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Abstract

In irregular pyramids, their vertical structure is not determined beforehand as in regular pyramids. We present three

methods, all based on maximal independent sets from graph theory, with the aim to simulate the major sampling prop-

erties of the regular counterparts: good coverage of the higher resolution level, not too large sampling gaps and, most

importantly, the resulting height, e.g. the number of levels to reach the apex. We show both theoretically and experi-

mentally that the number of vertices can be reduced by a factor of 2.0 at each level. The plausibility of log (diameter)

pyramids is supported by psychological and psychophysical considerations. Their technical relevance is demonstrated

by enhancing appearance-based object recognition. An irregular pyramid hypothesis generation for robust PCA

through top–down attention mechanisms achieves higher speed and quality than regular pyramids and non-pyramidal

approaches.
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Keywords: Image pyramid; Logarithmic complexity; Graph pyramid; Maximal independent set; Robust PCA
In memoriam

In 1979 the first author met Prof. Azriel Rosen-

feld at the international workshop in Maratea,
0167-8655/$ - see front matter � 2004 Elsevier B.V. All rights reserv

doi:10.1016/j.patrec.2004.10.026

* Corresponding author. Tel.: +43 158801x18350; fax: +43

158801x18392.

E-mail addresses: krw@prip.tuwien.ac.at (W.G. Kropatsch),

yll@prip.tuwien.ac.at (Y. Haxhimusa), pizlo@psych.purdue.

edu (Z. Pizlo), langs@prip.tuwien.ac.at (G. Langs).
Italy. The workshop on �Map data processing�
was a wonderful experience with many opportuni-

ties to meet all the famous scientists in the field in

the very relaxed atmosphere of this Calabrian vil-

lage. After Azriel�s talk I dared to ask him a ques-

tion which was promptly answered, too promptly

for me. So I asked him to kindly repeat the answer

which he did adding the spelling of the cited

authors—it took him not much longer than the
first time. . .
ed.
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In 1984 I got a phone call in my office in Graz,

it was Azriel on the phone: ‘‘Could you come to

my lab?’’ I do not remember how long my answer

was delayed and how I managed to explain that I

first had to organize the symposium of German
Association for Pattern Recognition (DAGM�84)
in Graz. A few weeks after the successful end of

DAGM�84 I was in Maryland for a year which I

would never want to have missed.

In 1996 we were responsible for the ICPR in

Vienna. Of course I asked Azriel to be our honor-

ary chair which he accepted. He participated in a

commemorative session organized by Rama Chel-
lapa and held during the banquet in the city hall of

Vienna.

A few years ago Azriel established another mu-

tual contact: with Zygmunt Pizlo. Zygmunt ap-

proached pyramids from psychophysics and we

were glad to find support for our research. The

thanks I sent to Azriel came irrecoverably too

late. That is why we chose to dedicate our first
co-authored paper to the memory of Azriel

Rosenfeld.

(Walter G. Kropatsch)
1. Introduction

In a regular image pyramid, the number of pix-

els at any level k is k times higher than the number

of pixels at the next reduced level k + 1. The so

called reduction factor k is greater than one and

it is the same for all levels k. If s denotes the num-
ber of pixels in an image I, the number of new

levels on top of I amounts to logk(s). Thus, the
Fig. 1. (a) Pyramid concept, reduction factor and (b) partition of pix

neighborhood relations by a dual pair ðGk ;GkÞ of plane graphs.
regular image pyramid may be an efficient struc-

ture to access image objects in a top–down process

(see Fig. 1a).

However, regular image pyramids are confined

to globally defined sampling grids and lack shift
invariance (Bister et al., 1990). In (Montanvert

et al., 1991; Jolion and Montanvert, 1992) it was

shown how these drawbacks can be avoided by

irregular image pyramids, the so called adaptive

pyramids. Irregular pyramids can perform most

of the operations for which their regular counter-

parts are employed (Rosenfeld, 1987). Each level

represents a partition of the pixel set into cells,
i.e. connected subsets of pixels. The construction

of an irregular image pyramid is iteratively local

(Meer, 1989; Jolion, 2003):

• the cells have no information about their global

position,

• the cells are connected only to (direct)

neighbors,
• the cells cannot distinguish the spatial positions

of the neighbors.

Although adaptive pyramids overcome the

drawbacks of their regular ancestors and although

they grow to a reasonable height as long as the

base is small, they grow higher than the base

diameter with a larger input size because the pro-
gressive deviation from the regular base favors

configurations that slow down the contraction

process. As a consequence of the greater height

the efficiency of pyramids degrades. We show that

this problem can be resolved by a new selection

mechanism which guarantees logarithmic heights.
el set into cells image. (c) Representation of the cells and their
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We replace the selection method for contraction

kernels proposed in (Meer, 1989) by two new iter-

atively local methods: MIES and MIDES. The

method MIES (Haxhimusa et al., 2002) guarantees

a reduction factor of at least 2.0 and the method
MIDES (Haxhimusa et al., 2003) for the cases

where there are constraints on the direction of con-

traction. Experiments with selection methods show

that the method in (Meer, 1989) does not lead to

logarithmic tapering graph pyramids, as opposed

to our methods, i.e. the reduction factors of graph

pyramids built by this method can get arbitrarily

close to 1.0, which means that the height of the
pyramid can be very high. This is not in contradic-

tion to the reported average reduction factor of

more than 4 because Meer uses 8-connectivity

and can not exclude particular cases where pyra-

mids grow too high. This problem is encountered

also in (Montanvert et al., 1991). Not only sto-

chastic decimation (Meer, 1989) but also con-

nected component analysis (Kropatsch and
Macho, 1995) gain from the new methods. The

method in Section 6 turned out to produce log-

arithmic tapering graph pyramids also in case of

monotonic dual graph contraction (Glantz and

Kropatsch, 2000).

Irregular pyramids can be used to enhance

appearance based object recognition. Their struc-

ture gives the opportunity to apply top–down pro-
cessing on data and introduce additional a priori

knowledge similar to visual attention guidance.

Thereby efficiency of succeeding algorithms can

be improved considerably.

The plan of this paper is as follows: We first

give some strong motivation for the plausibility

of a pyramidal architecture in biological vision

(Section 2). These hierarchies must be �shallow�
to be efficient in both bottom–up information

aggregation and in top–down processes for verifi-

cation and focus of attention. In Section 4 we

recall the main selection algorithm used in the

stochastic pyramid construction and demonstrate

in Section 7.1 that graph pyramids from maximal

independent vertex sets may have a very poor

reduction factor. Moreover, experiments show
that small reduction factors are likely, especially

when the images are large. We propose two modi-

fications. MIES in Section 5 guarantees a reduc-
tion factor of at least 2.0, proven theoretically,

but is applicable only if the edges may be con-

tracted in both directions. The modification pro-

posed in Section 6 (MIDES) also works in case

of constraints on the directions of contraction.
This modification yields the highest reduction fac-

tors in the case of stochastic graph pyramids in all

our tests, as our experiments in Section 7 confirm.

