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Abstract. A temporal image sequence increases the dimension of the
data by simply stacking images above each other. This further raises
the computational complexity of the processes. The typical content of
a pixel or a voxel is its grey or color value. With some processing, fea-
tures and fitted model parameters are added. In a pyramid these values
are repeatedly summarized in the stack of images or image descriptions
with a constant factor of reduction. From this derives their efficiency of
allowing log(diameter) complexity for global information transmission.
Content propagates bottom-up by reduction functions like inheritance or
filters. Content propagates top-down by expansion functions like interpo-
lation or projection. Moving objects occlude different parts of the image
background. Computing one pyramid per frame needs lots of bottom-
up computation and very complex and time consuming updating. In the
new concept we propose one pyramid per object and one pyramid for the
background. The connection between both is established by coordinates
that are coded in the pyramidal cells much like in a Laplacian pyramid
or a wavelet. We envision that this code will be stored in each cell and
will be invariant to the basic movements of the object. All the informa-
tion about position and orientation of the object is concentrated in the
apex. New positions are calculated for the apex and can be accurately
reconstructed for every cell in a top-down process. At the new pixel lo-
cations the expected content can be verified by comparing it with the
actual image frame.

1 Introduction

Humans and animals are able to delineate, detect and recognize objects in com-
plex scenes very rapidly. One of the most valuable and critical resources in hu-
man visual processing is time. Therefore a highly parallel model is the biological
answer to deal satisfactorily with this resource [1]. Tsotsos [2] showed that hi-
erarchical internal representation and hierarchical processing are the credible
approach to deal with space and performance constraints, observed in human
visual systems. Moreover, Tsotsos [3] concludes that in addition to spatial paral-
lelization, a hierarchical organization is among the most important features
of the human visual systems.
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It is now accepted that the human visual system has a hierarchical (pyra-
midal) architecture and that the visual mechanisms can be adequately modeled
by hierarchical algorithms [4]. Pyramid algorithms are adequate models for the
Gestalt rules of perceptual organization such as proximity, good continuation,
etc. [5, 6]. Moreover, Privitera et al. [7] showed, in a stimulation of the human
visual system, that there are two strategies to obtain and apply information
about the importance of different regions of an image: the bottom-up methods
retrieve features only from the input image, and top-down methods are driven
by available knowledge about the world. Thus the hierarchical structure must
allow the transformation of local information (based on sub-images) into global
information (based on the whole image), and be able to handle both locally dis-
tributed and globally centralized information. This data structure is known as
hierarchical architecture or pyramid [8].

The (image) pyramid might be the answer to the time and space complexity
in computer vision systems, by implementing both processing strategies: bottom-
up and top-down. This hierarchical structure allows distribution of the global
information to be used by local processes. The main advantage of the hierar-
chical structures is rapid computation of a global information in a recursive
manner. The change of local over to global information, e.g. from pixels arrays
to descriptive data structures, is a point of discontinuity in vision systems [8].
Hierarchical structures offer a way to alleviate this discontinuity, where global
structures become local in higher levels of this hierarchy.

1.1 Recall on Image Pyramids

Tanimoto [9] defines a pyramid as a collection of images of a single scene
at different resolutions. In the classical pyramid every 2 × 2 block of cells is
merged recursively into one cell of the lower resolution. We formally describe
this structure by 2 × 2/4 which specifies the 2 × 2 reduction window and the
reduction factor of 4. This type of pyramid has been extensively studied (e.g.
[10], [11]).

Tanimoto’s formal definitions refer to this type of pyramid [12]. He defines
a cell (Tanimoto uses the term pixel) in a pyramid as a triple (x, y, v) which is
defined in a hierarchical domain of n levels:

{(x, y, v)|0 ≤ x ≤ 2v, 0 ≤ y ≤ 2v, 0 ≤ v ≤ n − 1} (1)

Then a pyramid is any function whose domain is a hierarchical domain. This
function assigns to every cell in the simplest case a value, but also structures of
higher complexity can be stored.

1.2 The Flow of Information within a Pyramid

Information necessary to connect the observed part of the object with the parts
in the adjacent cells must be passed up to the next lower resolution level (or
equivalently, to the next higher pyramid level). There, the cells cover a larger



3

area and can join some parts of the level below. This process is repeated up
to successively lower resolutions until the whole object is within the observation
window of a cell. Unfortunately, in some pyramid structures a small rigid motion
(shift, rotation) of the object may cause a completely different representation
(the representation cell may be many levels below or above. [13]). This problem
is resolved by the adaptive pyramid [14] which is the direct precursor of the
irregular pyramid (see section 3).

