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Abstract

To efficiently process huge amounts of structured
sensory data for vision, graph pyramids are pro-
posed. Hierarchies of graphs can be generated by
dual graph contraction. The goal is to reduce the
data structure by a constant reduction factor
while preserving certain image properties, like
connectivity. While implemented versions solve
several technical vision problems like image seg-
mentation, the framework can be used as a model
for biological systems, too.

I. Introduction

Animals and mechanical systems are
equipped with many sensors. The individ-
ual sensor elements are spatially distrib-
uted in many different arrangements.
While regular sensor arrangements like
square grids dominate the fabricated
world, most of their biological counter-
parts show a regular distribution only on
a large scale, their sensor neighborhoods
are neither geometrically nor topologi-
cally regular. Figure 1 shows portions of
the sensor arrangements of a typical digi-
tal camera and a monkey’s retina. The
sensors’ positions are indicated by a small
circle, the number of elements in Fig. 1
has been chosen to match approximately
the 2339 sensory elements of the monkey
retina. The processing of the data mea-
sured by the sensors involves a huge
number of processing elements (e.g. pro-
cessors, neurons) that are interconnected
in very complex ways. In this paper we
propose one possible interconnection net-
work, the graph pyramid, that combines
two data structures in an efficient way:
logarithmic pyramids (see Jolion and
Rosenfeld 1994 for a survey) and attribu-
ted relational graphs (for theory see
Thulasiraman and Swamy 1992, for re-
cent applications in Pattern Recognition
see Jolion and Kropatsch 1998, Kropatsch
and Jolion 1999, Jolion et al. 2001). Reg-
ular pyramids are built by repeatedly re-
ducing the resolution (and the size) of the
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by the Austrian Science Foundation under grants
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image by a constant factor, e.g. a 1024�
1024¼ 210�210 image produces a pyra-
mid with 10 levels above the base:
512� 512, 256�256, 128�128, 64� 64,
32�32, 16�16, 8�8, 4� 4, 2� 2, 1�1.
The reduced images are computed by lo-
cal (weighted) averages relating the
(gray) values of the reduced pyramid
level with a small number of pixels in
the level below. These ’vertical’ connec-
tions between the images in the pyramid
stack establish short (logarithmic) con-
nections between the apex of the pyramid
and any pixel in the base image. The re-
sulting computational efficiency has been
used in many vision systems to speed up
their performance. But pyramids are also
used as a model to explain visual percep-
tion in biological systems (e.g. see Uhr
and Schmitt 1984, Pizlo et al. 1997).
Sensors typically measure a single

quantity like the light intensity butobjects
in the environment are connected volu-
metric entities, they have a ’body’, a cer-
tain shape and can be decomposed into
parts. For example, a human face is char-
acterized by its eyes, its nose and its
mouth, and, what is considered a major

structural property, the mutual relations
between its parts.
Let us now study the first stages of vi-

sual information processing and focus on
the data representation needed at the dif-
ferent levels of processing. Through the
projection of scene objects of the environ-
ment into the image, object patches with
same color or texture are mapped into im-
age regions of same characteristics. By
the discrete sampling of these objects,
the corresponding regions are decom-
posed into many similar sensor signals,
adjacent sensors may sense the same col-
or, similar light intensity or even compli-
cated texture features. ’Image Segmenta-
tion’ finds homogeneous regions in the
sampled image and determines the spa-
tial relations between these regions. Re-
gion adjacency allows a system to group
all region patches of one object or to find
groups of objects that belong together.
A simple and efficient way to represent

all three types of structures: the arrange-
ments of sensor elements, the region ad-
jacencies, and the part-whole relations of
objects, is an attributed relational graph
(ARG). It consists of a set of nodes or

