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Abstract High resolution image data require a huge
amount of computational resources. Image pyramids
have shown high performance and flexibility to reduce
the amount of data while preserving the most relevant
pieces of information, and still allowing fast access to
those data that have been considered less important before.
They are able to preserve an existing topological structure
(Euler number, homology generators) when the spatial
partitioning of the data is known at the time of construction.
In order to focus on the topological aspects let us call this
class of pyramids “topological pyramids”. We consider
here four open problems, under the topological pyramids
context: The minimality problem of volumes representation,
the “contact”-relation representation, the orientation of
gravity and time dimensions and the integration of different
modalities as different topologies.

1 Introduction
Visual data are characterized with a large quantity of infor-
mation and high redundancy. These data require a huge
amount of computational resources (see Fig. 1). What is
still true in 2D becomes even more demanding in 3D (e.g.
CT and MR images in medicine; and image and video se-
quences in surveillance applications). The combination of
3D and time brings us quickly into a four dimensional dis-
crete space where online performance is not yet achieved.

Figure 1: A 2D, 3D and 4D visual data, and the storage capacity
needed for each one of them.
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Image pyramids are a stack of images with decreasing
resolutions [4]. Such pyramids present the following inter-
esting properties within the Image Processing and Analysis
framework ([2]):

• Reducing the influence of noise by eliminating less im-
portant details in lower-resolution versions of the image.

• Making the processing independent of the resolution of
the regions of interest in the image.

• Converting global features to local ones.

• Reducing the computational cost using the divide-and-
conquer principle.

• Finding regions of interest for plan-guided analysis at low
cost in low-resolution images, ignoring irrelevant details.

• Visual inspection of large images.

• Increasing speed and reliability of image matching tech-
niques by applying coarse-to-fine strategy.

Figure 2: Pyramid structure

Topology aims at studying properties of objects which
are independent of geometrical transform. Some of these
topological properties are useful in many applications, for
example in matching and indexation of structured objects.

A topological pyramid is an image pyramid where each
level is a topologically equivalent representation of the ini-
tial data.

The construction of the pyramid hierarchy follows the
philosophy to reduce the data amount at each higher level
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of the hierarchy by a reduction factor λ > 1 while preserv-
ing important topological properties like connectivity and
inclusion.

There are topological representations for structured ob-
jects that can be used in the hierarchical framework of topo-
logical pyramids. These representations are plane graphs,
combinatorial maps and generalized maps [12].

The paper is structured as follows. Basic notions on ir-
regular graph pyramids, combinatorial and generalized-map
pyramids, and topological pyramids are recalled in Sections
1.1, 1.2 and 1.3. The four proposed open problems are
presented in the following sections. The minimality prob-
lem of volumes representation is presented in Section 2, the
“contact”-relation representation in Section 3, the orienta-
tion of gravity and time dimensions in Section 4, and the
integration of different modalities as different topologies in
Section 5. A summary is found in Section 6.

1.1 Irregular graph Pyramids

Irregular graph pyramids are defined as a stack of succes-
sively reduced graphs [11]. In irregular pyramids, each level
represents an arbitrary partition of the pixel set into cells, i.e.
connected subsets of pixels.

The construction of an irregular pyramid is iteratively lo-
cal [15][8]. This means that we use only local properties to
build the hierarchy of the pyramid.

On the base level (level 0) of an irregular image pyramid
the cells represent single pixels and the neighborhood of the
cells is defined by the connectivity of the pixels. A cell on
level k+1 (parent) is a union of neighboring cells on level k
(children). This union is controlled by so called contraction
kernels (decimation parameters [13]).

Every parent computes its values independently of other
cells on the same level. This implies that an image pyramid
is built in O[log(d)] parallel steps being d the image diame-
ter.

A level of a dual graph pyramid consists of a pair
(Gk, Gk) of plane graphs (see Fig. 3), Gk and its geometric
dual Gk, in order to correctly represent the embedding of
the graph in the image plane [7].

Figure 3: A plane graph G and its dual Gk

The vertices of Gk represent the cells on level k and
the edges of Gk represent the neighborhood relations of the
cells. The edges of Gk represent the borders of the cells on
level k, including so called pseudo edges needed to represent
neighborhood relations to a cell completely enclosed by an-
other cell. Finally, the vertices of Gk, represent junctions of
border segments of Gk.