An important class of operations is responsible for the bottom-up information
flow within the pyramid: the reduction function R. It computes the new value
of a cell exclusively from the contents of its children. Given an image in the base
of the pyramid, application of a reduction function (e.g. average) to all first level
cells fills this level. Once the cell of the first level received a value, the same
process can be repeated to fill the second level and so on to the top cell. With
these operations the levels Gi, i = 0, . . . , n of a (Gaussian) pyramid are generated
by following iterative process: G0 := I; Gi+1 := R(Gi), i = 0, . . . , n − 1

1.3 Laplacian Image Pyramids

Burt [15] describes a method for compressing, storing and transmitting images
in a computationally efficient way.

Let Gk denote a 5×5/4 Gaussian pyramid, where k denotes the different levels
and G0 is the base. The bottom-up building process is based on the reduction
function R: Gk := R(Gk−1) , k := 1, 2, . . . n. The reduction function maps the
children’s collective content into the properties of the parent.

The Gaussian smoothing filter has a low-pass characteristic removing only the
highest frequencies. Therefore the Gaussian pyramid Gk; k = 0, . . . , n contains
a high amount of redundancy which is substantially reduced in the Laplacian
pyramid:

1. The expansion function E is the reverse function of the reduction function
R. It expands (interpolates) the properties of the parent(s) cells into the
children’s content at the higher resolution level.

2. The ’reduce - expand’ RE Laplacian pyramid compares the child’s content
with the expanded content of the parents and simply stores the difference:

Ll := Gl − E(Gl+1) for l := 0, 1, . . . , n − 1 (2)

3. Reconstruction of Gk is exact: Gk := Lk + E(Gk+1) for k := n − 1, n −
2, . . . , 0.

4. Hence storing Gn, Ln−1, Ln−2, . . . , L0 is sufficient for exact reconstruction of
the original image G0.

Note that the intensity of the reconstructed image depends on the intensity
of the apex. If the grey value of the apex is increased the intensity of the whole
reconstructed image is increased by the same value. We observe that all the
levels below the apex of the Laplacian pyramid are invariant to global changes
in intensity.
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1.4 First Steps in a Dynamic World

In [16], the Laplacian pyramid has been used to indicate a significant change in
a time-series of images. Let I(t) denote the image taken at time t, let m denote
the level at which the change shall occur. Following procedure initiates an alarm
when an unusual situation occurs in the field of view:

1. D(t) := I(t) − I(t − 1) ;
2. build Laplacian pyramid Li(t), i := 1, 2, . . . , m with L0(t) := D(t) ;
3. square level m: Lm(t)2 ;
4. build Gaussian pyramid Gk(t), k := 1, 2, . . . , n with G0(t) := Lm(t)2 ;
5. threshold Gk(t), k := 1, 2, . . . , n: alarm.

In this case the base of the Laplacian pyramid are the frame differences. It is
computed bottom-up up to level m which identifies the frequency band at which
the event causes the alarm. This nicely eliminates high frequency components
and false-alarms caused by noise or tree branches moving in the wind.

Although this early use of pyramids for detecting dynamic changes in an
image sequence was used in several applications it focused on a single event and
could not filter out a description of the alarm causing event.

1.5 Some Words on Graphs

Graph hierarchies allow to use other spatial orderings of image primitives, not
only the regular spatial structures like arrays. Image primitives (e.g. pixels, edges,
etc.) are represented by vertices and their relations by edges of the graph. These
vertices and edges are attributed. A classical example of graph representation
of a set of primitives is the region adjacency graph (RAG), where each im-
age region is represented by a vertex, and adjacent regions are connected by
an edge. Attributes of vertices can be region area, average gray value, region
statistics etc.; and attributes of edges can be the length of the boundary, the
curvature, etc. between the pair of adjacent regions. The graph hierarchy is then
built by aggregating these primitives. The main application area of the region
based representation is image segmentation and object recognition [17]. Note
that region adjacency graph (RAG) representation is capable to encode only the
neighborhood relations.

