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Abstract.
This paper discusses a concept for the repre-

sentation of n-dimensional shapes by means of a
model, based on linked local coordinate systems.
Through application of the medial axis transform
(MAT) and decomposition of the resulting medial
axis (MA), articulated, as well as non-rigid abstract
n-dimensional bodies can be described by defining
corresponding local coordinate systems for each ele-
ment. This should allow a distinct and invariant rep-
resentation of every point of the shape, which can be
used for complex composite transformations of the
object in the context of robotic manipulation.

1. Introduction

For the automatic manipulation of objects and rea-
soning considering their attributes, a powerful model
is needed. Articulated objects, like the human body,
or deformable objects, like a piece of clothing, de-
mand a model that is able to represent complex in-
trinsic transformations. These classes of objects can
be represented by defining coordinate systems for
each segment, so every point of the object is dis-
tinctly determined by a set of coordinates. One appli-
cation, for both classes of objects mentioned, is auto-
mated dressing-assistance for a person. Linked local
coordinate systems should allow the description of
every point of the shape, so it can be exactly defined
where a robotic arm needs to grasp a glove and how it
needs to place it for the person to slip in comfortably,
considering the person’s range of motion.

A coordinate system is specified by its origin, de-
termining the location, and a set of basis vectors,
defining the orientation and scale of the element.
It makes the description of an element invariant to
changes. In the case of articulated movements, the
specific coordinates of the parts do not need to be
changed. The intrinsic movement of an articulated

object’s element can be described as a transformation
between two linked coordinate systems. Swinging of
the arm can be characterised as a transformation of
the arms coordinate system in respect to the linked
coordinate system of the torso for movement of the
shoulder and transformation of the distal part’s coor-
dinate system in respect to the system of the upper
arm for movement of the elbow. The coordinate sys-
tem of the hand in respect to the system of the fore-
arm does not change in that case (Fig. 1). In case of a
smooth deformation, local interpolation between the
transition of the elements may be needed.

Figure 1. Linked local coordinate systems of a swinging
arm. Frames indicating the area of a coordinate system.
Forearm and hand do not move in respect to each other
while the linked system of the distal part (parent of hand
and forearm) of the arm changes in respect to the system
of the upper arm.
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The intrinsic movement of a non-rigid object is
supported by the model’s invariance to deformation
originating from the axial representation. The ob-
ject’s axial representation provides the linked local
coordinate systems. In 3D space, axial representa-
tions can be produced by sweeping spheres along the
axis [16]. For 2D objects, geometric primitives, like
circles or line segments, can be used as generators
[14, 20]. The linked local coordinate systems are
based on the resulting medial axis of the object using
an end point as the origin and a branch of the medial
axis as a basis vector of the coordinate system.

Several problems need to be addressed to provide
a stable and invariant model that can represent an ob-
ject and leads to reliable reasoning:

1. Noise

• Noise inside the shape creating holes.

• Noise along the boundary creating spuri-
ous branches.

2. Decomposition

• Multiple affiliation of points in branching
areas.

3. Preservation of structure

• Ordering of axes at branching points.

4. Special shapes

• Spheres and objects based on spheres.

• Circular MAs.

The novelty of the method is the utilisation of
linked local coordinate systems for the representation
of n-dimensional objects for robotic manipulation.

The paper is organised as follows. In section 2,
related work is outlined. Section 3 describes the pro-
posed method and its open problems in detail. Sec-
tion 4 concludes the paper with a discussion of the
method.

2. Related Work

Most recently, research in the field of robotic
dressing-assistance was done by Gao, Chang and
Demiris, who utilise randomized forests for a model
of the upper body [6]. Klee et al. used a skeleton
tracker for a robotic dressing-application.

Handling and predicting articulated objects or
non-rigid objects demands a complex model that can
represent the vast amount of different possible ap-
pearances of an object. Several projects have already
been dedicated to that issue. Li, Chen and Allen [11]
used meshes of deformable objects to simulate the
movement and its results to identify grasping points
of garments. With a system of dictionary learning
via spatial pyramid matching and sparse coding, a
robotic grasper is enabled to grasp, flatten and fold
garments. Felzenszwalb, Mc Allester and Ramanan
[5] published an algorithm for the recognition of de-
formable objects in images by means of a discrimina-
tively trained, multiscale, deformable part model in
2008. Godec, Roth and Bischof [7] described hough-
based tracking of non-rigid objects in 2013. Their
approach utilises the generalised Hough-transform to
handle articulated and non-rigid objects. Pouch et al.
[13] resort to the MAT to segment the deformable
aortic valve apparatus in 3D echocardiographic im-
ages.

