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Abstract:

In many applications and especially in remote sensing often huge homogeneous regions, like
lakes, are to be represented by a single entity. The question is how can a region be contracted
in an optimal way while preserving topological properties and relations to the surrounding?
We present a deterministic algorithm which first finds a minimal spanning tree of the graph
corresponding to one region in the image. After that, the diameter and the center is found.
Then it recursively decomposes the minimal spanning tree into subtrees until all subtrees have
almost a depth of one. Fach decomposition corresponds to one contraction kernel that can be

used for topology preserving dual graph contraction.
1 Introduction

Many processes on regular pyramids [4] have a parallel computational complexity that de-
pends on the number of levels of the pyramid. Such processes work on all elements of a level
simultaneously and propagate information between levels either bottom-up or top-down or
they combine both directions. The number of levels of a regular pyramid is determined by a
constant reduction factor [7]. Tt is 4 for a pyramid with levels of 2! x 2¢, 2071 x 2071 /190 % 20
pixels. The reduction factor determines the number of cells by which the reduced level shrinks
after each reduction. Also, the reduction factor can be expressed alternatively by the diam-
eter L of the base level. The diameter of a connected set of nodes is defined as follows: Let
dist(u, v) denote the length of the shortest path between two cells u and v in terms of steps
between nodes. Then the diameter is the maximum of all dist(u, v) among all different pairs of
cells u, v. If 4-connectivity is used, the image diameter of a rectangular n x m array is n + m.
A reduction factor f typically reduces the size of the array to n x m/f = n/\/f x m/\/f
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with a diameter of L = (n + m)/+/f. Graph pyramids have a greater flexibility in allowing
certain parts to shrink faster than others. Some subparts may even keep their size waiting
for their surrounding to provide the necessary information to continue shrinking. Therefore
it is not evident that graph pyramids have a similar computational complexity as regular
image pyramids. Reduction in graph pyramids is a contraction process which is controlled by
contraction kernels. Contraction kernels are subtrees of the graph that contract into a single
vertex of the next higher pyramid level. Several successive contractions can be combined into
a single contraction which is controlled by an equivalent contraction kernel (ECK)[5] which
is a tree spanning the receptive field of the surviving vertex. This property allows us not
only to achieve faster contraction rates by larger contraction kernels, but also to decompose
large contraction kernels into smaller ones in a globally efficient way if no external constraint
imposes a specific decomposition. This is the key idea for the present paper. In images we
often see large homogeneous regions without any specific substructure. These regions need
to be shrinked into a single vertex of the region adjacency graph. In such case it is impor-
tant to summarize the properties of the large region in a small number of steps. In terms
of graph contraction we search for a decomposition of a tree spanning the connected region
into a number of local contraction kernels which can shrink the large region in a few parallel
contraction steps into a single vertex. For this purpose each contraction kernel should form
a maximum independent vertex set (MIS) like Meer’s stochastic pyramid in [7]: The kernels
span the whole region and consist of roots and leafs only, and roots are not allowed to be

adjacent. This splits the problem into two:
1. Find a minimum spanning tree 7 of the region.

2. Decompose T into a few local MIS spanning forests, which contract the region by a few

successive steps.

The first problem can be solved by several classical algorithms [6]. For the second problem
we propose the following algorithm called Recursive Decomposition of a Tree (RDT) which

aims at an efficient decomposition of a given 7:
1. Determine the diameter L and the ’center’ of 7.
2. Decompose T, into subtrees 7; with diameter not greater than L /2.

3. Recurse steps 1 and 2 on the subtrees 7; until their diameters L; < 2 for all subtrees. This
recursive decomposition actually stops after log(L) steps, since the maximum diameter
at iteration k is L/2F.



2 Motivations

Given a graph as base level of the pyramid, a minimal spanning tree 7 is built and its diameter
L is found. The diameter directly relates to the optimal height A of the pyramid, if contraction
kernels are restricted to depth one: h = log(L). Hence, the optimal height of the pyramid is

known in advance.

In [2, 1] contraction kernels are selected stochastically. In this paper, they are constructed in
a deterministic way: Using a recursive decomposition of 7 into subtrees, contraction kernels

of depth one are built.

From an apex of the pyramid with optimal height we can make down projection of the apex

to the base level in optimal time.

The RDT algorithm presented in section 1 allows for contraction kernels of depth one and

also higher depth, which enables us to construct pyramids of any height A > 2.

3 Experiments and Results

To find an optimal pyramid deterministically, the RDT algorithm is applied which gives us an
optimal height of a pyramid. Table 1 compares the height h of pyramids constructed by the
RDT algorithm with three stochastic methods: MIS (Maximal Independent Set) [7], MIES
(Maximal Independent Edge Set), and MIDES (Maximal Independent Directed Edge Set)
[1]. Each graph was randomized by stochastically contracting it to about 4000 nodes and
27700 edges. Following values are compared: The minimum height min(h) of the pyramids,
the maximum height maz(h), the average height A, and the variance o(h). All methods are
applied to the same graphs. All 100 pyramids constructed with RDT, have a lower height. A
particular decomposition is shown in Figure 1.

Algorithm min(h) | maz(h) | h o(h)

Stochastic with MIS 9 20 12.39 | 2.4367
Stochastic with MIES 10 11 10.26 | 0.4408
Stochastic with MIDES 8 11 8.73 | 0.6172
Deterministic with RDT 7 8 7.94 | 0.0119

Table 1: Deterministic and stochastic contraction: comparison of the pyramids’ height h
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Questions:

1. What is the original contribution of the work?
Recursice Decomposition of a Tree (RDT) presents a new algorithm for constructing
irregular pyramids of height log(diameter). The theoretical optimality is verified by an

experimental comparison.

2. Why should this contribution be considered important?
Irregular pyramids provide universal segmentation, the logarithmic height contributes

to the computational efficiency of the 'vertical’ processes on the hierarchy.

3. What is the most closely related work by others and how does this work differ?
[7, 3] are locally optimal bottom-up constructions, while RDT provides a globally optimal

hierarchical decomposition by a top-down strategy.

4. How can other researchers make use of the results of this work?
The simple algorithm may turn out useful in nearly all applications where multi-scale

representations are used.

5. Has this work been presented/submitted elsewhere?
This is the first presentation of RDT. Irregular pyramids based on dual graph contraction
have been presented before, also within the OAGM. That is why this basic concept is

not repeated here.

6. Which form of presentation is preferred: Oral or Poster?
Oral

7. Are you eligible for the best paper award(researcher without PhD or with the paper
about the just finished thesis)?
No