Fig. 1. Sensor arrangements, a) part of CCD chip, b) part of monkey’s retina (data kindly provided by P
Ahnelt)
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vertices V, of a set of edges E with each
edge relating two vertices. Both vertices
and edges may receive numerical or sym-
bolic attribute values to specify particular
properties. A pixel array can be converted
to an ARG without loss of information by
simply defining the pixels as the vertices
of the graph with a gray value attribute.
Neighboring pixels create an edge be-
tween the vertices corresponding to the
pixels. But the ARG goes beyond the rep-
resentational capabilities of the pixel ar-
ray. Vertices can be identified with re-
gions or also with objects. In these cases
an edge can express region adjacency or
mutual object relations respectively. In
addition, the ARGs that are derived from
images are embedded in the image plane:
such graphs are called ’plane graphs’1.
Since the sensor elements form a sur-

face (like the eye’s retina), we represent
their topological arrangement by a pair of
graphs, which are non-simple, plane, and
dual to each other. (Large) connected re-
gions and their topological relationships
often allow the inference of spatial rela-
tions in the environment and are very ro-
bust with respect to noise and sensing
inaccuracies. These properties are pre-
served by dually contracting the graphs,
operations which can be implemented in
a massive parallel and local system archi-
tecture. Repeated contraction yields a
stack of successively reduced graphs: a
graph pyramid.
This paper is organized as follows: We

first examine the different processing
stages of image analysis by a computer
system (Section III). We then study the
purpose of vision both for computers and
for biological systems (Section IV). Sec-
tion V explains the basic concepts to
build a graph pyramid. This notion of

’’equivalent contraction kernel’’ allows
us in section V.C to define all possible
graph pyramids that can be built on top
of a given base graph, e.g. the sensor
arrangement of a retina. In the conclu-
sion we refer to the different successful
applications of pyramids and graph
pyramids.

II. Processing Stages of Computer
Vision

Let us consider vision as a process that is
supposed to capture the essential struc-
ture of the world. The cyclic arrangement
of the diagram in Fig. 2 shows the struc-
ture of the environment of a ’seeing sys-
tem’ (’REALITY’) and the internal stages
of recovery of this structure from the im-
age. It tries to relate the structure of the
WORLD on the left side with the recon-
struction stages of the COMPUTER vi-
sion process on the right side. A DIGITAL
IMAGE, as captured by a sensing cam-
era, is an array of measurements called
pixels (picture elements). Simple image
processing consists in modifying the indi-
vidual pixel values in order to stretch the
image contrast, to remove noise, and to
compute features used in segmentation
to classify pixels as belonging to a specif-
ic image object or to the background.
Segmentation collects all pixels of the
same class into connected sets of pixels:
the image REGIONS. These regions cre-
ate region adjacency relations between
the regions. Geometric region properties
like ’’shape’’ allow the identification of
SPECIFIC PARTS corresponding to the
REFLECTING SURFACES of the reality.
Using knowledge about the structure of
objects, the specific parts can be further
assembled into image OBJECTS. To-
gether with their mutual relationships
they constitute the SCENE DESCRIP-
TION describing (and interpreting) the
content of the visual input.

1Plane graphs should not be confused with planar
graphs for which such embedding exists. E.g. a
different choice of the background face may
cause a different embedding in the plane.
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Figure 3 illustrates some of the vision
steps by means of a very simple example.
11 objects, black squares on white back-
ground, are sampled in a square grid pro-
ducing 196 pixels of which 44 fall on the
black object surface. Pairs of pixels are
considered adjacent if they are neighbors
in the same row or the same column (4-
adjacency). The corresponding neighbor-
hood graph contains 364 Edges. Seg-
mentation and connected component
analysis2 assigns each group of 4 black
pixels a unique label, 1, 2, . . . 11, each
corresponding to one object. The white

background forms a single connected
component having 11 holes (e.g. the 11
black squares). Since the fact that all the
11 objects are adjacent to the background
is not the ultimate result (i.e. also the
characters of a scanned document), spa-
tial closeness is used to describe their ar-
rangement in the image. The resulting
object graph consists of 11 object-vertices
and 18 object-relations. The later reflects
the placement of the objects in the im-
age plane3 by relating objects which
are closest in the image. Such graphs
are compact and very convenient data

Fig. 2. The vision process as a cycle

2A connected component is a set of pixels which
have the same gray value and which are con-
nected.

