possible to filter out noise (i.e. spurious
branches of the medial axis) and make distance profiles ivariant to noise on the
boundary.

Spectral descriptors, such as Fourier descriptors (FD) [22, 6, 9] and wavelet
descriptors (WD) [18], are another kind of boundary-based shape descriptors,
which are usually derived from a spectral transform on a shape signature. They
overcome the problem of noisy boundaries by analyzing shapes in the spectral
domain. Spectral descriptors are derived from spectral transforms on one dimen-
sional shape signatures.

1.2 Overview of the paper

Section 2 recalls the LBP scale space and its persistence. Section 3 presents
the proposed distance profiles and their local extrema. Furhtermore, Section 3
explains how persistence is defined on the distance profiles. First experiments on
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the distance profiles of discrete shapes are presented in Section 4. Conclusions
are given in Section 5.

2 Recall: LBP Scale Space

Originally, LBPs were introduced for texture classification in 1996 [14]. A LBP
describes the local texture around a pixel p = (x, y) by a bit pattern BP . This bit
pattern, results from a comparison of the grayvalue of the center pixel g(p) and
the grayvalues g(qi) along a circle sub-sampled with P points qi, i = 1, . . . , P :

BP(qi) =

{
1 if g(p)− g(qi) ≥ 0

0, otherwise
(1)

Two parameters determine the computation of a LBP: r defines the radius of
the circular neighborhood around p, and P = |BP | fixes the number of sampling
points along the circle, i.e. the number of bits BP = (s1, s2, . . . , sP ) [15].

2.1 Describing Local Topology with LBPs

LBPs can be employed to describe the local topology of a binary image region
around a reference point p. Based on the bit pattern LBP types can be defined
by counting the number of transitions from 0 to 1 and vice versa. A transition
equals an intersection bi of the boundary B with the LBP circle of radius r at
position p: B ∩ c(p, r). Following topological types can be derived from LBPs:

(local) maximum: no transition, bit pattern contains only 0s and g(p) = 1;
(local) minimum: no transition, bit pattern contains only 1s and g(p) = 0;
plateau: no transition, bit pattern contains only 1s and g(p) = 1;
slope: two transitions (compare uniform patterns [15]);
saddle point: four or more transitions [10] .

(a) (b)

Fig. 1: (a) Increasing radius r shifts intersections along the boundary B (blue
arrows). (b) LBP scale space in the continuous case – critical points marked.
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2.2 LBP based Persistence

The persistence of a feature (e.g. LBP type) – its lifetime, is measured by the
filtration of a space, which is ”a nested sequence of subspaces that begins with
the empty and ends with the complete space” [8, p. 5].

Filtration based on LBPs: One possibility to perform a filtration using LBPs
is by varying the radius r of the LBP computation for a fixed reference point
p and a boundary B [11]. Varying r corresponds to a movement along B (blue
arrows in Fig. 1a). This filtration process changes the intersection points of the
circle c with the boundary B, i.e. the bit patterns BP (number of transitions)
and thus influences the topological LBP types.

The persistence of an LBP type is measured by these 2n intersection points,
which divide the shape in n+ 1 regions and the boundary in 2n segments (per-
sistence diagram: ”birth” for each region/segment). By increasing r the intersec-
tion points move along B. Once two intersection points coincide the LBP type
changes (persistence diagram: ”death” of the respective segment/region).

2.3 LBP Scale Space

The LBP scale space was proposed as shape descriptor in [11]. From a chosen
reference point p inside a shape, a filtration based on LBPs is performed. The
filtration may start with a radius r = 0, which is increased according to a
predefined sampling scheme (for discrete case: r increased by 1 covers all integer
radii). For the shape descriptor, the number of transitions observed for each of
the LBP radii is stored, i.e. the changes in the local topology. Fig. 1b illustrates
the LBP scale space for sampling at critical points.

Besides applications in classification or recognition, the LBP scale space en-
ables the reconstruction of a shape when extended by polar coordinates [11].