In the Eigen-pyramid approach the irregular pyra-

mid has been used efficiently to improve the speed

and the quality of appearance-based recognition

(Section 8).
2. Pyramids in human vision

It is now quite generally accepted that the

human visual system has a pyramid architecture

and that the visual mechanisms can be adequately

modeled by pyramid algorithms. Specifically,

neurophysiological and neuroanatomical data
indicates that the visual systems of cats, monkeys

and human beings are hierarchical, with neurons

on lower layers having smaller receptive fields

and neurons on higher layers having larger recep-

tive fields (Zeki, 1993). Experiments characterizing

receptive fields of neurons in the visual system

started with Kuffler�s seminal paper published in

1953 (Kuffler, 1953), and by the end of the 1960s
a number of facts concerning the architecture of

the visual system had been established. In parallel

to physiological studies, psychophysicists were try-

ing to formulate computational models of the per-

ceptual mechanisms. One of the first such models

was proposed in 1968 by Campbell and Robson

(1968), who conjectured that the human visual sys-

tem performs Fourier analysis of spatial relations
on the retina. This conjecture was equivalent to

the assumption that the visual system consists of

a set of spatial frequency channels, whose output

is integrated by means of linear operations. This

model did capture the multiresolution nature of

the visual system, and has been accepted as a plau-

sible theory for at least a quarter of century. It is

somewhat surprising, however, that this model
received so much attention considering its funda-

mental limitations such as lack of spatial localiza-

tion and the linearity of the operations.



322 W.G. Kropatsch et al. / Pattern Recognition Letters 26 (2005) 319–337
Shortly after Campbell and Robson published,

Azriel Rosenfeld published his first paper on

pyramids (Rosenfeld and Thorston, 1971).

Rosenfeld realized that effective image processing

algorithms must involve operators on several
levels of scale and resolution. Rosenfeld was

certainly aware of the Fourier analysis model

of vision. However he, unlike others, recognized

very early the importance of spatial localization

in vision and the critical role of non-linear oper-

ations (Rosenfeld, 1970). For reasons that are

not entirely clear, pyramid algorithms, despite

their physiological and psychophysical plausibil-
ity, have not received much attention by model-

ers of human vision. They were first adopted as

a standard tool by those psychophysicists whose

interests were close to image processing, rather

than image understanding (the reader may verify

this claim by consulting the human vision jour-

nals such as Vision Research and Perception

and Psychophysics).
It is important to emphasize that by ‘‘pyramid

algorithms’’ we mean any computational tool that

performs image analysis based on multiple repre-

sentations of the image forming a hierarchy with

different scales and resolution, and in which the

height (number) of a given level is a logarithmic

function of the scale (and resolution) of the oper-

ators. Multiresolution pyramids form a subset of
the general class of exponential pyramid algo-

rithms. The multiresolution pyramids perform

only linear operations like average, difference,

etc. Pyramid algorithms, which incorporate a

wider class of operators, are adequate models for

the Gestalt rules of perceptual organization such

as proximity, good continuation, common fate

(Pizlo et al., 1997; Pizlo, 2001). They also provide
an adequate model of Weber�s law and the speed-

accuracy trade-off in size perception, as well as of

the phenomenon of mental size transformation

(Pizlo et al., 1995). In the case of size processing,

modeling visual processes involves both bottom–

up (fine to coarse) and top–down (coarse to fine)

analysis. The top–down processing seems also crit-

ical in solving the image segmentation problem,
which is a difficult inverse problem (Bouman and

Liu, 1991). This problem has received much atten-

tion in psychological literature, and is known as
figure-ground segregation phenomenon (Koffka,

1935).

The human visual system takes advantage of the

ability to distinguish between highly valuable and

less relevant regions in the field of view. Thereby it
improves its performance considerably. Stark and

Privitera (1997) and Chernyak and Stark (2001) de-

scribe two strategies to obtain and apply informa-

tion about the importance of different regions of

an image when simulating the human visual system.

Bottom–up methods retrieve their features only

from the present input image (Privitera and Stark,

2000). Top–downmethods are driven by knowledge
which is available before getting the input. Experi-

ments (Stark and Privitera, 1997) have shown that

human vision and particularly the scan paths of

the eyes, composed of saccades, are not only depen-

dent on the input image, but largely on previous

knowledge i.e. top–down expectations.

More recently, pyramid algorithms have been

used to model the mental mechanisms involved in
solving the visual version of the Traveling Sales-

man Problem (Graham et al., 2000), as well as

other types of visual problems (Pizlo and Li,

2003, 2004). Humans seem to represent states of a

problem by clusters (recursively) and determine

the sequence of transformations from the start to

the goal state by a top–down sequence of approxi-

mations. This approach leads to algorithms whose
computational complexity is as low as that of the

mental processes (i.e. linear), and which produce

solution paths that are close to optimal. It follows

that pyramid models may provide the first plausi-

ble explanation of the phenomenon of the directed-

ness of thought and reasoning (Humphrey, 1948).
3. Graph pyramid

On the base level (level 0) of an irregular image

pyramid the cells represent single pixels and the

neighborhood of the cells is defined by the 4(8)-

connectivity of the pixels. A cell on level k + 1

(parent) is a union of some neighboring cells on

level k (children). This union is controlled by so
called contraction kernels (CK) (Kropatsch,

1995). Every parent computes its values indepen-

dently of other cells on the same level. This leads
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to the property that an image pyramid is built in

O[log(image_diameter)] time. For more informa-

tion on the subject, see the book of Jolion and

Rosenfeld (1994) and of Rosenfeld (1984).

Neighborhoods on level k + 1 are derived from
neighborhoods on level k. Two cells c1 and c2, at

level k + 1, are neighbors if there exist pixels p1
in c1 and p2 in c2, at level k such that p1 and p2
are 4(8)-neighbors. We assume that on each level

k + 1 (kP 0) there exists at least one cell not con-

tained in level k. In particular, there exists a high-

est level h. Furthermore, we restrict ourselves to

irregular pyramids with an apex, i.e. level h con-
tains only one cell.

A level consists of dual pair ðGk;GkÞ of plane
graphs Gk and Gk, Fig. 1c. The planarity of graphs

restricts us to using only the 4-connectivity of the

pixels. The vertices of Gk represent the cells on

level k and the edges of Gk represent the neighbor-

hood relations of the cells on level k, depicted with

square vertices and dashed edges in Fig. 1c. The
edges of Gk represent the borders of the cells on

level k, solid lines in Fig. 1c, possibly including

so called pseudo edges needed to represent neigh-

borhood relations to a cell completely enclosed

by another cell. Finally, the vertices of Gk, circles

in Fig. 1c, represent meeting points of boundary

segments of Gk, solid lines in Fig. 1c. The sequence

ðGk;GkÞ, 0 6 k 6 h is called (dual) graph pyramid.