3Geometric object properties like coordinates or
size are kept in numerical attributes of the ver-
tices.
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structures to describe topological rela-
tions among image entities at multiple le-
vels in a consistent way.

III. Purpose: Smart and Efficient
Decisions

Before studying the sensors and sensing
processes that extract information from
the environment let us ask for the purpose
of these complicated and not yet suffi-
ciently understood systems. Pizlo et al.
(1997) define the goal of visual percep-
tions as follows: ’The goal of vision per-
ception is to provide the observer with vi-
sual information about the 3D environ-
ment so that the observer can recognize
objects, manipulate them, and navigate
in the environment.’ A natural environ-
ment typically contains an enormous
variety and amount of objects, even a sin-
gle snap shot could not be fully inter-
preted in reasonable time. Hence the
need to efficiently focus on those pieces
of information that are relevant to take
appropriate decisions. Less important
data can be neglected, but their removal
should not disturb the (probably) im-
portant spatial relations between the rele-
vant parts. This brings us back to the
formulation of Marr (1982): ’building a

description of the shapes and positions of
things from images’. We conclude that vi-
sion algorithms must be capable of sim-
plifying a huge amount of sensory data
without loosing the relevant information.
Since sensors have different tasks the
purpose varies and the respective algo-
rithms must allow conscious control and
adaptation to the actual purpose in a
smart way. In this context, adaptation
means that other weights of importance
are given to the features derived from
the data depending on the actual pur-
pose. A different goal may need a differ-
ent decision to be drawn from the same
visual data.

IV. The Graph Pyramid

Connected objects are mapped into con-
nected image regions if the image’s pro-
jection is large enough to satisfy the dis-
crete sampling theorem (e.g. to inscribe a
circle with a radius larger than the sam-
pling distance). Geometrical measure-
ments derived from a digital image are
sensitive to errors due to noise, discrete
sampling and motion inaccuracies. How-
ever, the structural and topological rela-
tions like region-adjacency or part-whole
are inherent to the objects and their

Fig. 3. Deriving the structure of 11 objects after regular sampling. a WORLD, b binary DIGITAL
IMAGE, c SCENE DESCRIPTION
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arrangement in the image up to discreti-
zation. In many cases, they do not depend
on the particular imaging situation. This
is the background of several recent con-
tributions describing spatial=structural
representations and transformations pre-
serving topological relations existing in
the image plane. Let us enumerate a
few approaches preserving structural
relations:

1. The simplest most frequent represen-
tation uses coordinates as vertex attri-
butes of an ARG. This immediate rep-
resentation depends on the particular
mapping geometry. For well controlled
environments (e.g. geographic infor-
mation systems) it is widely used due
to its simplicity.

2. Rosenfeld and Nakamura (1997) con-
sider local deformations of (digital)
curves in the plane that preserve an
implicitly given topology. The idea is
that images showing the same topolog-
ical arrangement of regions and curves
can be transformed into each other
continuously.

3. A pair of plane dual graphs is the base
of a graph pyramid built by repeated
dual graph contractions (Kropatsch
1997a). It differs from the previous ap-
proach in that the transformed data are
reduced at each step by a constant re-
duction factor which is the origin of its
computational efficiency.

4. In topological and combinatorial
maps (Gareth and Singerman 1978,
Lienhardt 1989) the embedding is de-
termined by the local orientation of the
structural elements. We have shown in
Kropatsch and Brun (2000) how to per-
form dual graph contraction with com-
binatorial maps.

To associate a discrete image region
with the corresponding surface patch of
the object and to hypothesize adjacency
of patches from adjacency of regions, the
connectivity of the graph (or the subgraph

representing the object) is an essential
structural property. Since our goal is to
successively remove unnecessary parts
the connectivity can be lost by these op-
erations. Before disconnecting a graph
into two components these two compo-
nents will be connected by a single edge
which is called a bridge (Fig. 4). Hence
bridges should not be removed, or, what
is equivalent, the dual counterpart of
bridges, self-loops, should not be con-
tracted. Since our graphs are embedded
in the image plane, each edge bounds
two regions of the plane which are con-
nected by the dual edge in the dual
graph. The two regions bounded by a
bridge are the same (R0 in Fig. 4) and
consequently the two extremities of the
dual edge too: such an edge is called a
self-loop.