1.6 and some Words on Image Segmentation

An image segmentation partitions the image plane into segments that satisfy
certain homogeneity criteria (see [18] for an overview). There are many reasons
for using the hierarchical paradigm in image partitioning [19]:

– the scale at which interesting structure is important is not known in advance,
therefore a hierarchical image representation is needed;

– efficiency of computation: the results obtained from the coarse represen-
tation are used to constrain the costly computation in finer representations;
and
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– bridging the gap between elementary descriptive elements (e.g. pixels) and
more global descriptive elements, e.g. regions (see [20]).

Although the goal of image segmentation is producing a single partition of
the image, and not necessarily a hierarchy, the hierarchical representation is
needed, especially if the image context is not taken into consideration. The idea
behind this is if you do not know what you are looking for in an image, then use
a hierarchical representation of the image, and moreover a data structure that
allows the ability to access the finest partitioning (in our case the bottom of the
pyramid) or in case of ‘bad’ partitioning the faculty to repair these ‘errors’. A
wide range of computational vision tasks could make use of segmented images,
just to mention some: object recognition, image indexing, video representation
by regions etc., where such a segmentation relies on efficient computation.

1.7 Overview of the Paper

After discussing current representations of objects with both spatial and tem-
poral structure (like articulation), we recall the basic concept of irregular graph
pyramids in Section 3. Their basic properties are then efficiently applied in the
new concept for describing the temporal evolution of a tracked object (Section 4).
It relates the principles of the Laplacian pyramid with the graph pyramid to
separate two types of information: the trajectory and the dynamic orientation
is concentrated in the apex of the object (only one ’foot’ is updated at each
step), while all the lower levels code the spatial structure of the object if it is
rigid (Section 5). Extensions lossless rotation, articulated parts and adaptive
zoom are shortly addressed in Section 6. The conclusion (Section 7) summarizes
the major advantages of the new proposal and lists some of the many future
applications of the concept.

2 Objects with Structure in Space and in Time

In physics, motion means a change in the location of a “physical body” or parts
of it. Frequently the motion of a (mathematical/geometrical) point is used to
represent the motion of the whole body. However in certain cases (e.g. parking
a car) more information than a single point is required. Because describing an
object by an un-ordered set of all its points and their motion is not optimal
(considering for example storage space, redundancy, and robustness with respect
to missing or incorrect information), we can use the part structure of natural
physical bodies (e.g. “objects”) to represent them in a more efficient way.

In the context of computer vision, a representation for an object can be used
to model knowledge (e.g. appearance, structure, geometry) about the object
and its relation to the environment. This knowledge can be used for tasks like:
verifying if a certain part of an image is the object of interest, identifying invalid
configurations, guiding the search algorithm for a solution/goal, etc. These tasks
are in turn used by processes like segmentation, tracking, detection, recognition,
etc.
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Considering representations for structured objects, we identify the following
spatial and temporal scales. On the spatial scale there are representations
considering:

i. no spatial decomposition information;
ii. statistical information about the parts (e.g. number of parts/features of

different type);
iii. “static” structure i.e. adjacency of parts;
iv. degrees of freedom (e.g. articulation points);
v. pose relations between parts – correct/incorrect configurations/poses.

On the temporal scale we have:

a. no temporal information;
b. instant motion (e.g. speed and direction at a certain time instance);
c. elementary movement (e.g. moving the arm down);
d. action (e.g. a step, serving in tennis);
e. activity (e.g. running, walking, sleeping, playing tennis).

On the spatial scale, representations cover the whole domain from i. to v.
(see [21–24]). There are simple representations like points [25–27], geometric
shapes (rectangle, ellipse) [28, 29], and contours/silhouettes [30, 31], but also
more complex ones [32, 33]. Felzenszwalb et al. [32] use pictorial structures to
estimate 2D body part configurations from image sequences. Navaratnam et
al. [33] combine a hierarchical kinematic model with a bottom up part detection
to recover the 3D upper-body pose. In [34] a model of a hand with all degrees
of freedom and possible poses is used.

On the temporal domain, most methods use simple motion models, typically
considering the motion between a few consecutive frames. More complex rep-
resentation on the temporal domain can be found in behavior understanding,
where dynamic time warping (e.g. [35]), finite-state machines (e.g. [36]), and
hidden Markov models (e.g. [37, 38]) are employed. In the fields of pose esti-
mation and action recognition there is a so-called state space representation.
For example a human can be represented by a number of sticks connected by
joints [39]. Every degree of freedom of this model is represented by an axis in
the state space. One pose of a human body is one point in this high-dimensional
space and an event/action is a trajectory in this space. This trajectory through
the state space is one possibility to represent the temporal aspect [40]. Never-
theless, there are still very few works that look at complex spatial and temporal
structure at the same time (e.g topology in the 4D spatio-temporal domain).