Definition 1. The reduction factor k is the ratio of

the number of vertices of graphs Gk+1(Vk+1,Ek+1)

and Gk(Vk,Ek) : jV kþ1j 6 jV k j
k .

The aim of using graphs is to combine the

advantage of regular pyramids (logarithmic taper-

ing) with the advantages of irregular pyramids

(their purely local construction, universal segmen-
tation, topology preservation, preservation of face

degree, etc.). The aim is reached by replacing the

selection method for contraction kernels proposed

in (Meer, 1989) by two new iteratively local meth-

ods: MIES and MIDES.
1 Also called maximal stable set; we distinguish maximal

from maximum independent set, whose construction is NP-

complete (Thulasiraman and Swamy, 1992).
4. Maximal independent vertex set (MIS)

In the following the iterated local construction

of the (stochastic) irregular image pyramid in
(Meer, 1989) is described in the language of graph

pyramids. The main idea is to first calculate a so

called maximal independent vertex set 1 (Christo-

fides, 1975). Let the vertex set and edge set of G

be denoted by V and E, respectively. The incidence
relation of V, denoted by i(Æ) maps each edge from

E to its set of end vertices.

The neighborhood C(v) of a vertex v 2 V is de-

fined by
CðvÞ ¼ ffvg [ fwg 2 V j9e 2 E such that v;w 2 iðeÞg:

Definition 2. A subset W of V is called a maximal

independent vertex set if:

1. w1 62 C(w2) for all w1, w2 2 W,

2. for all v 2 V there exists a vertex w 2 W such
that v 2 C(w).
The 1st condition requires that any two surviv-

ing vertices cannot be in the neighborhood of each

other (black vertices in Fig. 2a and b). The 2nd

condition says that every non-surviving vertex

has in its neighborhood a surviving vertex (white

vertices in Fig. 2a and b). A maximal independent

vertex set W is not necessarily maximum, as there

may be another setW 0 that contains more vertices
than W (Fig. 2b).
4.1. Algorithm MIS

The maximal independent vertex set (MIS)

problem was solved using a heuristic in (Meer,

1989). The number of iterations to complete MIS

converges in most of the cases very fast, so called
iterations for correction (Meer, 1989). MIS (Meer,

1989; Jolion, 2003) may be generated as shown in

Algorithm 1. We assume that no two random

numbers are equal.



Fig. 2. (a) A maximal independent vertex set W with 9 vertices, (b) a maximal independent vertex set W 0 with 10 vertices, (c)

contraction kernels corresponding to W 0, and (d) irregular graph pyramid built using the contraction kernels from (c).
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Definition 3. A contraction kernel is a rooted tree.

The depth of a kernel is the longest distance of a

leaf from the root, the diameter is the longest path

through the tree.

With this definition we can redefine the reduction

factor as follows:

Proposition 4. The reduction factor can be deter-

mined from the sizes of vertices and the number of

contraction kernels jCj : k P jV j
jCj.

Proof. The roots of each contraction kernel from
C are the survivors in the next level of the pyra-

mid. Hence the number of vertices in the next level

is the same as the number of contraction kernels,

i.e. jV kþ1j ¼ jCj. h
Algorithm 1 (Algorithm MIS)

Input: Graph G(V,E).

1. Mark every element of Vk as candidate.

2. While there are candidates do

3. Assign random numbers to the candidates

of Vk.

4. Determine the candidates whose random
numbers are greater than the random

numbers of all neighboring candidates

and mark them as member (of the maxi-

mal independent set) and as non-

candidate.

5. Mark every neighbor of every new mem-

ber as non-candidate.
6. In each neighborhood of a vertex that is not a

member there will now be a member. Let

each non-member choose the edge to be con-

tracted to its neighboring member, say the

one with the maximal random number.
Output: Set C of contraction kernels based on

MIS.
The assignment of the non-members to their

members determine a collection of contraction

kernels C: each non-member is contracted to-

wards its member and all contractions can be

done in a single parallel step. In Fig. 2c the con-

tractions are indicated by arrows. A graph pyra-

mid from maximal independent vertex sets is

shown in Fig. 2d, where Gi are graphs in levels
i = 0, . . . , 3. This can be done by the dual graph

contraction algorithm (Kropatsch, 1995). Note

that we remove parallel edges and self-loops that

emerge from the contractions if they are not

needed to encode inclusion of regions by other re-

gions. In the example of Fig. 2d we do not need

loops nor parallel edges. Trivial contraction ker-

nels occur very often in MIS as can be seen in
Fig. 2c: isolated black vertices. In Section 5 we

introduce a method that finds contraction kernels

that are non-trivial.
5. Maximal independent edge set (MIES)

In the following we aim at a collection C of

contraction kernels in a plane graph G such

that:



Fig. 3. (a) A maximal matching M with 9 edges, (b) a matching M 0 with 12 edges, (c) enlarged matching M+ from M by connecting

formerly isolated vertices to the maximal matching M, after breaking up trees of diameter three into trees of depth one, and (d) the

frames indicate a corresponding collection of contraction kernels.
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• each vertex of G is contained in exactly one

kernel of C, and
• each kernel in C contains at least two vertices.
Definition 5. A set M of independent edges 2 in a

graph G = (V,E) is a maximal matching if every

vertex in U 
 V is incident with an edge on M, and

M cannot be enlarged by an edge without losing

independence. The vertices in U are then called

matched vertices (by M); all other vertices are

called unmatched vertices.

A maximal matching M is not necessarily max-

imum: there may be a matching M 0 (Fig. 3b) that

contains more edges than M (Fig. 3a). We assume

that G is connected and planar, and that the data
do not impose any constraint on the selection,

for e.g. in large homogeneous regions. Clearly,

the contraction of all kernels in C will reduce the

number of vertices to half or less.
5.1. Algorithm MIES

We start with independent edge sets or match-
ings, i.e. edge sets in which no pair of edges has

a common end vertex. The maximal independent

edge set (MIES), C is constructed in three steps

(Algorithm 2).

A maximal matching of G is equivalent to a

maximal independent vertex set on the edge-graph

of G (Diestel, 1997; Christofides, 1975). Thus, a
2 Two edges are independent if they are not incident on the

same vertex.
maximal matching may be determined by the iter-

ated process used in MIS algorithm (Section 4).

Note that M is only required to be maximal, i.e.

the edge setM cannot be enlarged by another edge

from EnM without loosing independence.

Algorithm 2 (Algorithm MIES)

Input: Graph G(V,E).

1. Find a maximal matching M of edges from G.
2. M is enlarged to a set M+ that spans a sub-

graph of G.

3. M+ is reduced to a subset defining C.
Output: Set C of contraction kernels based on

MIES.
The collection of contraction kernels defined by

a maximal matchingM may include kernels with a
single vertex. Let v denote such an isolated vertex,

isolated fromM, and choose a non-self-loop e that

has v as an end vertex. Since M is maximal, the

other end vertex w5 v of e belongs to an edge that

is contained in the matchingM. LetM+ denote the

set of edges that are in M or that are chosen to

connect isolated vertices to M, 2nd step of MIES.

