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Abstract. The eccentricity transform associates to each point of a shape
the distance to the point farthest away from it. The transform is defined
in any dimension, for open and closed manyfolds, is robust to Salt &
Pepper noise, and is quasi-invariant to articulated motion. This paper
presents and algorithm to efficiently compute the eccentricity transform
of a polygonal shape with or without holes. In particular, based on exist-
ing and new properties, we provide an algorithm to decompose a polygon
using parallel steps, and use the result to derive the eccentricity value of
any point.
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1 Introduction

To extract from a set of images the information required for a specific task, a
frequently used design pattern is to repeatedly transform the input image while
gradually moving from the low abstraction level of the input data to the high
abstraction level of the output data. The purpose is to have a reduced amount
of (important) information at the higher abstraction levels. One class of such
transforms that is applied to 2D shapes, associates to each point of the shape a
value that characterizes in some way it’s relation to the rest of the shape, e.g.
the distance to some other point of the shape.

Examples of such transforms include the well known distance transform [1],
which associates to each point of the shape the length of the shortest path to
the border, the Poisson equation [2], which can be used to associate to each point
the average time to reach the border by a random path (average length of the
random paths from the point to the boundary), and the eccentricity transform [3]
which associates to each point the length of the longest of the shortest paths to
any other point of the shape. Using the transformed images one tries to come up
with an abstracted representation like the skeleton [4] or shock graph [5] build
on the distance transform, which could be used in e.g. shape classification or
retrieval.

Minimal path computation [6] as well as distance transform [7] are used in
2D and 3D image segmentation.
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The eccentricity transform (ECC) has it’s origins in the graph based eccen-
tricity [8,9]. It has been defined in the context of digital images in [3,10], where
properties and robustness have been shown, and it was applied in the context
of shape matching in [11]. The eccentricity transform can be defined for discrete
objects of any dimension, closed (e.g. typical 2D binary image) or open sets
(surface of an ellipsoid), and for continuous objects of any dimension (e.g. 3D
ellipsoid or the 2D surface of the 3D ellipsoid, etc.).

For the case of discrete shapes, a naive algorithm and a more efficient one
for 2D shapes without holes, have been presented in [3]. For simply connected
shapes on the hexagonal and dodecagonal grid, an efficient algorithm was given
in [12]. Regarding continuous shapes, a detailed study has been made for the
case of an ellipse, and some preliminary properties regrading rectangles, and a
class of elongated convex shapes, have been given [13]. An algorithm for finding
the eccentric vertices (furthest points) for the vertices of a simple polygon was
given in [14].

This paper presents an algorithm for efficiently computing the eccentricity
transform of a polygonal shape. First, the shape is decomposed into patches as-
sociated to corner points then these patches are used to compute the eccentricity.

Section 2 gives a short recall of the eccentricity transform and gives the main
properties relevant for this paper. Section 3 briefly recalls existing algorithms.
Sections 4 and 5 present the proposed algorithm, followed by discussion in Sec-
tion 6 and possible extentions in Section 7. Section 8 concludes the paper and
gives an outlook of the future work.

2 Recall ECC

In this section basic definitions and properties of the eccentricity transform are
introduced following [3,11]. Let the shape S be a closed set in R

2 and ∂S be its
border1. A path π is the continuous mapping from the interval [0, 1] to S. Let
Π(p1,p2) be the set of all paths between two points p1,p2 ∈ S within the set
S. The geodesic distance d(p1,p2) between two points p1,p2 ∈ S is defined as
the length λ of the shortest path π, such that π ∈ Π(p1,p2), more formally

d(p1,p2) = min{λ(π(p1,p2)π∈Π)} where λ(π(t)) =
∫ 1

0
|π̇(t)|dt (1)

where π(t) is a parametrization of the path from p1 = π(0) to p2 = π(1).
The eccentricity transform of S can be defined as, ∀p ∈ S

ECC(S,p) = max{d(p,q)|(q ∈ S} = max{d(p,q)|q ∈ ∂S} (2)

i.e. to each point p it assigns the length of the shortest geodesics to the points
farthers away from it. In [3] it is shown that this transformation is quasi-invariant
to articulated motion and robust against salt and pepper noise (which creates
holes in the shape).
1 This definition can be generalized to higher dimensions.
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2.1 Properties of Eccentric Points

In general, an extremal point is a point where a function reaches an extremum
(local or global). In the case of the geodesic distance d on a shape S we call an
extremal point x ∈ S a point for which ∃p ∈ S s.t. d(x,p) is a local maximum.