In the context of computer vision, properties relating the objects with the vi-
sual input also need to be represented. Considering the dynamics of a descrip-
tion created using a certain representation, one can look at how a description
and its building/adapting processes behave, when the represented information
changes. For example: number of parts or their type, static structure, type of
activity, relation to visual input (scaling, orientation), etc.



7

Fig. 1. Image to primal and dual graphs.

For small changes in the information a minimal change in the description is
desired. E.g. scaling, rotation, part articulation, illumination, should only mini-
mally affect the description.

In addition to the dynamics, one can talk about the genericness of a rep-
resentation i.e. the ability to represent objects of varying degree of complexity
and abstraction (e.g. industrial robot, normal human walking, stone).

3 Irregular Graph Pyramids

Pyramids can be built also on graphs. In this case the domain is no more the
simple array structure as in Tanimoto’s definition but a graph where the function
values are stored as attributes of the vertices of the graph. A RAG encodes the
adjacency of regions in a partition. In the simplest case a vertex corresponds to a
pixel and the edges encode the 4-neighborhood relations (Fig. 1). The dual ver-
tices correspond in this case to the centers of all 2× 2 blocks, the dual edges are
the cracks between adjacent pixels. More generally, a vertex can be associated
to a region, vertices of neighboring regions are connected by an edge. Classical
RAGs do not contain any self-loops nor parallel edges. An extended region adja-

Fig. 2. A digital image I , and boundary graphs Ḡ6, Ḡ10 and Ḡ16 of the pyramid of I .

cency graph (eRAG) is a RAG that contains some pseudo edges. Pseudo edges
are the self-loops and parallel edges that are required to encode neighborhood
relations to a cell completely enclosed by one or more other cells [41] i.e. they
are required to correctly encode the topology. The dual graph of an eRAG G is
called the boundary graph (BG, see Fig. 2) and is denoted by Ḡ. The edges of
Ḡ represent the boundaries (borders) of the regions encoded by G, and the ver-
tices of Ḡ represent points where boundary segments meet. G and Ḡ are planar
graphs. There is a one-to-one correspondence between the edges of G and the
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edges of Ḡ, which also induces a one-to-one correspondence between the vertices
of G and the 2D cells (will be denoted by faces1) of Ḡ. The dual of Ḡ is again G.
The following operations are equivalent: edge contraction in G with edge removal
in Ḡ, and edge removal in G with edge contraction in Ḡ.

1

0G

G

2G

G3

Fig. 3. Example graph pyramid.

A (dual) irregular graph pyramid [41, 42] is a stack of successively reduced
planar graphs P = {(G0, Ḡ0), . . . , (Gn, Ḡn)} (Fig. 3). Each level (Gk, Ḡk), 0 <
k ≤ n is obtained by first contracting edges in Gk−1 (removal in Ḡk−1), if their
end vertices have the same label (regions should be merged), and then removing
edges in Gk−1 (contraction in Ḡk−1) to simplify the structure. The contracted
and removed edges are said to be contracted or removed in (Gk−1, Ḡk−1). In each
Gk−1 and Ḡk−1 the contracted edges form trees called contraction kernels. One
vertex of each contraction kernel is called a surviving vertex and is considered
to have ‘survived’ to (Gk, Ḡk). The vertices of a contraction kernel in level k− 1
form the reduction window of the respective surviving vertex v in level k. The
receptive field of v is the (connected) set of vertices from level 0 that have been
‘merged’ to v over levels 0 . . . k.

4 Moving Objects

The study of dynamic image sequences (or videos) aims at identifying objects
in the observed image sequence and describing their integrated properties and
their dynamic behaviour. There are several possibilities to segment an object
from an image or a video:

1 Not to be confused with the vertices of the dual of a RAG (sometimes also denoted
by the term faces).
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Fig. 4. Example of an extracted object and its rigid parts.

– image segmentation methods are able to locate image regions in individual
images that are ’homogeneous’ in certain terms. Examples are David Lowe’s
SIFT-features [43], different variants of Ncut [44] or the MST pyramid [45].
Objects of interest are, however, mostly composed of several such regions
and further grouping is required.