A. Dual Graph Contraction

Let us consider an example and discuss
the dual contraction of a graph by means
of this example. The complete formalism
will follow.

1. Example: Connected Components
of an Image

Consider a simple example (Fig. 5): Pixel
gray values become the attributes of the
corresponding vertices of the base graph

Fig. 4. The removal of the bridge would discon-
nect subgraphs R1 and R2
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G0 and are illustrated by the color with
which the circle corresponding to the ver-
tices are filled (Fig. 5b). Two vertices are
connected by an edge (a line segment in
Fig. 5b) if the two corresponding vertices
share a boundary segment. The four dif-
ferent gray values=colors of the 25 pixels
form 11 groups of adjacent pixels all hav-
ing the same gray value: they are called
the connected components (Fig. 6). Our
processing goal is to represent each such
group by one vertex and to connect two

vertices if the corresponding pixel groups
share at least one boundary segment (see
Fig. 6b).
In order to derive the smaller graph G2

from G0 we apply several contraction op-
erations to the graph until the final result
is reached. The primitive operation of
dual graph contraction is the contraction
of an edge e¼ (v,w). It consists of the
identification of the two end vertices and
the removal of the edge. We can choose v
to ’survive’ and substitute all appearances

Fig. 5. Image to ARG conversion: a a 5�5 gray level image, b the corresponding base graph G0

Fig. 6. To derive: the RAG of the connected components. a The 11 connected components of G0. b The
region adjacency graph (RAG) G2
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of w in any of the edges by v. One can
visualize the process dynamically by
moving w along e into v while stretching
all the edges attached to w.
If we select only edges for contraction

the end points of which have the same
gray value, the connected components
will shrink but all the connections be-
tween different gray values will be pre-
served. In Fig. 7 the selected edges are
marked by an arrow pointing towards
the surviving vertex. All the edges that
contract into the same surviving vertex

are called ’contraction kernel’. If these
kernels do not form cycles (e.g. each is a
small tree) all contractions can be exe-
cuted simultaneously.
Some of the surviving vertices may be-

come multiply connected by multi-edges.
In most cases only one of the multi-edges
is needed (Fig. 8). But in some cases (Fig.
9) the multi-edge represents relevant in-
formation: when the two regions meet
along two or more distinct boundary seg-
ments. In all previous cases an edge be-
tween two surviving vertices was asso-
ciated with one connected boundary seg-
ment between the two regions. If we
would remove one of the two edges in
Fig. 9c this useful topological property
would be lost. If we continue contracting
one of the double edges we end up with a
self-loop e¼ (v, v) where both end points
are identical. As we can see intuitively in
Fig. 9d its removal would again destroy
the above property. In addition we would
loose the fact expressed by the self-loop
that the inner region is completely sur-
rounded by the other region. We conclude
that both multiple edges and self-loops

Fig. 7. Contraction kernels (CK) at the base level
G0 and the contracted graph G1

Fig. 8. Redundant double edge: a CK, b
contracted, c simplified

Fig. 9. Non-redundant double edge and self-loop: a G0þCK01, b G1þCK12, c G2þCK23, d G3 with self-
loop

282 Walter G. Kropatsch



may be necessary to preserve the topolog-
ical properties of the surviving compo-
nents of the graph.
But how do we decide whether an edge

is redundant or not? For this purpose we
consider the dual graph. It can be con-
structed by placing a new (dual) vertex
(depicted by a small square in Fig. 10)
into each face of the drawn graph and
connecting two new vertices across the
edge of the primal graph which separates
the two faces. For the pixel array this
graph consists of the centers of all 2� 2
blocks and the boundary segments separ-
ating two pixels (Fig. 10b). The contrac-
tion of an edge of the primal graph
merges the two pixels corresponding to
the edge’s end points. Consequently the
separating boundary segment e.g. the
edge of the dual graph has to be removed.
Edge contraction corresponds to edge re-
moval in the dual graph. This allows to
maintain duality between the dual graphs
after ’dual graph contraction’. With the
observation that the number of boundary
segments of a face corresponds to the de-
gree of the dual vertex let us reconsider
the cases of multi-edge and of self-loop:
the degree of the face bounded by the
double edge in Fig. 8b is obviously two,
the two faces between the double edges in
Fig. 9c have both degree three. A similar
observation holds for the self-loop: the