The subgraph of G that is induced byM+ spans
G and its connected components are trees of dia-

meter one, two or three, Fig. 3c. A tree of diameter

three can be separated into two trees of diameter

one each by removing the unique edge, both end

vertices of which belong to other edges of the tree

(indicated by the crosses in Fig. 3c); the 3rd step of

MIES. Still, each vertex of G belongs to a tree (of

depth one). Since each vertex of G is now con-
tained in a non-trivial contraction kernel, we prove

the following proposition:



Fig. 4. Restriction in choosing the surviving vertex. (a) Input

graph, (b) M: maximal matching. (c) M+: the matching from

(a) enlarged by connecting formerly isolated vertices to the

maximal matching. (d) The only possible CK.
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Proposition 6. The number of contraction kernels

produced by algorithm MIES is at most jVj/2.0.

Proof. Let G = (V,E) be a planar connected graph

with jVkj vertices. Let M be a maximal matching of
G and let U be the set of vertices matched by M and

U 0 = MnU be the set of unmatched vertices (iso-

lated vertices). A vertex v 2 U is called matched

by M if it is incident with an edge in M. Since the

matching is maximal, no two adjacent vertices v,w

may be unmatched. i.e. in the neighborhood of

the unmatched vertex there is at least one matched

vertex, if the vertex is not already isolated inG. This
means that in the neighborhood of an unmatched

vertex w 2 U 0 there is at least one edge connecting

w to a matched vertex v 2 U. If there is more than

one connecting edge, we select only one of them.

The edge set M is enlarged to M+ by adding all

connecting edges. Thus all vertices of V are incident

to edges M+. The subgraph of G that is induced by

M+ spans G and its connected components are trees
of diameter one (the matched edge), two (isolated

vertices connected to one endpoint of a matched

edge only) or three (isolated vertices connected to

both ends of the matched edge). Trees of diameter

three are split into trees of diameter one by

removing the unique central edge ue 2 U. The two

endpoints of the matched edge of a tree of diameter

three have a degree of at least two (they cannot be
leaves). Splitting of the tree removes this matched

edge which reduces the degree of both end vertices

by one, but they are still greater than zero. Hence

this edge deletion does not create a new isolated

vertex. This ensures that all vertices Vk are also

incident edges of the new set M++ = M+n{ue} and

there are no isolated vertices left.

We conclude that the subgraph of G that is
induced by M++ spans G and its connected

components are trees of diameter one or two i.e.

with more than one vertex. All the components are

trees and have diameter one or two and the

number of contraction kernels C is jVj/2.0. If there
is at least one tree of diameter two then

jCj < jV j=2:0. We proved that in the general case

jCj 6 jV j=2:0. h

The surviving vertices can be in the neighbor-

hood of each other, which means that the 1st con-
dition of Definition 2 is relaxed; this is proposed in

(Kropatsch and Montanvert, 1991). Non-surviv-

ing vertices are in the neighborhood of at least
one surviving vertex, fulfilling the 2nd condition

of Definition 2.

Note that for the input graph in Fig. 4a, the sur-

viving vertex cannot be chosen arbitrarily. In this

case the algorithm chooses the only possible vertex

v for the root of the tree i.e. as a survivor and there

is only one possible contraction kernel, implying

also the direction of contraction. For other cases
the survivor can be chosen arbitrarily. The arrows

in Fig. 3d indicate possible directions of contrac-

tions, i.e. possible choice of the survivors. But

some applications (Burge and Kropatsch, 1999;

Kropatsch and Burge, 1998; Glantz et al., 1999;

Kammerer and Glantz, 2001; Glantz and Kro-

patsch, 2000) could restrict the way of choosing

the surviving vertices, i.e. choosing vertex u as a
survivor, or could constrain the direction of con-

traction. This is why the proposed method cannot

be extended to applications in which there are

a priori constraints on the directions of the contrac-

tions. However, the proposed method works for

the stochastic case (no preconditions on the direc-

tion of edges to be contracted) and for connected

component analysis (Kropatsch and Macho,
1995), where the attributes of the end vertices are

required to be identical.
6. Maximal independent directed edge set (MIDES)

In many graph pyramid applications such as

line image analysis (Burge and Kropatsch, 1999;
Kropatsch and Burge, 1998) and the description

of image structure (Glantz et al., 1999; Kammerer
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and Glantz, 2001; Glantz and Kropatsch, 2000) a

directed edge e with source u and target v5 u

must be contracted from u to v, only if the attri-

butes of e, u, and v fulfill a certain condition. In

particular, the condition depends on u being the
source and v being the target, making the direction

of contraction an important issue (Fig. 5a). In line

drawings the end point of a line or an intersection

must be preserved for geometric accuracy reasons.

The edges that fulfill the condition are called pre-

selected edges.

From now on the plane graphs in the pyramid

have (bi)directed edges. Typically, the edges in
the base level of the pyramid form pairs of reverse

edges, i.e. for each edge e with source u and target

v there exists an edge e 0 with source v and target u.

Undirected graphs can be converted into directed

graphs by substituting the edges into pairs of re-

verse edges. However, the set of preselected edges

may contain e without containing e 0. The goal is

to build contraction kernels with a ‘‘high’’ reduc-
tion factor from the set of preselected edges. The

reduction will always be determined according to

the directed graph induced by the preselected

edges. For example, if the number of vertices in

the induced subgraph is reduced to half, the reduc-

tion factor will be 2.0. From the example in Fig. 5b

it is clear that, in general, the reduction factor can

be arbitrarily close to 1.0. To perform the contrac-
tions in parallel, we need a vertex disjoint union of

contraction kernels. The plan is to define such a
Fig. 5. (a) The direction of contraction. (b) The reduction factor of

(c) Pairs of directed edges forbidden in a contraction kernel. (d) A le

(f) CKs built by maximal independent edge set with respect to N(e).
union in terms of independent directed edges,

where ‘‘independent’’ means that no pair of direc-

ted edges belongs to the same neighborhood N(e).

Then, dealing with edges instead of vertices, we

may find the contraction kernels as in MIS.

Definition 7. Let e = (u,v) be a directed edge of G

and u 5 v. Then the directed neighborhood N(e) is

given by all directed edges with the same source u,

targeting the source u or emanating from target v:

NðeÞ ¼ Nððu; vÞÞ ¼ fðu; v0Þ 2 Eg [ fðu0; uÞ 2 Eg
[ fðv; u0Þ 2 Eg:

The neighborhood N(e) of e is given by all edges

which point towards the source of e, all edges with

the same source u and all the edges the source of
which is the target of e. Note that edges pointing

towards the target of e are not part of the directed

neighborhood. Seen from a directed edge e with

source u and target v5 u that one wants to con-

tract (from u to v), no edge e 0 5 e with end vertex

(source or target) equal to u or source equal to v

may be contracted. Fig. 5e depicts N(e) in case of

u and v both having 4 neighbors.