– Optical flow approaches overcome the grouping since the different parts of
an object usually move together.

– detection of interest points and tracking them individually over the sequence.
In order to preserve the structure of points belonging to the same object
pairwise relations like distances can be used efficiently to overcome failures
caused by noise or occlusions (see [46, 47]).

4.1 Extraction of Structure From Videos

In [47] a graph-pyramid is used to extract a moving articulated object from a
video, and identify its rigid parts. First a spatio-temporal selection is performed,
where the spatial relationships of tracked interest points over time are analysed
and a triangulation is produced, with triangles labeled as potentially-rigid and
non-rigid. The potentially-rigid triangles are given as input to a grouping process
that creates a graph pyramid such that the each top level vertex represents a rigid
part in the scene. The orientation variation of the input triangles controls the
construction process and is used to compute the similarity between two regions.
This concept is related to the single image segmentation problem [17], where
the results should be regions with homogeneous color/texture (small internal
contrast) neighbored to regions that look very different (high external contrast).
In our case the “contrast” is interpreted as the inverse of “rigidity”. The result of
this method can be used to initialize an articulated object tracker. Fig. 4 shows
an example.
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4.2 Describing the Tracking Results

Most of the current approaches describe the results in the domain of the original
data and use the image and frame coordinates. The resulting trajectory consists
in a sequence of frame coordinates where the object was at the respective time
instance. We consider the use of a separate data structure for each moving object
in order to update independent movements and properties in clearly separated
data (i.e. to describe ’walking’).

image

�
�

�
�

�
�

�
�

=

background

�
�

�
�

�
�

�
�

+

object

��

��
��

��

Fig. 5. Separating the object from the background

Once an object is identified in an image (frame) or even in an image pyramid
we cut out the object from its pixel based representation into the neighborhood
graph of pixels, close its surface topologically by invisible surface patches of the
backside (Fig. 5). The remaining image is considered as background and the
pixels of the removed object are labelled as invisible.

4.3 Topological Completion: Represent a 3D Object

In a video frame, a 3D object may be occluded or partially visible. We call
the visible part of the surface the front surface. From a single image frame, the
front surface is extracted as a graph. This extracted graph embeds the topo-
logical structure and discriminative visible features of the object. In the vertex,
attributes like size, color and position of the corresponding pixels (region) can
be stored and the edges specify the spatial relationships (adjacency, border) be-
tween the vertices (regions)[46]. Topological completion closes the visible surface
by one or more invisible surface patches in order to completely cover the surface
of the volumetric object.

Each level of the irregular graph pyramid is a graph, presenting the closed
surface of the moving object in multiple resolutions. We collect the topological
structures from the visible surface of the target object. Each graph embeds both
features and structural information. Locally, features describe the object details;
globally, the relations between features encode the object structure.

For initialization, the base graph of the pyramid encodes the initial informa-
tion about the object, the graph is closed on the invisible backside to create a
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closed 2D manifold. The graph pyramid can cope with this structure and the
same operations can be applied as in the case of an image. As new visible parts
of the surface would reveal previously invisible parts, the object representation is
incrementally updated automatically from observing the target object in a video
sequence. This requires the registration of the visible parts and the replacement
of some invisible patches. When some hidden structure appears, we add the new
topological structure into the previous 2D manifold to obtain the updated ob-
ject representation. For instance, a rotating cup will reveal the handle that was
hidden before, and hide the logo when it moves out of sight.

When the camera has covered all the aspects of the object, which means all
the observable parts of the object have been integrated in the object model, the
topological structure of the target object is complete. This is the process we
defined as topological completion.

5 Walking: Only one Foot Leaves Contact with the
Ground

In the image frame every pixel establishes a contact between the moving object
and the digital image. In order to reduce efforts of updating large amounts of
data (e.g. geometrically transforming the object window) we reduce the contact
to a single point which serves as a reference similar to the foot making the next
step in walking.

5.1 Invariance to Translation

In order to keep the geometric information of the object’s surface patches we
attribute each cell v ∈ V with the coordinates of the corresponding image pix-
els, p(v) = (x, y) ∈ [0, Nx] × [0, Ny]. These coordinates could, if necessary, be
enhanced by depth values, p(v) = (x, y, d) ∈ [0, Nx] × [0, Ny] × IR, coming from
different ’shape from X’ methods (e.g. [48]).