1.2 Combinatorial and Generalized-map Pyramids
Combinatorial maps and generalized maps, define a general
framework which allows to encode any subdivision of nD
topological spaces orientable or non-orientable with or with-
out boundaries.

Combinatorial maps were introduced in [6], at first as a
planar graph representation model, and extended in [14] in
dimension n to represent orientable or not-orientable quasi-
manifolds. In dimension n a combinatorial map is a (n +
1)-tuple M = (D,β1, β2, ..., βn) such that D is the set of
abstract elements called darts, β1 is a permutation on D and
the other βi are involutions on D (see Fig. 4). An involution
is a permutation whose cycle has the length of two or less.

The differences between combinatorial and generalized
maps is that in the case of combinatorial maps, for each di-
mension, there is more than one way of attributing the per-
mutations, but the number of permutations used for a certain
dimension and how many of them are involutions is fixed.

Figure 4: Combinatorial map where D = (1, -1, 2, -2, 3, -
3, 4, -4, 5, -5, 6, -6, 7, -7), β1(d) = −d ∀d ∈ D, β2 =
(2, 1)(−1,−4, 3)(−2, 6, 5, 4)(−5, 7,−3)(−6,−7)

A Combinatorial pyramid is a hierarchical stack of com-
binatorial maps. The definition is analogous for generalized
pyramid and generalized maps [3].

1.3 Topological Pyramids
As mentioned before, a topological pyramid is a stack of
topological encodings (graphs or maps).

The basic operations to construct these hierarchies are
edge contraction and edge removal. Some restrictions have
been defined in order to preserve topology while applying
these operations [9]. In that way connectivity, holes, Euler
number and Betti number are preserved along the hierarchy.
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This preservation allows topological pyramids to be a
useful tool in many analysis and image processing appli-
cations, where this topological information is crucial. They
are a useful i.e. to distinguish between different parts of an
object, between solid objects and objects that enclose other
objects, etc. As is shown in [16] topological information
like homology generators is computed efficiently on the top
level of a topological pyramid, since the number of cells is
small.

There are some open problems, in which analyzing and
processing large amounts of data is necessary, and topolog-
ical information need to be preserved. Organization and ag-
gregation principles are needed in order to cope with the
computational complexity. Topological pyramids promise
to be very useful in order to solve this mega-data problems,
in an efficient way.

2 Non-unique minimal configurations
The extension of the pyramidal concept from 2D to 3D is a
difficult issue dealing with dual graphs. On the other hand,
the combinatorial map formalism has been defined in any
dimensions. That is why the 3D pyramidal extension has
been treated using this topological representations [9].

But although this mathematical model allows the con-
struction of a 3D pyramid, the problem of non-unique mini-
mal configurations arises.

Combinatorial maps encode space subdivisions and all
incidence relations [5][1]. The underlying representation of
cellular complexes is based on so-called bounding relations.
Each i-cell with i > 0 is bounded by at least one (i-1)-
cell; a volume is bounded by surfaces, a surface is bounded
by curves and a curve is bounded by points. Consequently
the smallest volumetric description consists of at least one
volume (|V | ≥ 1), one surface (|S| ≥ 1), one curve (|C| ≥
1) and one point (|P | ≥ 1).

A combinatorial map will be considered minimal if it has
the minimal possible number of i-cells. The top level of a
combinatorial pyramid is the minimal topological equivalent
representation of the initial data.

To ensure that applying an operation on an i-cell will pro-
duce consistent combinatorial map topologically equivalent,
some conditions need to be imposed [9].

Let us consider the minimal representation of the sim-
plest 2D object (Fig. 5). It exists only one possible minimal
configuration, as is shown in Fig. 5. This configuration con-
tains a single face and one cell of each lower dimension [9].

Figure 5: 2D minimal configuration

The simplest object in 3D, a filled sphere must satisfy

the boundary representational constraint but also the Eu-
ler number (number of points minus number of curves plus
number of surfaces minus number of vertices) must be one:
|P | − |C|+ |S| − |V | = 1.

There are two possible solutions that also resulted as top-
level solution in 3D combinatorial pyramids [9]: either the
number of points is two (|P | = 2, |C| = 1, |S| = 1, |V | =
1) or the number of surfaces is two (|P | = 1, |C| = 1, |S| =
2, |V | = 1), and all the other cells appear only once. These
two configurations are shown in Fig. 6.