Note that the direction of edges uniquely deter-

mines which vertex survives on the next level of the

pyramid, i.e. determines the contraction kernel
(decimation parameter Kropatsch, 1995). A set C
of directed edges forms such a collection of con-

traction kernels if and only if C contains none of
a star with n edges pointing away from the center is (n + 1)/n.

gal configuration of directed edges. (e) The neighborhood N(e).
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the edge pairs depicted in Fig. 5c. An edge e to be

contracted together with those edges that one may

not contract form a directed edge neighborhood

N(e) of e.
Definition 8. Let v be a vertex of a bi-directed

graph G = (V,E). We define the out-degree as

sðvÞ :¼ jfe 2 Ejv is source of egj;
and the in-degree as

tðvÞ :¼ jfe 2 Ejv is target of egj:
In Fig. 5d the number of edges with target in root

is t(root) = 5; and for the center vertex with n edges

pointing away s(center) = n, Fig. 5b.

Proposition 9. Let D denote a subset of directed

edges of a bi-directed graph G and GD denote the

subgraph induced by D with out-degrees sD(Æ) and in-

degrees tD(Æ). Then the following statements are

equivalent:

(a) sD(v) < 2 ^ sD(v) Æ tD(v) = 0, "v 2 GD.

(b) GD is a vertex disjoint union of contraction
kernels.

Proof. (i) (a)) (b): Let R :¼ {r 2 Gjr is the target
of some e 2 D ^ s(r) = 0} be the set of roots. Fur-

thermore, Er :¼ {e 2 Djr is target of e} is a tree

with root r 2 R, hence a contraction kernel Cr. It

remains to show that any two contraction kernels
Cv and Cw, u 5 w "v, w 2 R, are vertex disjoint.

Assume the opposite, i.e. there exists a vertex u

contained in Cv and in Cw for some v 5 w 2 R.

There are two cases:

(1) u is a root and u = v = w since every contrac-

tion kernel has a single root enforcing v = w;

this contradicts v 5 w;
(2) u is a leaf hence, there exist edges (u,v) and

(u,w) 2 D, a contradiction to s(u) < 2.

(ii) (b)) (a): Let T be the set of roots of the vertex

disjoint contraction kernels and let Ct denote the

unique contraction kernel with root t, t 2 T.

Furthermore, let v 2 GD. Since the Ct are vertex

disjoint, exactly one of the following holds "v 2 V:
(1) v 2 T is a root and s(v) = 0.

(2) v 62 T is a leaf of a tree Ct and s(v) = 1,

t(v) = 0. h
Examples of kernels which do not fulfill the

Definition 3 are shown in Fig. 5c1 where s(v) = 1

and t(v) = 1; and Fig. 5c2 where s(v) = 0 and

t(v) = 2. From the example in Fig. 5d it is clear
that only one edge can be contracted (otherwise

one ends up with forbidden contraction kernels),

which means in general the vertex reduction factor

can get arbitrarily close to 1.0.

Note that, in contrast to MIS, the roots of two

contraction kernels may be neighbors. Condition

(a) in Proposition 9 is fulfilled if and only if no pair

of directed edges from D belongs to the same N(e),
e 2 D. Hence, a maximal vertex disjoint union of

contraction kernels may be found via a maximal

set of directed edges that are independent with

respect to N(e). A parallel algorithm to find a

maximal independent set with respect to N(e) is

specified in the next section.
6.1. Algorithm MIDES

To find a maximal (independent) set of directed

edges (MIDES) forming vertex disjoint rooted

trees of depth zero or one, we proceed analogously

to the generation of maximal independent vertex

sets (MIS), as explained in Section 4. Let E denote

the set of directed edges in the graph G of the

graph pyramid. We proceed as in Algorithm 3.

Algorithm 3 (Algorithm MIDES)
Input: Graph G(V,E).

1. Mark every directed edge of E as candidate.

2. while there are candidates

3. Determine the candidates e whose ran-

dom numbers are higher (larger) than

the random numbers in N(e)n{e} and

mark them as member (of a contraction

kernel). Also mark every e 0 2N(e) of every
new member e as non-candidate.

4. The target of the directed edges are marked

as survivors, all the vertices which are the

sources of directed edges are marked as non-
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survivor and the remaining unmarked vertices

are marked to be survivors as well.

Output: Set C of contraction kernels based on

MIDES.
Since the direction of edges uniquely determines

the roots of the contraction kernels (the survivors),

all the vertices which are the sources of directed

edges are marked as non-survivors. The remaining

isolated vertices are marked to be survivors. An

example of a set of contraction kernels C found

by MIDES is given in Fig. 5f (the survivors are

depicted with black and non-survivors with white).
Isolated vertices i can occur after MIDES, too.

Because all contraction kernels are disjoint and be-

cause each edge covers two vertices it is clear that

following proposition holds:

Proposition 10. If there are no isolated vertices left

after algorithm MIDES the number of contraction

kernels is at most jVj/2 (allowing a reduction factor

of at least 2.0).

In order to understand the difference to MIES

let us study what happens in the while-loop after

the first iteration. After local maxima are marked

as members and all neighbors are removed as

candidates, all remaining edge candidates are

non-maxima.
The particular neighborhood N(e) used in the

(bi-)directed graph creates the edge adjacencies

shown in the edge-graph (Fig. 6a). Each directed

edge corresponds to a vertex (h) in the edge-

graph. All edges in the neighborhood N(e) create

edges in the edge-graph. Two edges pointing to

the same vertex are NOT connected in the edge-

graph.
Isolated vertices i appear at the end of the cor-

rection phase when the neighborhood of edge-
Fig. 6. The edge-graph of a sequence of vertices: (a) la
members cover all edges incident to i. Furthermore

all edges incident to i are edge-neighbors of a

member whose orientation points away from i.

Otherwise N(e) would allow the reverse edge to

be a member. In Fig. 6a edges a, 0 are incident
to the isolated vertex i, both neighbors of edge b,

N(b) = {0,a,c,d}. If c would be the member instead

of b, then 0 would become a member, too, since

0 62 N (c) = {e,d,b,a} and i would not be isolated.

From each isolated vertex i emanate paths with

monotonically increasing random numbers leading

to a local maximum. We therefore study such a

path which is a linear sequence of vertices (Fig. 6a).
Assume g is the only local maximum, all the

other edges have at least one edge-neighbor which

has a higher value. In this case g would become a

member and e, f would be removed as candidates.

The next highest edges could be c or d. If c is

higher then it would be selected next and a, b, d

removed leaving 0 which would be the last edge

selected. In this case no isolated vertex would
appear. Assume d is selected instead of c. Then

b, c would be removed as neighbors, a would be

selected next and 0 removed as neighbor of a.