To provide a stable basis for the concept, a MAT
algorithm must be used which can provide a geomet-
rically accurate and compact MA. In recent years,
several groups have been dedicated to improve prior
efforts in that field. Li et al. published an approach
for MAT by Quadratic Error Minimization to com-
pute a stable and compact MA [10] The groups of
Zhu et al. published a paper on the constructive gen-
eration of the medial axis for solid models [18] and
also an approach for calculation of the medial axis
of a CAD model by parallel computation [19]. Aich-
holzer, Aigner, Aurenhammer and Juettler showed a
technique for the MAT by means of a polyhedral unit
ball instead of the standard Euclidean unit ball [2]

3. Method

MAT has the property of producing a MA of one
dimension less than the object in many cases. A
3D object creates a 2D MA and a MAT of a 2D
MA generates a 1D manifold (Fig. 2.a) that can
be decomposed at its branching points (Fig. 2.b,
Fig. 2.c). As branching points we denote loca-
tions where more than 2 branches of the MA meet.
These points represent the basis of convexities of
the shape. Points within the largest inscribing circle
around these branching points, the branching area,
have an unclear affiliation to a MA branch, which
poses a problem when the connected MA branches
move in respect to each other. The decomposed
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Figure. 2. a) MAT of the image of a hand. Largest
inscribing circles form the MA. b) Decomposed branch

of the MA. c) Area to be described in respect to this
branch.

branch of the MA is straightened to form the x-axis
of a new coordinate system by replacing the geodesic
distances by Euclidean coordinates. The distances
along the MA stay identical, while the curvature is
removed (Fig. 3).

Figure 4. Coordinate system based on a MA branch. A
point is defined by longitude and latitude.

This makes the representation invariant to defor-
mation of the object, except stretching and compres-
sion, where the geodesic distance may change with
movement. One end point of the axis can be cho-
sen as the origin. All points within the silhouette of
the object can be described as a tuple of longitude
along the axis and latitude as the distance of the point
along the normal to the axis (Fig. 4). This procedure
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Figure. 3 a) Elongated shape with MA and its
straightened representation (b). The representation is

invariant to deformation.

of MAT, decomposition and straightening creates a
graph with end points and branching points as nodes
and axis branches as edges (Fig. 5).

a b

Figure. 5 a) MAT of the image of a hand. b) Graph
created by straightening the MA branches of the hand.

By means of the graph, the structure of the ob-
ject can be identified. The graph concept is based on
the notion of cellular complexes, described by Ko-
valevsky [9], which states that an n-dimensional ob-
ject is confined by an (n-1)-dimensional object. The



1D MA is confined by 0D points, the 2D MA is con-
fined by 1D curves and so forth. Based on this prin-
ciple of cellular complexes and the attribute of MAT
to produce a MA of the objects dimensionality mi-
nus 1 in many cases, it is assumed that the proposed
method holds for many n-dimensional objects by re-
cursive application until 1-dimensionality is reached.

To communicate the principle of MA, we show
how to build an abstract object from its MA. A shape
can be created by sweeping a circle along a 1D Axis
as can be seen in Fig. 6. The MA is synonymous

Figure 6. Circles swept along a 1D MA. Transparency in-
dicates the sweeping movement.

with the x axis of a coordinate system we use to de-
fine all points of the shape. The radius of every circle
at position x along the axis has to be stored to cre-
ate the intended object. This assures the preservation
of shape. Given that the circles have to touch the
outline of the shape at at least 2 points at all times
and no circle is completely contained in another, the
silhouette of all the circles combined describes the
shape that is to be produced [3]. Noise on the bound-
ary of the object can cause spurious branches, mean-
ing branches of the MA that do not hold valuable in-
formation about the appearance of the shape. Noise
within the object may cause holes and therefore cir-
cular MAs. In Fig.7, we compose several branches to

Figure 7. Circles swept along a composed 1D MA. Trans-
parency indicates the sweeping movement.

one MA. The constellation of branches determines
the structure of the object. The structure can have
different constraints in its movement, depending on
the intrinsic mobility of the object. This topic is dis-
cussed further in chapter 3.3 Preservation of struc-
ture. When creating the 2D object, the Euclidean co-

ordinates of the MA are replaced by the geodesic co-
ordinates the axis shall have within the shape. Fig. 8
shows the 2D object that emerges from the composed
MA. This 2D object itself can be used as the MA for
a 3D object. This concept can be be continued due
to the MAT’s attribute to create an object with the di-
mensionality of the object minus 1. So its reversal
leads to an object with the dimensionality of the MA
plus 1.

