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Abstract. Motivated by claims to ‘bridge the representational gap be-
tween image and model features’ and by the growing importance of topo-
logical properties we discuss several extensions to dual graph pyramids:
structural simplification should preserve important topological proper-
ties and content abstraction could be guided by an external knowledge
base. We review multilevel graph hierarchies under the special aspect of
their potential for abstraction and grouping.

1 Introduction

Regions as aggregations of primitive pixels play an extremely important role
in nearly every image analysis task. Regional (internal) properties (color, tex-
ture, shape, ...) help to identify them and their external relations (adjacency,
inclusion, similarity of properties,...) are used to build groups of regions having
a particular meaning in a more abstract context. A question is raised in [11]
referring to several research issues: “How do we bridge the representational gap
between image features and coarse model features?” They identify the 1-to-1 cor-
respondence between: salient image features (pixels, edges,...) and salient model
features (generalized cylinders, invariant models,...) as limiting assumption that
makes generic object recognition impossible. It is suggested to bridge and not to
eliminate the representational gap, and to focus efforts on: region segmentation,
perceptual grouping and image abstraction.

Connected components form the bases for most segmentations. The region
adjacency graph (RAG) describes the relations of connected regions. However
not all regions of the RAG have the same importance like a dotted line on white
background. In such cases the more important regions are offten close to each
other but not adjacent and adjacency prevents further grouping. We overcome
this problem by letting more important regions (foreground) grow into the non
important regions (background) until the close regions become adjacent and
can be grouped. We address some of these issues in the context of gradually
generalizing our discrete image data across levels where geometry dominates up
to levels of the hierarchy where topological properties become important.
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We review the formal definition of abstraction (Sec. 2) and the concept of
dual graphs (Sec. 3) including a ‘natural’ example of vision based on an irregular
sampling. Image pyramids of dual graphs are the main focus of Sec. 4. Abstrac-
tion in multilevel structures can be done either by modifying the contents of a
representational cell or by ‘simplifying’ the structural arrangement of the cells
while major topological properties are preserved (Sec. 5).

2 Visual Abstraction

By definition abstraction extracts essential features and properties while it ne-
glects unnecessary details. Two types of unnecessary details can be distinguished:
redundancies and data of minor importance. Details may not be necessary in dif-
ferent contexts and under different objectives which reflect in different types of
abstraction. In general we distinguish: isolating abstraction: important aspects
of one or more objects are extracted from their original context; generalizing ab-
straction: typical properties of a collection of objects are emphasized and summa-
rized. idealizing abstraction: data are classified into a (finite) set of ideal models,
with parameters approximating the data and with (symbolic) names/notions de-
termining their semantic meaning. These three types of abstraction have strong
associations with well known tasks in cognitive vision: recognition and object
detection tries to isolate the object from the background; perceptual grouping
needs a high degree of generalization; and categorization assigns data to ideal
classes disregarding noise and measurement inaccuracies. In all cases abstraction
drops certain data items which are considered less relevant. Hence the impor-
tance of the data needs to be computed to decide which items to drop during
abstraction. The importance or the relevance of an entity of a (discrete) descrip-
tion must be evaluated with respect to the purpose or the goal of processing.

Multiresolution hierarchies, image pyramids or trees in general posses the
potential for abstraction. We consider the structure of the representation and
the content stored in the representational units separately. In our generaliza-
tion we allow the resolution cell to take other simply connected shapes and to
describe the content by a more complex ‘language’. The first generalization is
a consequent continuation of the observations in [2] to overcome the limited
representational capabilities of rigid regular pyramids. Since irregular structures
reduce the importance of explicitly representing geometry, topological aspects
become relevant.

3 Discrete Representation – Dual Graphs

A digital image is a finite subset of ‘pixels’ of the discrete grid �Z2. The discretiza-
tion process maps any object of the continuous image into a discrete version if
it is sufficiently large to be captured by the sensors at the sampling points.
Resolution relates the unit distance of the sampling grid with a distance in re-
ality. The properties of the continuous object, i.e. color, texture, shape, as well
as its relations to other (nearby) objects are mapped into the discrete space,



Grouping of Non-connected Structures by an Irregular Graph Pyramid 109

a) b) c) d)

Gk

Gk

�
�

�
�

���
�

�
�

��

�

s
λn

λ3

λ2
λ
1

level 0

1

h

Fig. 1. a) Partition of pixel set into cells. b) Representation of the cells and their
neighborhood relations (Gk, Gk). c) Pyramid concept, and d) discrete levels.

too. The most primitive discrete representation assigns to each sampling point a
measurement, be it a gray, color or binary value. In order to express the connec-
tivity or other geometric or topological properties, the discrete representation
must be enhanced by a neighborhood relation. In the regular square grid 4-
or 8-neighborhood have the well known problems in conjunction with Jordan’s
curve theorem. The neighborhood of sampling points is represented by a graph.
Although this data structure consumes more memory space it has several ad-
vantages, among which we find the following: the sampling points need not be
arranged in a regular grid; the edges can receive additional attributes too; and
the edges may be determined either automatically or depending on the data.