We see that many possibilities lead to solutions

without an isolated vertex.

Let us reason backwards: In order for vertex i

to be an isolated vertex, both edges 0 and a must

be neighbors of a member. The only choice is b!

Case c,d > b: If both c and d are higher than b

then e is the last member before b

was chosen. Since b and e share

the same root vertex they are part

of the same contraction kernel

covering 3 vertices. Together with

the isolated vertex the two kernels
cover 4 vertices giving a reduction

factor of 2 (see Fig. 6b).
beled edge-graph, (b) case c, d > b, (c) case c < b.
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Case c < b: If c is less than b then f could be the

last edge-member before b (see Fig.

6c). We note that the selected edges

for contraction point in the same

direction.

We can continue the construction until either

the orientation of the selected edge changes or

we reach the local maximum. In the first case the

two reversed edges form a contraction kernel cov-

ering three vertices and, hence compensating the

isolated vertex. In the second case the search for

a larger contraction kernel covering more than just
two vertices would continue for all other paths

emanating from the same isolated vertex. The only

case where the isolated vertex i is not compensated

by a larger contraction kernel consists of a set of

edge-members filling the region of the correction

phase and ALL pointing away from i and towards

the local maximum. As we will see in our ex-

periments this is extremely unlikely and could, in
addition, be compensated by any other larger con-

traction kernel.

MIDES has another feature different from

MIES. It can create star-like kernels due to the

special neighborhood chosen. Edges (x1,r),

(x2, r), . . . having the same target r can ALL be

local maxima and selected as members in the first

iteration of algorithm MIDES since N((x1, r)) \
N((x2, r)) = ;. Therefore the resulting set of edge-

members is not necessarily a matching and may

well contain larger kernels with one root and sev-

eral edges attached to it.

We conjecture that larger kernels occur more

frequently than isolated vertices. Each isolated

vertex needs only one kernel of more edges to keep

the balance for a reduction factor of two. This may
explain the surprising experimental results with

MIDES.
3 Note that the methods can be applied to irregular planar

graphs since the second level of pyramids are irregular planar

graphs.
7. Comparing the speed of reduction

Uniformly distributed random numbers, as the

simplest choice of independent identically distrib-
uted (i.i.d.) random numbers, are assigned as attri-

butes to the vertices (MIS) or edges (MIES,

MIDES) in the base level grid graphs. By changing
the seed of the uniformly distributed random gen-

erator we generated 1000 graphs, on top of which

we built stochastic graph pyramids. The same

observation resulted from the two different

random number generators (Matsumoto and
Nishimura, 1998; Mehlhorn and Näher, 1999).

Bi-directed grid graphs 3 of size 10,000, 22,500

and 40,000 vertices, respectively, are used as the

base level, which correspond to image sizes of

100 · 100, 150 · 150 and 200 · 200 pixels, respec-

tively. Statistics of all pyramids built by each spe-

cific selection (MIS, MIES, MIDES) are calculated

to compare the properties of different strategies by
using these parameters (see full documentation in

Haxhimusa and Kropatsch, 2003):

• the height of the pyramid—height,

• the degree of vertices—vertex degree,

• the reduction factor for vertices— jV k j
jV kþ1j

, and

• the number of iterations for correction (Meer,

1989)—correction,

The number of levels needed to reduce the

graph at the base level (level 0) to an apex (top

of the pyramid) consisting of one vertex is the

height of the pyramid. The number of edges inci-

dent to a vertex, i.e. the number of non-survivors

identified to the survivor represent the vertex de-

gree complexity. This parameter is of importance
because it is directly related to the memory costs

of the representation of graphs (Jolion, 2003).

The number of iterations to a complete maximal

independent set for any graph in the contraction

process is the iteration for correction. The ratio

of the number of vertices of two consecutive levels

is the reduction factor (jVkj/jVk+1j). We average

these parameters (sample mean l̂pyr and sample
standard deviation r̂pyr) for every experiment (i.e.

pyramid) as shown in the Table 1 over all experi-

mental sets (l̂data, r̂data). The experiments are dis-

cussed in Sections 7.1, 7.2, and 7.3 and Fig. 7

summarizes the results of the first 100 of 1000 test

pyramids; solid lines connect the observed number



Table 1

Statistics on height of the pyramid, vertex degree, decimation ratios and iterations for correction

Algorithm Height Vertex degree jVk/Vk+1j Correction

max l̂pyr r̂pyr l̂pyr r̂pyr l̂pyr r̂pyr

MIES max 41.00 148.00

l̂data 20.80 70.69 4.72 3.67 2.01 1.30 3.01 0.82

r̂data 5.25 23.89 0.22 1.16 0.35 1.08 0.17 0.11

MIS max 15.00 13.00

l̂data 14.02 11.78 4.90 0.47 2.27 0.22 4.04 1.20

r̂data 0.14 0.68 0.05 0.03 0.01 0.05 0.11 0.12

MIDES max 13.00 18.00

l̂data 12.05 13.29 4.78 0.58 2.63 0.32 2.83 1.10

r̂data 0.40 1.07 0.13 0.04 0.10 0.16 0.15 0.10
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of vertices of one particular pyramid, where the

number of levels of the graph pyramid constitutes

the horizontal axis and the vertical axis shows the

number of vertices v in logarithmic scale at the

respective pyramid level. In this choice of coordi-

nate axes a constant reduction factor becomes a

straight line. Since we reduce the pyramid to a sin-

gle vertex in the apex, all the solid lines in Fig. 7
end at the 100 (= 1).

7.1. Experiments with MIS

From Fig. 7a we see that the height of the

pyramid cannot be guaranteed to be logarithmic,

except for some good cases. In the worst case the

pyramid had 22 levels for 100 · 100 vertices and
41 levels for the graph with 200 · 200 vertices,

respectively. Poor reduction factors are likely, as

can be seen in Fig. 7, especially when the images

are large. This is due to the evolution of larger

and larger variations between the vertex degrees

in the contracted graphs (Table 1, l̂dataðmaxÞ ¼
70:69). The absolute maximum in-degree was

148. The a priori probability of a vertex being
the local maximum depends on its neighborhood.

The larger the neighborhood, the smaller is the

probability that a vertex will survive (Jolion,

2003). MIS tends to have vertices with a large

neighborhood (stars). This causes the reduction

factor to be very poor at highest levels, also noted

in (Montanvert et al., 1991), which is mainly due

to the good performance of the decimation at the
first few levels where the graphs have large sizes
and a small neighborhood size (e.g. each vertex

has 4 neighbors in the base level). The sample

mean reduction factor of vertices is 2.01 (Table

1). The collapse of the high-order-star-like config-

uration into the apex causes the sudden break

of the solid lines (‘‘star-contraction’’ in Fig. 7a).

The number of iterations necessary to complete

the maximum independent set per level (iterations
for correction) are approximately 3 as reported by

Meer (1989). The sample mean height of the pyra-

mid is 20.80 (Table 1). To summarize, a bounded

reduction factor cannot be guaranteed and bad

cases have a high probability (almost horizontal

solid lines in Fig. 7a).