face inside a removable self-loop has de-
gree one, non-removable self-loops are
characterized by an inside face of degree
three (Fig. 9d) or higher.
A close look at the result of our first

contraction (Fig. 7) shows that not all con-
nected components have been contracted
into a single vertex. We therefore repeat
the selection of contraction kernels on
graph G1 and find four more edges to con-
tract (Fig. 11). The resulting pyramid has
three levels G0,G1,G2 and yields at the
apex the RAG of the original image. The
dashed vertical lines in Figs. 7 and 11
indicate the correspondences between

Fig. 10. The role of the dual graph G0: a the dual graphs (G0, G0), b the dual graph G0 on the image

Fig. 11. The pyramid
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the vertices across the different levels.
Each vertex at the top level corresponds
to a connected set of vertices in the level
below. Each of those corresponds to an-
other connected set of vertices in the level
below and so on. The union of all the sets
of vertices in the base level that are de-
rived from one vertex at the top level form
the receptive field of this vertex.

2. Formal Definition

Figure 12 summarizes the two basic
steps: dual edge contraction and dual
face contraction. The base of the pyramid
consists of the pair of dual image graphs
(G0, G0). A new (reduced) level iþ1 is
computed from level i by

1. selecting the contraction kernels (Si,
Ni,ij1),

2. dually contracting the selected edges,
and

3. removing redundant multi-edges and
self-loops (dual face contraction).

Connectivity of surviving vertices is pre-
served if the contraction kernels satisfy
the following definition of an irregular
pyramid (see also Kropatsch 1994
[Def.5]):

Definition 1. In a pair of dual image
graphs (Gi(Vi, Ei), Gi(Vi, Ei)), following
decimation parameters (Si, Ni,ij1) deter-
mine the contracted graphs (Gij1, Gij1): a
subset of surviving vertices Si¼Vij1�Vi,
and a subset of primary non-surviving
edges4 Ni,ij1�Ei. The decimation param-
eters (Si,Ni,ij1) must be a subgraph of Gi

and do not contain any circuit, e.g.
(Si,Ni,ij1) is a forest. The relation between
the two pairs of dual graphs, (Gi, Gi) and
(Gij1, Gij1), as established by dual graph
contraction with decimation parameters
(Si, Ni;ij1) is expressed by function C[.,.]:

ðGij1;Gij1Þ ¼ C½ðGi;GiÞ; ðSi;Ni;ij1Þ
 ð1Þ

The connected components of the decima-
tion parameters are called contraction
kernels.

B. The Graph Pyramid and Equivalent
Contraction Kernels

A contraction kernel collects all edges
that can be contracted independently of
each other without destroying the con-
nectivity structure of the graph. Since

Fig. 12. Dual Graph Contraction: (Gij1, Gij1)¼C[(Gi, Gi), (Si, Ni,ij1)]

4Secondary non-surviving edges are removed
during dual face contraction.
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the contraction operation is forbidden for
self-loops the set of edges involved in
such a sequence of contractions must
not contain a circuit. Thus the set of
edges involved in such a contraction
may be encoded by a tree, or, a collection
of non-overlapping trees spanning the gi-
ven input vertices: a spanning forest.
Repeated dual graph contraction builds

a stack of successively smaller graphs:
the graph pyramid. Let us denote the con-
traction of a graph G0 by a contraction
kernel N01�E0 by G1¼G0=N01 and the
subsequent contraction by G2¼G1=N12.
Then there exists an equivalent contrac-
tion kernel N02�E0 that creates the same
result in a single step: G2¼G0=N02. Our
example pyramid in Fig. 11 was built