An eccentric point of a shape S is a point e ∈ S that is farthest away in
S for at least one point p ∈ S i.e. ∃p ∈ S s.t. ECC(S,p) = d(p, e). For a
shape S, E(S) = {e ∈ S} denotes the set of all its eccentric points. The set of
eccentric points E(S) is a subset of the set of extremal points X(S) = {x} i.e.
E(S) ⊆ X(S) (eccentric points are global maxima for d, while extremal points
only local maxima).

Knowing E(S) can be used to speedup the computation of the ECC(S).
Instead of computing for each p ∈ S the length of the geodesics to all the other
points of S and taking the maximum, one can look at the inverse problem and
compute the length of the geodesics from all p ∈ E(S) to all the points of p ∈ S,
and for each p just take the maximum. This reduces the number of shortest path
computation steps by |S| − |E(S)|.

The following properties of extremal and eccentric points are relevant for this
paper and concern bounded 2D shapes.

Property 1. All eccentric points E(S) of a shape S lie on the border of S i.e.
E(S) ⊆ ∂S. (Proof due to [3]).

Property 2. Being an eccentric point is not a local property i.e. ∀B ⊂ ∂S a
boundary part (a 2D open and simple curve), and a point b ∈ B, we can con-
struct the rest of the boundary S \ B s.t. b is not an eccentric point of S.

Fig. 1. Adding missing part V to existing one B s.t. no eccentric points lie on B

Proof. Let lB be the length of B. We construct S \B with the shape of a capital
’V’ glued at its endpoints with the endpoints of B, and the length of the two
branches lV > 2 ∗ lB (Figure 1). The obtained shape S will have two eccentric
point sets clustered around the tops of the two branches of the ’V’, a diamether
max(ECC(S)) ≈ 2 ∗ lV , and no eccentric point will lie on B. 	
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Property 3. No eccentric points E(S) of a simply connected shape S lie on con-
cave or straight parts of the border of S i.e. �e ∈ E(S) s.t. ∂S is concave or
straight at e.

Proof. All points at the same distance to a point p lie on a circle C(p, r). If
the circle is contained in the shape S then there are points further away to p.
A circle C through a point x ∈ C is partly inside the shape S if x is on a
straight or concave part of the boundary. Thus there exists a point q ∈ S with
q �∈ C s.t. d(p,q) > r.

A hole can be bypassed in two ways. It partitions the points behind it in
two groups: those for which the shortest path passes on one side and, those for
which the shortest path passes on the other side of the hole. Shortest paths from
both sides meet at the separation curve. Points on the separation curve have
on both sides neighbours with smaller distances. Extremal paths never cross the
separation curve. Thus, if x is on the separation curve then it is an extremal
point no matter the curvature of ∂S at x. 	


Property 4. (from Property 3) All eccentric points E(S) of a simply connected
shape lie on convex parts of the border of S i.e ∀e ∈ E(S) ⇒ ∂S is convex at e.

Properties 1, 3 and 4 also apply to extremal points.

Property 5. For any shape S, all boundary points in convex regions of ∂S are
extermal points. (Proof similar to Property 3).

From Properties 1-4 we see that for the case of simple polygons all corner points
with angles less than 180o makeup the extremal points, but whether such a corner
point is actually an eccentric point or not, can be known only after computing
ECC(S) for the polygon.

For the case of multiply connected 2D shapes, depending on the number and
size of the holes, Properties 3 and 4 do not always hold (for a square with a
maximum size square hole, all boundary points are eccentric points). But, due
to Property 5, the corner points mentioned above are extremal points and thus
still eccentric point candidates (see Section 6 for a discussion).