The problem arising with irregular grids is that there is no implicit neighbor
definition. Usually Voronoi neighbors determine the neighborhood graph. The
neighborhood in irregular grids needs to be represented explicitly. This creates a
new representational entity: the binary relation of an edge in the neighborhood
graph similar to the concept of relations between observational entities in [5].
Together with the fact that a 2D image is embedded in the continuous image
plane, the line segments connecting the end points of edges partition the image
plane into connected faces which are part of the dual graph (Fig. 1a,b).

4 Pyramids

In this section we summarize the concepts developed for building and using
multiresolution pyramids [10, 15] and put the existing approaches into a gen-
eral framework. The focus of the presentation is a representational framework,
its components and the processes that transfer data within the framework. A
pyramid [15] (Fig. 1c,d) describes the contents of an image at multiple levels
of resolution. The base level is a high resolution input image. Successive levels
reduce the size of the data by a constant reduction factor λ > 1.0 while local
reduction windows relate one cell at the reduced level with a set of cells in the
level directly below. Thus local independent (and parallel) processes propagate
information up and down in the pyramid. The contents of a lower resolution
cell is computed by means of a reduction function, the input of which are the
descriptions of the cells in the reduction window.

The number of levels n is limited by λ: n ≤ log(image size)/ log(λ). The
main computational advantage of image pyramids is due to this logarithmic com-
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plexity. We intend to extend the expressive power of these efficient structures by
several generalizations. In order to interpret a derived description at a higher
level, this description should be related to the original input data in the base
of the pyramid. The receptive field (RF) of a given pyramidal cell ci, RF (ci),
collects all cells (pixels) in the base level of which ci is the ancestor.

Content Models and Reduction Functions

In connected component labeling each cell contains a label identifying the mem-
bership of the cell to the class of all those cells having the same label. In this
case the contents of the cells merged during the reduction process can be prop-
agated by simple inheritance: the fused cell ‘inherits’ its label from its children.
In classical gray level pyramids the contents of a cell is a gray value which is
summarized by the mean or a weighted mean of the values in the reduction win-
dow. Such reduction functions have been used in Gaussian pyramids. Laplacian
pyramids [4] and wavelet pyramids [16] identify the loss of information that oc-
curs in the reduced level and store the missing information in the hierarchical
structure where it can be retrieved when the original is reconstructed. These
approaches use one single globally defined model [8] which must be flexible to
adapt its parameters to approximate the data.

In our generalization we would like to go one step further and allow different
models to be used in different resolution cells as there are usually different objects
at different locations of an image. The models could be identified by a name or
a symbol (e.g black, white, isolated etc.) and may be interrelated by semantic
constraints (e.g adjacency etc.), Fig. 4. Simple experiments have been done with
images of line drawings. This research used the experiences gained with a system
for perceptional curve tracing based on regular 2×2/2 curve pyramid [12] and the
chain pyramid [17] in the more flexible framework of graph pyramids. The model
describes symbolically the way in which a curve intersects the discrete segments
of the boundary of a cell and the reduction function consists in the transitive
closure of the symbols collected in the reduction window. The concept works well
in areas where the density of curves is low, although the rigidity of the regular
pyramid causes ambiguities to arise when more curves appear within the same
receptive field. This limitation can be overcome with irregular pyramids [15] in
which we could limit the receptive field of a cell to a single curve.

The content abstraction in this representation has following features:
– models are identified by names1, no parameters were used;
– adjacent models have to be consistent (‘good continuation’);
– only one consistent curve is covered in one receptive field;
– this selection process is governed by a few contraction rules (Fig. 4).

The knowledge about the models and in what configurations they are allowed
to occur needs to be stored in a knowledge base [14]. In order to determine which
are the best possible abstractions, the local configurations at a given level of
the pyramid must be compared with the possibilities of reduction given in the
1 Discrete names: empty cell, line end, crosses edge, junction etc.
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Algorithm 1 – Graph Pyramid.
Input: Attributed graph G.

1: while { further abstraction is possible } do
2: determine contraction kernels (CKs),
3: perform dual graph contraction and simplification of dual graph,
4: apply reduction functions to compute content of new reduced level,
5: end while

Output: Irregular graph pyramid.

knowledge base. This would typically involve matching the local configuration
with the right-hand sides of rules stored in the knowledge base. Such a match may
not always be perfect, one may allow a number of outliers. The match results
in a goodness of match, which can be determined for all local configurations.
The selection can then choose the locally best candidates as contraction kernels
(CKs) and reduce the contents according to the generic models which matched
the local configuration. The goodness of match may also depend on a global
objective function to allow the overall purpose, task or intention to influence the
selection process.