using two contraction levels. The same
top level graph can be derived in a single
step using equivalent contraction kernels
as shown in Fig. 13. Note that some ker-
nels contain two edges to be contracted
one after the other. Consequently more
parallel steps are needed to compute the
result. Conversely, a contraction kernel
may be decomposed into two smaller
ones. The successive application of the
resulting contraction kernels produces
the same result as the application of the
initial one. The complete formalism is de-
scribed in (Kropatsch 1997a).
Equivalent contraction kernels relate

the data at the base level directly with
any higher level in the graph pyramid
and can be seen as the receptive field of
the corresponding pyramidal cell. This
property has been used in Fig. 14 to show
some of the ’internal’ structures of the
graph pyramid on the famous picture of
(Bister et al. 1990) (Fig. 14a). Some of the
top levels have been down-projected to
the base graph by means of their equiva-
lent contraction kernels. Since the recep-
tive field corresponding to a lower level
vertex is always included in the receptive
field of its parent vertex also the bound-
aries of the receptive fields form such an
inclusion hierarchy. Figure 14b shows the
top level contours which follow the
boundary between black and white in
the original image but also some internal

Fig. 13. Equivalent contraction kernels (ECK)
contract G0 directly into G2

Fig. 14. Visualizing the graph pyramid. a A binary image, b boundaries of some receptive fields
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kernels which have been chosen stochas-
tically in absense of any other control.
Since also the contents of a pyramidal

cell is the result of applying a series of
reduction functions there is also the
equivalent way to compute the same val-
ue directly from the base. Although this
is not more efficient than the iteration
through the pyramid levels it offers the
possibility to invert this process: given a
function to compute a value for a complex
decision how can this computation be de-
composed into a series of local reduction
functions which can be efficiently com-
puted using the pyramid? It is clear that
not all functions can be split up in such a
way, but there are many that offer this
possibility and are subject of current re-
search.

C. The Domain of All Graph Pyramids

Another question concerns the function-
ality of a given sensor arrangement if it is
equipped with the flexibility of the inter-
connection network of the graph pyra-
mid: Can I compute a given complex de-
cision by adjusting the selection criteria
and the reduction functions? What is the
domain of all decision functions that can
be computed?
These far reaching questions have two

components: a structural component and
a functional component. The structural
component identifies all sensors that in-
fluence the function. The functional com-
ponent involves the coding of the infor-
mation and the definition of functions
and methods transforming a structured

Fig. 15. Technical drawing analyzed by graph pyramid

286 Walter G. Kropatsch



set of values and codes into a more gen-
eral value or code. The structural compo-
nent can be studied through the concept
of equivalent contraction kernel, the
functional component may go beyond
the scope of linear filters as in the equiva-
lent weighting functions of (Burt and
Adelson 1983) and may involve symbolic
representations and learning concepts.

V. Conclusion

We summarize the conceptual framework
which has been set up to perform dual
graph contraction. Contraction is con-
trolled by kernels that can be combined
in many ways. Data and relations consid-
ered important for interpreting the visual
input are selected to survive a repeated
data reduction which, at the same time,
preserves topological properties among
the surviving parts. The hierarchy created
in this way adapts its structure to the sen-
sor data while integrative measures can
be efficiently computed within the (sub-)
hierarchy of the receptive field.
Preliminary experiments with graph

pyramids have been successful in several
areas, e.g., connected component labeling
(Macho and Kropatsch 1995); segmenta-
tion (Kropatsch and BenYacoub 1996); ’2x
on a curve’ (Kropatsch 1997b); line images
like that shown in Fig. 15 (Burge and
Kropatsch 1999); matching (Pailloncy
et al. 1998); isolating moving objects from
background (Kropatsch 1999); general-
ization preserving monotonic landscape
properties (Glantz et al. 1999).
Graph pyramids have been introduced

as an efficient model for visual informa-
tion processing. Efficiency in graph pyr-
amids is achieved through vertical path-
ways connecting the apex with the sen-
sors in the base through the pyramidal
hierarchy across the

log ðdiameterðbase graphÞÞ

number of (horizontal) levels (Kropatsch
1997b).
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