3 Previous Work - Algorithms

The naive algorithm to compute ECC(S) for a given discrete shape S has a
complexity of O(|S|3) in the number of pixels |S|. Eccentric points lie only on
the boundary of S. If we assume that the average number of border points |∂S|
is much smaller than |S|, and we use Dijkstra’s algorithm [15] to compute the
shortest paths from one point to all other points (runs in O(|E| + |S| log |S|),
where |E| is the number of edges i.e. the number of adjacent pixel pairs), we get
a complexity of O(|∂S|(|E|+ |S| log |S|)) for a more efficient algorithm. One can
also use fast marching [16] for the computation of geodesic length (O(|S| log |S|)),
a case in which the complexity decreases to O(|∂S||S| log |S|).
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For continuous shapes, a detailed study of the ellipse and some properties
regarding rectangles and a class of elongated shapes are given in [13]. Ellipses
can be divided along the short diameter and to each point of the short diameter
one eccentric point in each half ellipse can be associated. The eccentricity of any
point of the ellipse can be computed in linear time by finding its corresponding
point on the short diameter [13]. Also, in the case of the ellipse, the set of
eccentric points can be analytically characterized. For the eccentricity of the n
corner points of simple polygons, an O(n log n) algorithm was given in [14].

4 Distances Inside a Polygonal Shape

Given a point o of the input polygon S we want to calculate the shortest distance
between the point o ∈ S and an arbitrary point p inside the shape. In a simply
connected convex shape it is the length of the straight line d(o,p) connecting o
and p. However concave portions and holes may not allow straight connections
in all cases.

We cover the inside of a polygonal shape by patches Pi within which the
distance of a point p ∈ Pi is the distance to a reference point ri ∈ Pi plus a
handicap hi:

d(p,o) = d(p, ri) + hi (3)

The handicap hi corresponds to the length of the shortest path inside S between
o and the reference point ri.

Create Patch(r, h, P)

1. determine the visibility polygon Q ⊂ P delineating the region inside P that
can be reached from reference point r along a straight line.

2. for all occluding points t ∈ Q do
Create Patch(t, d(r, t) + h, P \ Q)

3. return patch Q

We initialize the computation backwards from potential eccentric points by
creating patches for all corner points o ∈ S: Create Patch(o, 0.00, S).

Fig. 2 illustrates the first steps. It shows that patches overlap in the shadow
of holes. Every hole of the shape can be bypassed by the shortest path on either
sides of the hole. Hence all the points in the shadow of a hole can be reached along
two alternate paths. Two overlapping patches can be cut along the separation
curve, which is the curve where the two paths have equal length from o:

d(p, r1) + h1 = d(p, r2) + h2. (4)

In general the separation curve is a hyperbolic arc. It degenerates into a straight
line as in area H of Fig. 2 if the two handicaps are equal.
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Fig. 2. First patches created by the reference point (bottom-left corner), the obtained
handicaps, and the shadow ’H’ created by the hole

Assume that the two reference points on the hole are r1 and r2 with handicaps
h1 and h2 respectively. After translating the midpoint r1+r2

2 to the origin and
rotating, the two reference points have coordinates r1 = (−f, 0) and r1 = (f, 0).
Points p = (x, y) that the same distance to the original point must satisfy

d(p, r1) + h1 = d(p, r2) + h2 (5)

Without restricting generality we assume that h2 > h1 and set l = h2 − h1.
Then we have

√
(x + f)2 + y2 =

√
(x − f)2 + y2 + l, (x + f)2 + y2 = (x − f)2 +

y2 + 2l
√

(x − f)2 + y2 + l2, 4xf − l2 = 2l
√

(x − f)2 + y2, 16x2f2 − 8xfl2 +
l4 = 4l2(x2 − 2xf + f2 + y2), 16f2−4l2

l2(4f2−l2)x
2 − 4

4f2−l2 y2 = 1, or the hyperbola
x2

(l/2)2 − y2

f2−(l/2)2 = 1.
Note that the computation is independent for each starting point o and hence

can be done in parallel.