3 Distance Profiles

The brute force computation (see Figure 1) of the LBP scale space starts with a
small circle for which the intersections with the shape’s boundary are computed.
Then the radius of the LBP circle is increased and the computation of the in-
tersections is done again. This process is repeated until the shape is completely
inside the LBP circle and no more intersections can be observed for a connected
shape. Such an implementation of the LBP scale space is computationally ex-
pensive. Hence, this paper proposes an alternative and more efficient way to
compute the LBP scale space based on the definition of distance profiles.

First, the distances d of all points bi along the shape’s boundary B to the
reference point p are computed:

DP(bi, p) = ||bi − p||, bi, p ∈ <2 (2)
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(a) (b)

Fig. 2: LBP scale space computation using the (a) Euclidean distance profile DP
and (b) geodesic distance profile DP ∗.

We call DP : B 7→ <+ the Euclidean distance profile for each bi ∈ B (see
Equation (2) and Figure 2(a)). The LBP scale space [11] corresponds to this
Euclidean distance profile DP . By changing the metric and using the medial
axis of the shape S, a geodesic distance profile DP∗ : B 7→ <+ can be defined in
two parts: (I) the distance of a point bi ∈ B to the closest point al of the shape’s
medial axis MA(S) plus (II) the geodesic distance along this axis from al to the
reference point p:

DP∗(bi, p) = ||bi − al||+ arclength(al, p), p ∈ MA(S) (3)

A visualization of the geodesic distance profile DP ∗ is given in Figure 2(b).
Note that a connected medial axis MA is essential for this approach. There-

fore, we assume that a connected medial axis can be derived for a given binary
shape and do not focus on the computation of the MA itself. Furthermore, the
input of the proposed method is currently limited to binary shapes without holes.

3.1 Local Extrema along a Distance Profile

Let DT : S ⊂ <2 7→ <+ denote the Euclidean distance transform [16] of the
shape. It assigns to each point p ∈ S inside the shape the radius of the largest
inscribed circle with radius DT (p), which touches the shape’s boundary B at a
boundary point bi : ||p− bi|| = DT (p). Let p be the LBP scale space center.

Lemma 1. If the reference point p ∈ S is inside the shape S, then there is at
least one local minimum along the distance profile.

Since p ∈ S,DT (p) is the radius of a circle touching B. Increasing the (maximal)
circle at p would cross the boundary assigning larger distance values to neighbors
of bi. Hence, the touching point is a local minimum of DP .

For the geodesic distance profile DP∗ we consider the medial axis MA ⊂ S:
every circle with center on the MA touches the shape’s boundary B at two or
more points.
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Leyton’s curvature-symmetry duality relates each local curvature maximum
with an end point ae ∈ MA [12]. Such a maximum in curvature also produces a
maximum in both distance profiles for reference points p along the MA-branch
of ae. This is generally the case if p is located inside the shape farther away from
the curvature maximum than the radius of the osculating circle.

The maximally inscribed circle at a branching point of MA touches the
boundary of the shape in at least as many points as there are branches. If the
branching point is taken as the reference point for the distance profile, it shows
a local minimum at each of these touching points. Maximal circles touch the
shape’s boundary in two points, if their centers are located at MA of the shape,
but not at an end or at a branching point of the MA.

The extrema of the distance profiles may be used for shape description and
representation. At these extrema the topology changes: a connected component
either starts or ends at the distance associated with the local extremum for this
distance profile. The LBP scale space [11] similarly describes a shape based on
a sequence of changes in the topology of the shape through a filtration for a
certain LBP center. The Euclidean distance profile DP and the LBP scale space
representations are identical, but the computation of the DP is more efficient.
In contrast, the geodesic distance profile DP ∗ provides a similar representa-
tion based on a different metric, which is more robust against articulations and
deformations.

The number of maxima in a distance profile is determined by the number of
end points of MA (i.e. the number of positive local curvature maxima), whereas
the number of minima must be equal to the number of maxima along B since a
minimum has to be located between every pair of maxima. This is the smallest
number of extrema for a shape and it depends exclusively on the number of
MA-branches.

Consequently, spurious branches of MA generate extra extrema, which can
be removed by the concept of persistence (see Section 3.2). The Euclidean DP
may contain more extrema than the geodesic DP∗ due to bent branches.