Figure 6: 3D minimal configurations

Different representations at the top of the pyramid occur
in the simplest case of a 3D object, but also in many other
3D and 4D configurations.

This non-uniqueness of the top of a combinatorial pyra-
mid restricts the potential uses of combinatorial pyramids in
pattern recognition, classification or identification applica-
tions.

How can we deal with this two different descriptions of
the same object?

3 Contact versus connectivity
In most current representations connectivity is the main re-
lation forming the structure of the composite objects. To
introduce the concept of connectivity within the image con-
text, we first need to introduce what is considered as a digital
binary picture.

In digital topology, following the terminology given in
[10], a 3D digital binary-valued picture space (or, briefly,
DPS) is a triple (V, β, ω). V is the set of grid points in a 3D
grid and the set β (resp. the set ω) determines the neighbor-
hood relations between black points (resp. white points) in
the grid.

A 3D digital binary-valued picture is a quadruple I =
(V, β, ω,B), where (V, β, ω) is a DPS and B (the set of
black points) is a finite subset of V.

Given a digital binary picture P , a black path (resp.
white) in P is a sequence p1, ..., pn of n ≥ 1 black points in
P , in which each pi is β(ω) -adjacent to pi−1(1 < i ≤ n).

Two black points p, q ∈ P are connected if there exist a
black path in P from p to q.

Under this path connectivity concept, representation of
cellular complexes is based on bounding relations; bounding
surfaces separate volumes, bounding curves separate sur-
faces, and bounding points separate curves.

In several real situations there is a variant of connectivity
where cells are in contact but no real connectivity is estab-
lished. If two people shake hands parts of the surface of
their hands are in close contact without creating a connec-
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tivity between their bodies. Geometrically the two touching
surfaces are aligned but their surface structure (e.g. texture)
is not. It occurs also, when for example we put some clothes
one over the other. Both surfaces are in contact, but not con-
nected.

In terms of cell complexes this corresponds to a surface
being a neighbor of another surface contradicting the re-
quirement that a surface always separates two volumes.

Is it possible to model these two realities without any
contradiction?

4 Oriented versus non-oriented dimensions
There are important applications in which temporal behav-
ior is critical. Treating time representation just as another di-
mension, we allow multiple configurations that are not plau-
sible in real situations (see Fig. 7). For example, the age of
objects is constantly increasing, and a consistent representa-
tion of this reality should not allow time decreasing config-
urations. A similar situation to time dimension occurs with
gravity. The water in a glass of water remains there only
if the glass is placed on a horizontal surface. Any rotation
would change this state.

Figure 7: A plausible and a not plausible situation

If our representation allows this configurations that can
not occur in practise, we need highly complex processes to
recognized them, in order to distinguish between these con-
figurations and all possible ones.

To what extent can topological pyramids take thus ori-
ented dimensions into account such that impossible config-
urations are excluded from being represented?

5 Different modalities, different topologies
A window of a room physically separates the inside of the
room from the outside. However it lets light go through cre-
ating pleasant and un-wanted visual artefacts on the surfaces
of the inside objects while allowing the inside observer to
see a part of the surrounding of the house. In terms of topol-
ogy the window can be a solid part separating the inside of
the room from the outside or it can be seen as a tunnel (a 1D
hole) allowing light to enter the room.

There are many more modalities (e.g. CT, MR, US in
medicine; other frequency bands of the electro-magnetic
spectrum) that can produce measurements that have differ-
ent topologies but describe the same (part of) reality (see
Fig. 8).

Figure 8: Different pictures describing the same reality

Modeling and integrating data from these different mea-
surements will allow us to better represent the reality.

How can we deal with this integration and modelization?
Is there a “multi-modal” topology of which the different

views are just a type of projection?
Can we learn more about the properties of real world by

combining and integrating the individual views?

6 Summary
Four open problems are presented here: The minimality
problem of volumes representation, the “contact”-relation
representation, the orientation of gravity and time-
dimensions, and the integration of different modalities as
different topologies.

We propose topological pyramids, as a representation
which has the chance to efficiently cope with the mega-data
problem.

In a future work, we plan to study possible solutions
to these problems and how would topological pyramids be
used to address them.
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