Figure 8. Covered area as 2D MA of a 3D object.

3.1. Noise

Noise on the boundary of the shape can cause spu-
rious branches. Noise within the shape may cause
holes, which can lead to circular MAs. Several
projects are dedicated to the reduction of the influ-
ence of noise on the MAT. Most recently Spitzner
and Gonzalez [17] published a method called Shape
Peeling to improve the stability of image skeletons.
Abiva and Larsson [1] proposed a method to utilise
the Scale Axis Transform to prune the MA of spuri-
ous branches. Montero and Lang [12] published an
algorithm for skeleton pruning by means of contour
approximation and the integer MAT in 2012.

3.2. Decomposition

Decomposition is performed in branching areas to
obtain less complex axes. Serino, Arcelli and Sanniti
di Baja [15] recently described the decomposition of
3D objects at branching points to obtain meaningful
object parts. In 2D, the branching area lies within the
largest inscribing circle where 2 or more branches
of the axis meet in the centre (Fig. 9). While the
points of the shape lying in a circle that only belongs
to one axis, are uniquely defined, points within the
branching area can be described in relation to sev-
eral branches of the axis (Fig. 10). If branches move
in respect to each other, these points shall each be
affiliated with only one branch to preserve a unique
representation. While Serino, Arcelli and Sanniti di
Baja [15] can already demonstrate impressive experi-
mental results of the decomposition of the composed



Figure 9. A point within a branching area can be described
in relation to several branches of the axis.

Figure 10. A point within a branching area can be de-
scribed in relation to several branches of the axis. Axis
a is extended across the centre, illustrating its negative do-
main.

1D MA of 3D objects, MAs of higher dimensions
require further research.

In 3D, there can be branching points or branching
curves where the branches of the MA meet as can
be seen in Fig. 11. In a first idea we approach the
branching area as if it is an object itself. The branch-
ing area of a curve we define by the largest inscribing
sphere that is swept along the branching curve (Fig.
12).

Figure 11. Two 2D MA branches of a 3D object forming
a branching curve where they intersect.

Figure 12. A sphere swept along the branching curve cre-
ating a new 3D object based on a sphere.

The branching area itself can be seen as a 3D rod-
like object or as a 4D object created by sweeping a
3D sphere along an axis. This implies a leap of at
least 2 dimensions to reach the 1D MA, which vi-
olates the assumption that the MAT reduces the di-
mensionality of an object by 1. A problem that is yet
to be solved and is explained further in the chapter
3.4.1 Spheres and objects based on spheres.

A different approach is to apply the MAT recur-
sively to every branch of the MA until 1D is reached.
This way, joints will not necessarily imply a con-
nection of the MA branches (Fig. 13) and the MA
branches of an object might not intersect. If the MA
breaks into several pieces, it arises the question of
how the structure can be maintained. Further work
on this matter is required.

Figure 13. 1D MA branches of the 2D MA branches do
not intersect.



3.3. Preservation of structure

Articulated objects with a specific range of motion
require constraints at joints, so the human forearm
can not rotate around the elbow, but can only flex in
one direction to a certain degree. Non-rigid objects,
like cloth, require different constraints since they do
not have joints, but feature a certain thickness, stiff-
ness, weight and other properties. A basic ordering
has to be maintained regardless of these characteris-
tics. As shown in Fig. 14, all MA branches might be

Figure 14. 3D branching point of MA branches. Branch a
can move freely except across the triangles spanned by

the other branches b, c and d.

able to move freely, provided they do not cross planes
spanned by two different axes to sustain the objects
organisation. The structure can be preserved by con-
sidering the branches of the MA as edges and the end
points and branching points as nodes of a combina-
torial map as described by Damiand and Lienhardt
[4].

3.4. Special shapes

There are several open problems regarding special
shapes in the method that require further research.
Thoughts of the community on the matter are highly
appreciated.