7.2. Experiments with MIES

The experiments show that the reduction factor,

even in the worst case, is always better than the

theoretical bound 2.0, as indicated by the dashed

line in Fig. 7b. The MIES is more stable than

MIS, as can be seen in Fig. 7, where the slope of

the solid lines have smaller variations and never

crossed the dashed line. The sample mean and
sample variance of the reduction factor for MIES

is smaller then in case of MIS, which implies

that the height of the pyramid (bldataðheightÞ ¼
14:02) is also smaller than that for MIS

(bldataðheightÞ ¼ 20:80). The mean number of iter-

ations for correction per level was higher for MIES

(Table 1). To summarize, the reduction factor

was always better than the theoretical upper
bound of 2.0.
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7.3. Experiments with MIDES

The reduction factor is better than 2.0 (dashed

line) even in the worst case as depicted in Fig.

7c. Also the maximum in-degree of the vertices is

much smaller (bldataðmaxÞ ¼ 13:29) than for MIS
(bldataðmaxÞ ¼ 70:69, Table 1). For MIES and

MIDES, we have not encountered nodes with a
large neighborhood as for MIS. For the case of

the graph with size 200 · 200 vertices, MIDES

needed 13 levels in comparison to 15 levels in the

worst case of MIES. The number of iterations

needed to complete the maximum independent

set was comparable with the one of MIS (Table
1). The MIDES algorithm shows a better reduc-

tion factor than MIES, as can be seen in Fig. 7
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and Table 1 (bldataðblpyrð jV k j
jV kþ1j

ÞÞ ¼ 2:63). To summa-

rize, the reduction factor is always better than

2.0 in all our tests. A bounded reduction factor

cannot be guaranteed.

7.4. Discussion of results

We have done experiments using small grid

graphs 26 · 26 see Jolion (2003), and encountered

no significant differences in the reduction factor

between MIS, MIES and MIDES. The reason

for this behavior is the small size of input in-

stances. By using graphs of larger size (100 · 100
and 200 · 200), different properties of these selec-
tion methods occurred. The maximum degree

was encountered using MIS which is why this

method has problems during contractions. Thus

memory costs for MIS will be higher than for

MIES and MIDES. Notice however that the mean

degrees are similar for all algorithms. The height

stability (in the sense of smaller variation) in the
first case shows that MIS, MIES and MIDES do

not depend on the data. Results in Table 1 were

computed using 1000 graphs of size 200 · 200.
The number of iterations for correction was al-

most the same for all methods, MIDES gave the

best reduction factors (bldataðblpyrð jV k j
jV kþ1j

ÞÞ ¼ 2:63)
for all tests. MIS and MIDES have the same algo-

rithmic complexity for the worst case. The worst
case happens when the neighboring vertices have

increasing random numbers. We have not encoun-

tered the worst case in our test, since it is highly

unlikely. The a priori probability that a vertex sur-

vives depends on the size of its neighborhood. In

Fig. 8a vertex u will be favored by MIS. Vertex u

survives with the probability of 1/2, since it has
Fig. 8. (a) Vertex u is favored by MIS. (b–d) Receptive fields in th

(d) MIDES.
only the vertex v in the neighborhood. Vertex v

survives with the probability of 1/n, where n is

the size of its neighborhood. The center of the star

will have smaller probability to survive than its

leaves, which causes the poor reduction factor,
since only one edge will be contracted. Since two

surviving vertices cannot be neighbors, the center

of the star will be pulled toward one of it leaves.

But still there will be a vertex with large neighbor-

hood. There are cases where the center of the star

is the largest in its neighborhood. In these cases all

its leaves will be contracted towards the star, yield-

ing a very good reduction factor. The contraction
of stars can be seen in Fig. 7, where the solid lines

descent rapidly. Arrows in Fig. 7a depict examples

of star contraction.

The probability that edge e in Fig. 8a will be

contracted i.e. one of the end vertices will survive,

is the same for all neighboring edges of e using

MIES or MIDES. The existence of vertices with

large neighborhoods was not encountered in
MIES and MIDES, which can also be seen in

Fig. 7, where there are no cases of rapidly descend-

ing lines. Since no vertex is favored, the size of

receptive fields (RF) using MIES or MIDES will

be better distributed, in the intermediate levels of

the pyramid. There is no occurrence of very small

or very big receptive fields as for MIS, where there

are receptive fields as small as one pixel in higher
levels of the image pyramid. Fig. 8b–d shows

receptive fields of the same pyramid level of

MIS, MIES and MIDES. Each vertex of the same

level received arbitrary but distinguishable gray

values which were propagated down to the base

of the pyramid. Hence the regions with the same

gray value in Fig. 8b–d correspond to the receptive
e same intermediate level of the pyramid: (b) MIS, (c) MIES,
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field of one vertex of the high level. Without any

constraint from the data there is no need to require

big variations in the sizes of receptive fields.
8. Eigen-image pyramids and visual attention

Pyramids can perform processes with results

similar to that of the saccades of the eyes driven

by visual attention. In particular the integration

of a priori knowledge regarding the relevance of

image regions can be realized as a top–down pro-

cess with the help of a hierarchy built during a
training phase. Let the saccades be viewed as a

way to gain a new representation of a visual input.

Instead of performing a sequential read-out of the

image, an irregular pyramid structure controls

resolution decrease according to the relevance of

different regions. During a training phase the pyra-

mid structure is built. It is then able to restructure

new input data according to the expected relevance
of different regions in the image (Langs et al., 2002;

Langs and Bischof, 2002).

In Fig. 9 a scheme of the Eigen-Image-Pyramid

algorithm enhancing robust PCA coefficient ret-

rieval is given. Parallel to the training of an

appearance based object recognition algorithm a

pyramid structure is built. During reconstruction

or recognition this structure is applied to the
eigen-images as well as to the input image before

robust PCA coefficient retrieval is performed to

reconstruct the object. Robust retrieval determines

coefficients of a particular image object by solving

a set of linear equation systems based on small

subsets of image pixels. The resulting hypotheses
Fig. 9. The basic concept of the algorithm. It is divided into a tr
are subject to a selection procedure that forms a

recognition result with high robustness against

occlusion or noise (Leonardis and Bischof, 2000).

8.1. Weight target contraction

The construction of the pyramid is guided by

features derived from the training data (Langs

et al., 2002). In the particular case while build-

ing the pyramid, survivors are selected according

to the variance xi of each image pixel position i

over the training set (Fig. 10a). Vertices in the pyr-

amid level G0 are assigned non-survivor or survi-
vor status by a stochastic process (Meer, 1989).