5 Combining Distance Patches into the ECC-Patches

Every original starting point creates a separate set of patches in which the dis-
tance to the original point can be computed locally. Let us call these original
patches the distance patches. In the following we combine the different sets of
patches into a new partition of the ECC. The new patches will be called ECC
patches.

5.1 The Smallest Common Partition

After creating a partition into patches for all starting points of the given polygon
the produced partitions will not coincide with each other. We therefore overlay
them to create a finer partition such that every patch of the finer partition fits
into any of the distance patches. Fig. 3 shows the first two sets of patches.
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Fig. 3. The first two sets of patches

The resulting finer patches may have as many reference points as there were
original points on the polygon since any extremal point on the polygon can be
reached from any patch.

5.2 Example with One Concave Part

Fig. 4 shows a simple example with 8 corner points and 11 patches A, B, C, D,
E, F, G, H, I, J, K. The table in Fig. 4 lists all the patches together with the
reference points leading to all the 8 corner points together with the handicaps.

5.3 Non-maxima Suppression

The ECC computes the longest distance between any point p inside the shape to
the farthest extremal point x inside the shape along the shortest path inside the
shape. Every patch of the refined partition of the shape contains n ≥ 1 reference
points allowing the computation of the length of the shortest paths to any of the
n original points.

First a reference point r may appear several times with different handicaps h
depending on the number of paths from original points that go across r. Only
the largest handicap must be kept (dropped handicaps are indicated by (h) in
Fig. 4).

For the ECC patch we need to keep further only the reference points r ∈ P
leading to the farthest extremal point: argmax{d(p, r)+h|p ∈ P}. In some cases
there may be more than one reference point leading to maximal distances in one
patch. The patches that have more than one reference point after non-maxima
suppression need to be further subdivided along curves separating influence areas
of extremal points.

5.4 Subdividing Center Patches

Any remaining patch has two or more reference points ri. The subdivision can
proceed similar to the generation of a weighted Voronoi diagram. Any pair of