3.2 Persistence defined on the Distance Profile

As in classical persistence [8], we consider the lifetime of connected components
generated by thresholding the distance profile. The corresponding space is the
boundary B of the shape S and the sub-level sets of the profile function give the
filtration. This corresponds to the choice of a particular radius in the LBP scale
space. The transitions from 0 to 1 and vice versa in the LBP code for a certain
radius correspond to the transition between the different connected components.

The extrema E = (b1, b2, . . . , b2M ), bi ∈ B derived from DP are alternating
(i.e. maximum – minimum – maximum – ...), where M is the number of maxima.
The persistence P of each of the extrema bj , j = 1 . . . 2M , is defined by the
smallest difference to the adjacent two extrema:

P (bj) = min{|DP (bj−1, p)−DP (bj , p)|, |DP (bj+1, p)−DP (bj , p)|}. (4)
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Fig. 3: A spurious branch generates non-persistent extrema. MA in yellow.

If an extremum is close to an adjacent extremum, then this difference is small
and a small modification of the threshold used for filtration would suffice to
change the intersections between an LBP circle and the shape’s boundary.

Fig. 3 shows part of an elongated true branch (in direction x) and a typical
spurious branch generated by a small bump (circle with small radius r′) along
the boundary of the actual branch. The bump itself (centered at position x2) is
a local maximum of the distance profile (we denote by bi the boundary point
corresponding to the axis point xi)

DP ∗(b2) = x2 + r2 = (x1 + r′) + (r1 + 2r′) = (x1 + r1) + 3r′ = (5)

= DP ∗(b1) + 3r′ > DP ∗(b1)

while the return to the main branch at x3 is a local minimum with distance

DP ∗(b3) = x3 + r3 = (x1 + 2r′) + r1 = (x1 + r1) + 2r′ = (6)

= DP ∗(b1) + 2r′ < DP ∗(b2)

b2 is clearly a local maximum and b3 a local minimum since DP ∗(b(x)) >
DP ∗(b3) for x > x3 and the width of the branch is constant, but the geodesic
distance to the reference point increases.

The difference between the two extrema b2 and b3 (their persistence) is re-
lated to the size of the bump, e.g. r′, but independent of the width of the main
branch. As in many pruning strategies for the MA, branches with a long axis are
considered reliable while short branches often occur due to noise. Large differ-
ences between local minima and maxima of the distance profile also indicate long
distances along the axis and thus long branches. A highly persistent reference
point (LBP center) should induce a small number of extrema of the distance
profile and favor the center of the diameter of the MA as primary locus.
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4 Experiments

The DP and the DP∗ defined in the continuous case in Section 3 have been im-
plemented for a practical evaluation in the discrete case. Morphological thinning
has been used as a pre-processing step to obtain a connected skeleton. The two
distance profiles together with persistence applied to DP ∗ have been evaluated
in experiments on binary shapes of the Kimi99 [17] and the Myth [2, 3] dataset.

For the DP the Euclidean distance from every pixel along a shape’s boundary
to a fixed reference point on the skeleton of the shape is calculated. The DP∗ is
computed as the geodesic distance along the skeleton from the reference point
to every skeleton pixel plus the medial axis radius (computed using a distance
transformation) at each skeleton position. Figure 4 shows a binary input shape,
the skeleton of the shape, as well as the DP and the DP∗.

Extrema of the distance profiles are determined as local minima and maxima
in the ordered sequence of distances. For the DP , this sequence is the sequence
of distances observed when tracing a shape’s boundary in either clockwise or
counter-clockwise direction. In the case of the DP∗, the ordered sequence of
distances is retrieved by tracing the skeleton clockwise or counter-clockwise.
Note that due to this difference in the computation the length of the sequences
of distances of the two distance profiles may vary.

Figures 5a and 5b show the extrema marked along DP and DP∗ for the binary
hand shape shown in Figure 4a. The DP shows a higher number of extrema, as it
is prone to noise due to small variations along the boundary. Additional extrema
in the DP can also be caused by the deformation of a shape through bending.
This deformation however does not affect the extrema of DP∗. Note that no
filtering based on persistence has been done for 5a and 5b.