3.4.1 Spheres and objects based on spheres

The concept of MAT is mostly built on the usage of
circles and spheres. If an object, or a part of it, itself
is one of these primitives or based on the primitive in
a higher dimension, the MAT will not create an ob-
ject of its dimension minus 1, but it may create a MA
with a dimensionality even lower. This violates our
basic assumption that this is the case. This means
that the MA can not be used to determine the loca-
tion of points of the shape uniquely. One approach
to solve this problem is to utilise spherical coordi-
nate systems. Fig. 15.a shows a 3D sphere that cre-

a b
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Figure 15. a) 3D sphere producing a 0D MA. b) Equator
applied to a sphere to provide orientation for the

spherical coordinate system. c,d) Shape described by
sweeping a spherical coordinate system along a path.

ates a 0D MA. Fig. 15.b illustrates the sphere after
application of an equator to orient the spherical co-
ordinate system. With these systems, all points of a
sphere can be distinctly determined. Objects based
on spheres imply that the shape can be created by
moving a sphere along a path (Fig. 15.c, Fig. 15.d).
It follows, therefore, that every point of the object
based on a sphere can be uniquely determined when
the spherical coordinate system is moved along the
MA.

3.4.2 Circular medial axes

Circular medial axes occur when an object element
has genus higher than 0 (Fig. 16.a) and at concavities
of the object (Fig. 16.b). If a circular MA branch is
connected to 1 or more other branches of the MA, the
branching points can be used to decompose the cir-
cular MA and therefore create non-circular sections
that can be treated regularly. This is the case if the
object features a tail. Elements with genus higher
than 1 also feature connected MA branches because
of the bridge between the holes whose MA branch
connects the sides. This leaves an issue for objects
with genus 1 and no tail (Fig. 16.a) and objects with
convex elements (Fig. 16.b). The n-dimensional
MA is not confined by a (n-1)-dimensional object,
which violates one of the basic assumptions of this
method, namely the concept of cellular complexes. If
an object produces a circular MA without connected
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Figure 16. a) 2D circular MA within a tube-like object
with an arbitrarily set reference (white). b) 2D circular

MA branch as part of an object’s MA with an arbitrarily
set reference (white).

branches, there is no reference point that can be used
as the origin of the coordinate system. A first at-
tempt to solve this problem, based on the findings of
Illetschko [8], is to place an arbitrary reference point.
This point can be used as the origin of the coordinate
system based on the MA. Depending on the dimen-
sionality of the object, also a cut can be necessary.
Points within the area of the new origin can then be
defined in relation to both end points of the MA.

A special case is shown in Fig. 17. The torus
is a shape based on a sphere, meaning that it can be
described as a sphere moved along a circular path. As
explained earlier, this enforces the use of a spherical
coordinate system. Also the torus has a circular MA,
which requires an arbitrarily set reference point.

Figure 17. Special case: Torus is a shape based on a sphere
and creates a circular MA. From arbitrarily set reference
point on the MA (white), a spherical coordinate system is
swept along the MA.

4. Conclusion

This paper proposes an novel concept for the
representation of n-dimensional shapes through a
model, based on linked local coordinate-systems.
Through recursive application of the MAT and
decomposition of the resulting MA, some n-
dimensional objects can be reduced to multiple 1-
dimensional sub-elements that are used as the axis

for coordinate-systems. The 1D elements as edges
and their end points as nodes, form a graph that rep-
resents the object. Articulated, as well as non-rigid
objects can be described by defining corresponding
coordinate systems of each element. This should al-
low complex composite transformations of the ob-
ject. Intrinsic movement does not imply the transfor-
mation of point-clouds or meshes, but of linked local
coordinate systems.

Further work to be done on the project is to pro-
vide a proof of concept, especially concerning the
feasibility of the method for n-dimensions and res-
olution of the open problems described in this paper.

Acknowledgements

We would like to thank the reviewers for construc-
tive feedback and the PRIP Club, the organization
of friends and promoters of Pattern Recognition and
Image Processing activities Vienna, Austria, for sup-
port.