5 Irregular Graph Pyramids

A graph pyramid is a pyramid where each level is a graph G(V, E) consisting of
vertices V and of edges E relating pairs of vertices. In the base level, pixels are
the vertices, and two vertices are related by an edge if the two corresponding
pixels are neighbors. This graph is called the neighborhood graph. The content
of the graph is stored in attributes attached to both vertices and edges. In
order to correctly represent the embedding of the graph in the image plane
we additionally store the dual graph G(V , E) at each level. Let us denote the
original graph as the primal graph. In general a graph pyramid can be generated
bottom-up [15] (see Alg. 1).

5.1 1st Iteration: Group Connected Components

The 2nd step determines what information in the current top level is important
and what can be dropped. A CK is a (small) sub-tree, the root of which is cho-
sen to survive. Fig. 2a shows the window (G0) and the selected CK N0,1 each
surrounded by an oval. The codes of the vertices are given in Fig. 4. Selection
criteria (code adjacency of Fig. 4 is ‘yes’) in this case contract only edges in-
side connected components except for isolated black vertices (blobs) which are
allowed to merge with their background, so that support of grouping is dis-
tributed over a large receptive field bridging areas of background [6]. All the
edges of the contraction trees are dually contracted [15]. Dual contraction of an
edge e (formally denoted by G/{e}) consists of contracting e and removing the
corresponding dual edge e from the dual graph (formally denoted by G \ {e}).
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a) Neighborhood graph G0 and CK N01 b) G1 and CK N12;

Fig. 2. Broken line.

This preserves duality and the dual graph need not be constructed from the
contracted primal graph G′ at the next level.

Since the contraction of an edge may yield multi-edges and self-loops there is
a simplification step which removes all redundant multi-edges and self-loops (re-
dundant edges). Note that not all such edges can be removed without destroying
the topology of the graph since its removal would corrupt the connectivity! This
can be decided locally by the dual graph since faces of degree two (having the
double-edge as boundary) and faces of degree one (boundary = self-loop) cannot
contain any further elements in its interior, since the original graph is connected.
Since removal and contraction are dual operations, the removal of a self-loop or
of one of the double edges can be done by contracting the corresponding dual
edges in the dual graph. The dual contraction of our example remains a graph
G1 without redundant edges (Fig. 2b).

5.2 New Category: Isolated Blob

Step 3 generates a reduced pair of dual graphs. The content is derived in step 4
from the level below. In our example, reduction is very simple: the surviving
vertex inherits the color of its son. A new category ‘isolated blob’ is introduced
if a black vertex is completely surrounded by white vertices. This new label allows
the RF to grow into its background and, eventually, close the gap to another
isolated blob. In the only case where the CK contains two different labels, the
isolated vertex is always chosen as surviving vertex.

The result of the second dual contraction is shown in Fig. 3. The selection
rules and the reduction function are the same as in the first iteration. The
isolated blob adjacency graph (IBAG) shows that the gaps between the isolated
blobs of the original sampling have been closed and the three surviving isolated
blobs are connected after two iterations. A top-down verification step checks the
reliability of closing the gap. There are lots of useful properties of the resulting
graph pyramids. If the plane graph is transformed into a combinatorial map
the transcribed operations form the combinatorial pyramid [3]. This framework
allowed to link dual graph pyramids with topological maps which extend the
scope to 3D.
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Fig. 3. The two gaps in graph G2.

may contract with � 	 ��

empty background �yes no yes

black component 	no yes no

isolated blob ��yes no yes (gap)

Fig. 4. Contraction rules to close gaps.

a) Broken line b) CCA c) IBAG d) RF

Fig. 5. Closing the gaps of a broken line.

6 Experimental Result

Fig. 5 shows an example of closing the gaps of a broken line. Connected com-
ponents analysis (CCA) alone creates self loops. Growing isolated blobs into its
background produces vertices of isolated blobs connected by edges corresponding
to the gaps. Fig. 5d shows the corresponding RF of the isolated blobs, which
represent edgel hypotheses and the neighborhood of isolated vertices a line hy-
pothesis. These hypotheses can be verified for confidence using the hierarchy of
the pyramid. It seems that there are much less concepts working on discrete irreg-
ular grids than on their regular counterparts. How to group connected structures
into an extended RAG has been show before [9]. The many islands of highly split
structures remain isolated in these approaches. We show how to group isolated
blobs or substructures into IBAG if the blobs have a ‘common’ background.

7 Conclusion

We motivated our discussion by the claim to ‘bridge the representational gap’ [11]
and to ‘focus on image abstraction’. We first discussed the basic concepts, vi-
sual abstraction and dual graphs in more detail. We then recalled a pyramidal
approach having the potential to cope also with irregular grids. These pyra-
mids have some useful properties: i) they show the need to use multi-edges and
self-loops to preserve the topology; ii) they allow the combination of primitive
operations at one level (i.e. collected by the CK) and across several levels of
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the pyramid (i.e. equivalent contraction kernels [13]); iii) repeated contraction
converges to specific properties which are preserved during contraction; iv) ter-
mination criteria allow abstraction to be stopped before a certain property is
lost. The new category of an isolated blob allowed to group non adjacent regions
based on proximity.
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