These observations have further been evaluated on all shapes of the Kimia99
dataset. In total 4824 extrema were found along DP for the 99 shapes and
2162 extrema in total along DP ∗. The minimum difference in the number of
extrema per shape on the Kimia99 dataset between DP and DP ∗ is 0, however
the maximum difference is 96. In average DP ∗ produces 27.8 less extrema than
DP for every shape in the Kimia99 dataset.

(a) hand shape (b) skeleton (c) DP (d) DP∗

Fig. 4: Binary input shape and obtained distances for DP and DP ∗, reference
point = white square, blue indicates small distances, red large distances.
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(a) distances along the Euclidean DP

(b) distances along the geodesic DP ∗

(c) distances along the DP ∗pers (threshold = 5)

Fig. 5: Distance profiles (a) DP and (b) DP ∗ and (c)persistence (threshold = 5)
applied to DP ∗: DP ∗pers for the hand shape. ◦ indicate maxima, × indicate
minima.

This difference in number of extrema of the two distance profiles ∆ = |DP −
DP ∗| has further been used to cluster the shapes in the Kimia99 dataset and
to identify common features among shapes within a cluster. The dataset was
partitioned into four cluster with ∆ = [0, 10], ∆ = [11, 30], ∆ = [31, 50] or
∆ = [51, 96]. Table 1 shows the number of shapes in each of these intervals. Since
the Kimia99 dataset is meant for shape classification and retrieval experiments,
the images of the dataset are mainly grouped into classes. The dataset consists
of 6 major classes of shapes with minimum 7 and maximum 11 images per
class. The remaining 40 images are either single shapes or shape classes with
only two or three images per class. Interestingly, the shapes within one of these
major classes of the Kimia99 dataset are with a high percentage (73% or more)
also in the same cluster regarding ∆. Table 1 shows a shape for each cluster,
representing the class of the Kimia99 dataset with the highest number of images
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Table 1: Shapes in the Kimia99 dataset clustered according to the difference in
number of extrema in the distance profiles ∆ = |DP −DP ∗|.

∆ = [0, 10] [11, 30] [31, 50] [51, 96]

# of images 25 32 33 10

representative image

recall of class 100% 82% 73% 75%

in the respective cluster. Furthermore, the recall, the percentage of images of
each such class in the cluster to the total number of images in the class, is given
in the last row of Table 1 (recall of class).

The persistence defined on the distance profile DP ∗ (see Section 3.2) has been
subject to further experiments. If persistence is applied to the distance profile
DP ∗ (DP ∗pers) with a very small distance threshold of 5, it further reduces the
total number of extrema for all shapes in the Kimia99 dataset to 1174 DP ∗pers
(compared to 2162 for DP ∗ and 4824 for DP ). In average the number of extrema
in DP ∗ is already reduced by 54% for this small threshold in DP ∗pers. Figure 5c
shows DP ∗pers for the hand shape introduced in Figure 4a.

The robustness of the geodesic distance profile with persistence based pruning
DP ∗pers to articulated deformations is demonstrated on three shapes of the Myth
dataset. The three shapes together with their respective distance profiles DP ∗pers
are shown in Figure 6. While legs and tail of the horse move from Figure 6a to 6c
and the horse is angling its torso upwards from 6c to 6e, the respective distance
profiles given in the Figures 6b, 6d and 6f show high similarity for all three
shapes.

5 Conclusion and Future Work

This paper presented the Euclidean and geodesic distance profiles, which are con-
sistent with Leyton’s shape evolution as expressed in his process-grammar [13].
The distance profiles are shape descriptors based on the ideas of the LBP scale
space. Both profiles are invariant against translation, rotation and scaling. The
geodesic distance profile is also invariant against articulations and deformations.
Local extrema along the distance profiles can be filtered with their persistence
to prune spurious branches of the MA. Hence, the filtered distance profiles are
robust against noise on the boundary. First experiments on the computation
of the profiles result in the expected alternating sequence of local minima and
maxima.
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(a) (b) DP ∗pers

(c) (d) DP ∗pers

(e) (f) DP ∗pers

Fig. 6: Geodesic distance profiles under application of persistence (threshold = 8
for the three shapes shown in the left column respectively. ◦ indicate maxima,
× indicate minima.
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