298 W.G. Kropatsch, A. Ion, and S. Peltier

1 2

3 4

5 6

78

�
�

�
�

�

��������

��� �
�

��� �

� �

� �

��

A
B

C

D
E

F
G

H I

J
K

patch 1 2 3 4 5 6 7 8
A r 1 2 3 3 3 3 3 8

h 0.0 0.0 (0.0) (2.0) (3.0) 4.2 4.5 0.0
dmax 1.4 1.1 1.4 3.4 4.4 5.6 5.9 3.1

B r 1 2 3 3 3 3 7 8
h 0.0 0.0 (0.0) (2.0) (3.0) 4.2 0.0 0.0

dmax 1.4 1.4 1.1 3.1 4.1 5.3 5.6 2.5
C r 1 2 3 4 4 4 7 8

h 0.0 0.0 0.0 (0.0) (1.0) 2.2 0.0 0.0
dmax 2.5 2.7 1.8 3.6 4.6 5.8 5.4 2.2

D r 1 2 3 4 4 6 7 8
h 0.0 0.0 0.0 (0.0) 1.0 0.0 0.0 0.0

dmax 3.2 3.2 2.2 3.6 4.6 5.8 5.0 1.4
E r 1 3 3 4 4 6 7 8

h 0.0 1.0 (0.0) (0.0) 1.0 0.0 0.0 0.0
dmax 4.2 3.8 2.8 2.8 3.8 5.0 4.1 3.0

F r 1 3 3 4 4 4 7 8
h 0.0 1.0 (0.0) (0.0) (1.0) 2.2 0.0 0.0

dmax 2.4 2.0 1.0 2.2 3.2 4.4 4.5 2.2
G r 3 3 3 4 4 4 7 8

h 1.4 (1.0) (0.0) (0.0) (1.0) 2.2 0.0 0.0
dmax 3.4 3.0 2.0 2.0 3.0 4.2 4.5 3.6

H r 3 3 3 4 4 6 7 8
h 1.4 (1.0) (0.0) (0.0) 1.0 0.0 0.0 0.0

dmax 4.2 3.8 2.8 2.0 3.0 4.1 3.9 3.6
I r 3 3 3 4 5 6 7 8

h 1.4 (1.0) (0.0) 0.0 0.0 0.0 0.0 0.0
dmax 5.9 5.5 4.5 2.8 3.6 3.6 2.8 5.4

J r 4 4 4 4 5 6 7 8
h 3.4 (3.0) (2.0) (0.0) 0.0 0.0 0.0 0.0

dmax 5.6 5.2 4.2 2.2 2.2 2.2 3.0 5.8
K r 4 4 4 4 5 6 7 4

h 3.4 (3.0) (2.0) (0.0) 0.0 0.0 0.0 3.6
dmax 5.2 4.8 3.8 1.8 1.5 2.2 3.6 5.4

Fig. 4. Polygon with ECC patches and table of reference points (r), handicaps (h) and
distances (dmax) of ECC patches (A-K) to corner points (1-8, table header)

reference points r1, r2 subdivides the patch into two half spaces along a second
order curve through N = r1+r2

2 + (h1 − h2) r1−r2
|r1−r2| . The remaining reference

points are split among the two new patches and the subdivision repeated for all
patches having more than one reference point until all patches have only one
reference point left.

5.5 Merging Oversegmented Patches

The successive subdivision of patches may have introduced patches that have the
same reference point. These patches can be merged in the final ECC-partitions
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which subdivides the original shape into patches having exactly one reference
point. The ECC value of any point inside the patch can be computed using the
reference point r and its handicap h:

ECC(S,p) = d(p, r) + h (6)

6 Discussion

Sections 4 and 5 produce a partition of shape S into patches D(S) s.t. the eccen-
tricity tranform is analytically defined in each patch. Given the decomposition
D(S), the computation of the eccentricity of a point p ∈ S is reduced to:

Compute ECC(S,p, D):

1. find patch P = (r, h) ∈ D s.t. p ∈ P
2. ECC(S,p) = d(p, r) + h

In a hierarchical structure (e.g. binary trees, quadtrees, irregular pyramids),
step 1 runs in logarithmic time in the number of patches. Step 2 executes in a
fixed amount of time. The number of patches depends on the number of corner
points, the number of holes, and the number of points for which the computation
in Section 4 was initialized.

For a simple polygon, the correct eccentricity is computed. In the worst case
all corner points are also eccentric points and define at least one patch.

A hole makes the points in the shadow less accessible, which can make border
points on the separation curve in the shadow further away than any corner point,
and thus eccentric. The assumption that only corner points can be eccentric
might not hold, and the number of eccentric points can be infinite. In this case
the presented algorithm gives an approximation of the eccentricity transform,
less or equal to the correct value. An upper bound for the error is half the length
of the longest polygon side. To reduce this upper bound, one can initialize the
computation in Section 4 with additional boundary points.

7 Extensions

Circular Arc: Reference point and handicap can also be used to correctly de-
scribe shapes with circular arcs. In this case the center of the circle serves
as reference point and the radius as handicap. For concave circular arcs the
radius carries a negative sign.

3D triangulated surface: In a triangulated surface two adjacent triangles
share an edge. The corresponding 3D straight line serves as rotational axis
to place the two adjacent triangles into a common plane such that short-
est paths become straight lines in this new plane. Therefore the length of
the shortest path from a corner to a point in an adjacent triangle can be
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computed as the Euclidean distance to the corner after rotating it into the
common plane. This can serve as reference point for all straight lines crossing
the common edge segment.

8 Conclusion

In this paper an algorithm for efficiently computing the eccentricity transform
of a continuous polygonal shape is presented. Corner points are candidates for
eccentric points. Parallel steps are used to decompose the shape based on the
length and the topology of the shortest paths to each corner point. The resulting
decompositions are merged and used to derive the eccentricity transform of the
polygon. An algorithm for discrete shapes will be derived from the one presented
here. Future work includes a general algorithm for 2D continuous shapes.
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