After this initialization, vertices with xi > (1 � s),
are added to the set of survivors, where 1 � s is

the weight target. Consequently the first rule in

Definition 2 is violated, resulting in the possibility

for finer tuning during the recognition phase. Non-

survivors merge with the neighboring survivor

with highest correlation of the value vectors that
pixels adopt in the training set (Fig. 10b), thus

minimizing the loss of information. The vertex

values xni;k in a level Gk are defined

xni;k ¼ z �
X

xi :i2RF of ni;k

f ðxiÞ;

where z is a constant ensuring convergence of con-

traction, and f(xi) is a weight function controlling

the distribution of receptive field (RF) sizes. Con-

traction is prohibited if xni;k would exceed 1 + s.
The result is a new level G1 consisting of vertices,

each representing a RF in the ground level G0.

This process is iterated and vertices in Gk succes-

sively achieve more balanced weights. Thus by
aining (left) and a reconstruction/recognition phase (right).



Fig. 10. (a) Weight map x based on variance for a training set, consisting of 36 images of a rotating duck. (b) Value profiles of

neighboring vertices in the training set.
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projecting new input images onto the finished

structure they can be represented with different

levels of detail. In contrast to regular down-sam-

pling the structure takes the relevance and depen-

dencies of different regions into account and

increases the representation of regions with a

grouping of larger weights, while preserving infor-

mation if possible.
8.2. Enhancement of object recognition

Experiments on the images of the COIL-20

database show that applying the irregular eigen-

image pyramid to the images improves the recon-

struction error (on average by 81%) for 55% of

the objects. Compared to a Gaussian pyramid
the reconstruction error was improved by 61%.

Experiments showed that contracting an input im-

age by our algorithm to an optimal height with

�18% number of vertices of the base level can

decrease the mean squared reconstruction error

down to �53% of the error achieved with full res-
Fig. 11. Image of a cat, (a) reconstructed after regular down-samplin

down-sampling.
olution (�16,384 pixels). In Fig. 11 reconstruction

results of an object from images with 50% occlu-

sion are depicted. In (a) and (b) the result after reg-

ular and irregular down-sampling are depicted,

resp. In (c) the RFs of the irregular down-sampling

are visualized. Note that in the apparently relevant

regions the resolution is higher, resulting in a more

balanced representation of the object. This sup-
ports robust appearance based object recognition

in particular, since the hypothesis and test strategy

is sensitive to input with high variation in

relevance.
9. Conclusion

The efficiency of pyramids is tightly coupled

with their ability to propagate information from

any cell to any other cell in at most twice the

height�s steps. The gained freedom in choosing

structures adapting the data may affect the height

if the reduction proceeds too slowly.
g and (b) after irregular down-sampling (c) RFs after irregular
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Experiments with stochastic decimation using

maximal independent vertex sets (MIS) showed a

problematic behavior on large images. After an

initial phase of strong reduction, the reduction de-

creases dramatically. This is due to the evolution
of larger and larger variations between the vertex

degrees in the contracted graphs. To overcome this

problem we proposed a method, MIES, based on

matchings which guarantees a reduction factor of

2.0. As in the case of independent vertex sets, the

method based on matchings does not allow

the control of the directions of the contractions.

The second method, MIDES, that we proposed
and tested is based on directed edges and allows

the control of the directions of the contractions.

The experiments showed a non-decreasing reduc-

tion that was even stronger than the one obtained

MIES. We have shown that 2.0 is also a bound for

the reduction with MIDES if no isolated vertices

are encountered. Furthermore we were able to

characterize the configuration creating such iso-
lated vertices which explains the good experimen-

tal results. The properties of these configurations

are important when the random sampling is re-

placed by data-adaptive importance values where

no prediction about statistical distribution can be

made.

The final example in object recognition shows

that irregular pyramids can outperform regular
pyramids. Eigen-image pyramids are a way of

simulating the visual attention concept by using

a priori knowledge in a top–down manner. The

pyramid can represent new data with different lev-

els of detail. In contrast to regular down sampling,

image regions are represented corresponding to

their relevance. By choosing an optimal height of

the pyramid the performance of appearance based
object recognition can be improved considerably

on the new representation.
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Mehlhorn, K., Näher, S., 1999. The LEDA Platform of

Combinatorial and Geometric Computing. Cambridge

University Press, Cambridge, U.K.

Montanvert, A., Meer, P., Rosenfeld, A., 1991. Hierarchical

image analysis using irregular tesselations. IEEE Trans.

PAMI 13 (4), 307–316.

Pizlo, Z., 2001. Perception viewed as an inverse problem. Vision

Res. 41, 3145–3161.

Pizlo, Z., Li, Z., 2003. Pyramid algorithms as models of human

cognition. Proc. IS&T Electronic Imaging, Computational

Imaging, vol. 5016. SPIE, pp. 1–12.

Pizlo, Z., Li, Z., 2004. Graph pyramids as models of human

problem solving. Proc. IS&T Electronic Imaging, Compu-

tational Imaging, vol. 5299. SPIE, pp. 205–215.

Pizlo, Z., Rosenfeld, A., Epelboim, J., 1995. An exponential

pyramid model of the time-course of size processing. Vision

Res. 35, 1089–1107.

Pizlo, Z., Salach-Golyska, M., Rosenfeld, A., 1997. Curve

detection in a noisy image. Vision Res. 37 (9), 1217–1241.

Privitera, C.M., Stark, L.W., 2000. Algorithms for defining

visual regions-of-interest: Comparison with eye fixations.

IEEE Trans. PAMI 22 (9), 970–982.

Rosenfeld, A., 1970. A nonlinear edge detection technique.

Proc. IEEE 58, 814–816.

Rosenfeld, A. (Ed.), 1984. Multiresolution Image Processing

and Analysis. Springer Verlag.

Rosenfeld, A., 1987. Pyramid algorithm for efficient vision.

Tech. Rep. CAR-TR-299, University of Maryland, Com-

puter Science Center.

Rosenfeld, A., Thorston, M., 1971. Edge and curve detection

for visual scene analysis. IEEE Trans. Comput. 20, 562–

569.

Stark, L.W., Privitera, C.M., 1997. Top–down and bottom–up

image processing. In: Internat. Conf. on Neural Networks,

vol. 4, pp. 2294–2299.

Thulasiraman, K., Swamy, M.N.S., 1992. Graphs: Theory and

Algorithms. Wiley-Interscience.

Zeki, S., 1993. A Vision of the Brain. Blackwell, Oxford.


	Vision pyramids that do not grow too high
	In memoriam
	Introduction
	Pyramids in human vision
	Graph pyramid
	Maximal independent vertex set (MIS)
	Algorithm MIS

	Maximal independent edge set (MIES)
	Algorithm MIES

	Maximal independent directed edge set (MIDES)
	Algorithm MIDES

	Comparing the speed of reduction
	Experiments with MIS
	Experiments with MIES
	Experiments with MIDES
	Discussion of results

	Eigen-image pyramids and visual attention
	Weight target contraction
	Enhancement of object recognition

	Conclusion
	Acknowledgment
	References