References

[1] J. Abiva and L. J. Larsson. Towards automated fil-
tering of the medial axis using the scale axis trans-
form. In Research in Shape Modeling, pages 115–
127. Springer, 2015. 4

[2] O. Aichholzer, W. Aigner, F. Aurenhammer, and
B. Juettler. Exact medial axis computation for trian-
gulated solids with respect to piecewise linear met-
rics. In J. Boissonnat, P. Chenin, A. Cohen, C. Gout,
T. Lyche, M. Mazure, and L. Schumaker, editors,
Curves and Surfaces, volume 6920 of Lecture Notes
in Computer Science, pages 1–27. Springer Berlin
Heidelberg, 2012. 2

[3] H. Blum. A Transformation for extracting new de-
scriptors of shape. MIT Press, 1967. 4

[4] G. Damiand and P. Lienhardt. Combinatorial Maps:
Efficient Data Structures for Computer Graphics
and Image Processing, volume 129. A. K. Peters,
Ltd. Natick, MA, USA, 2014. 6

[5] P. Felzenszwalb, D. Mc Allester, and D. Ramanan.
A discriminatively trained, multiscale, deformable
part model. Computer Vision and Pattern Recogni-
tion, 2008. CVPR 2008. IEEE Conference on. IEEE,
2008. 2

[6] Y. Gao, H. Chang, and Y. Demiris. User modelling
for personalised dressing assistance by humanoid
robots. In Intelligent Robots and Systems (IROS),
2015 IEEE/RSJ International Conference on, pages
1840–1845, Sept 2015. 2



[7] M. Godec, P. Roth, and H. Bischof. Hough-based
tracking of non-rigid objects, volume 117. Elsevier,
2011. 2

[8] T. Illetschko. Minimal combinatorial maps for an-
alyzing 3D data. Diploma Thesis, TU Wien, 2006.
7

[9] V. A. Kovalevsky. Finite Topology as Applied to Im-
age Analysis, volume 2. Academic Press, 1989. 3

[10] P. Li, B. Wang, F. Sun, X. Guo, C. Zhang, and
W. Wang. Q-mat: Computing medial axis trans-
form by quadratic error minimization. ACM Trans.
Graph., 35(1):8:1–8:16, December 2015. 2

[11] Y. Li, C. Chen, and P. Allen. Recognition of de-
formable object category and pose. Proceedings of
the IEEE International Conference on Robotics and
Automation (ICRA), 2014. 2

[12] A. Montero and J. Lang. Skeleton pruning by con-
tour approximation and the integer medial axis trans-
form. Computers & Graphics, 36(5):477–487, 2012.
4

[13] A. Pouch, S. Tian, M. Takabe, H. Wang, J. Yuan,
A. Cheung, B. Jackson, J. Gorman, R. Gorman, and
P. Yushkevich. Segmentation of the aortic valve
apparatus in 3d echocardiographic images: De-
formable modeling of a branching medial structure.
In Statistical Atlases and Computational Models of
the Heart - Imaging and Modelling Challenges, vol-
ume 8896 of Lecture Notes in Computer Science,
pages 196–203. Springer International Publishing,
2015. 2

[14] A. Rosenfeld. Axial representations of shape, vol-
ume 33. Academic Press Professional, 1986. 2

[15] L. Serino, C. Arcelli, and G. Sanniti di Baja. From
skeleton branches to object parts, volume 129. El-
sevier, 2014. 4

[16] E. Sherbrooke, N. Patrikalakis, and E. Brisson. An
Algorithm for the Medial Axis Transform of 3D Poly-
hedral Solids, volume 2. IEEE Educational Activi-
ties Department Piscataway, 1996. 2

[17] M. Spitzner and R. Gonzalez. Shape peeling for
improved image skeleton stability. In 2015 IEEE
International Conference on Acoustics, Speech and
Signal Processing, ICASSP 2015, South Brisbane,
Queensland, Australia, April 19-24, 2015, pages
1508–1512, 2015. 4

[18] H. Zhu, Y. Liu, J. Bai, and X. Ye. Construc-
tive generation of the medial axis for solid models.
Computer-Aided Design, 62:98 – 111, 2015. 2

[19] H. Zhu, Y. Liu, J. Zhao, and H. Wang. Calculat-
ing the medial axis of a {CAD} model by multi-cpu
based parallel computation. Advances in Engineer-
ing Software, 85:96 – 107, 2015. 2

[20] Y. Zhu, F. Sun, Y. Choi, B. Juettler, and W. Wang.
Computing a compact spline representation of the
medial axis transform of a 2D shape, volume 76. El-
sevier, 2014. 2