Both the extracted objects and the remaining background image can be em-
bedded in an irregular graph pyramid either

– by using the existing image pyramid (e.g. after segmentation) or
– by rebuilding the pyramids of the objects and the background.

The coordinates of the higher level cells can be computed from the children
either by inheritance from the surviving child to the parent or by a weighted
average of the children’s coordinates or by a combination with the selection of
survivors such that the largest region survives and inherits its children’s coordi-
nates in the case the pyramid is rebuilt. After this bottom-up propagation each
cell has 2D or 3D coordinates.

The resulting position attributes p(v) are as redundant as the grey values
of a Gaussian pyramid. Hence the idea of expanding the parent’s coordinates
p(vp) to the children, p(c), parent(c) = vp, and storing simply the difference
vector d(c) = p(c) − E(p(vp)) between the expansion and the original attribute
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in analogy to the Laplacian pyramid2. Let us call the difference d(c) the child’s
correction vector. Similar to the Laplacian pyramid the original position of
each cell can be reconstructed accurately (up to numerical precision) by adding
all the correction vectors (following the equivalence p(c) = E(p(vp)) + d(c))
up to the apex (a sort of equivalent correction vector). The position of the
cell is then the position of the apex added to the sum of correction vectors

p(c0) = p(apex) +
apex∑

c=c0,parent(c0),...

d(c). As a side effect the object can be rigidly

shifted by simply translating the apex to the desired position and reconstructing
the coordinates of all the other cells if needed. This shift invariance of the lower
pyramid levels allows simple modifications and efficient reconstruction but needs
further adaptation in order to cope with rotation and scale changes.

5.2 Invariance to Rotation and Scale

So far the position of an object is coded in the coordinates p(apex) of the apex.
Every cell below the apex contains correction vectors d(c) allowing accurate re-
construction of its position by top-down refinement using the correction vectors.

Most objects have an orientation o ∈ IR3 in addition to their position p ∈ IR3.
Orientation can be derived from properties like symmetry, moving direction or
can be given by the object model a priori. Since orientation is a global property
of an object we add it to the properties of the apex of the object’s pyramid.
The vector o(apex) codes both the orientation with respect to the reference
coordinate system and a scale if the length ||o|| �= 1 is different from unit length.
Orientation and position allow to quickly transform the object pyramid from
one coordinate system to another (i.e. of another camera or viewpoint).

The orientation of the object can be used to make correction vectors invariant
to rotation and scale. Taking p(vp) as the position where both the orientation
vector and the correction vector start we can express the correction vector d(c)
as a rotated and scaled version of the orientation: d(c) = λRx(α)Ry(β)Rz(γ)o
and store the parameters r(c) = (λ, α, β, γ) as new parameters of the cell c.
The angles α, β, γ can be the Euler angles of the corresponding rigid body and
the scale factor λ = ||d(c)||/||o|| relates the vectors’ lengths. Given the position
p(vp) of the parent and the orientation o of the object each cell can accurately
reconstruct it’s position p(c) = p(vp) + λRx(α)Ry(β)Rz(γ)o. We note that in
addition to the invariance with respect to translation, the parameters r(c) are
invariant also to rotation and scale. The rotation of the object is executed by
applying the rotation to the orientation of the apex and similar with a scale
change.

All the vertices can be accessed efficiently from the apex by following the
parent - children path. The construction of the pyramid proceeds bottom - up
while the reconstruction from the apex is a top - down process. In such way we
can reconstruct the whole pyramid by only locating the apex point.

2 In the simplest case, expand by projection, E(x) = x.
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6 A Sequence of ‘Steps’

Now when analyzing a video sequence it is not necessary to compute one pyramid
for each frame, it is enough to apply all the transformations to the apex and
only to reconstruct the whole structure at the end of the process. Or we can rely
to a few distinctive interest points (as done by several other approaches) the
position and characteristics of which are known within the new object pyramid
together with their mutual spatial relationships and track them while enforcing
the preservation of the spatial relations like in the spring-system approach.

In that way, the complexity and the computation time are reduced what
allows to adapt to the changes in the image frame in a more efficient way and
being fast enough to deal with real time processing requirements.

6.1 Lossless Rotation

Another significant advantage of the above object pyramid is that the connec-
tivity of both the foreground and the background is always preserved. This is
not always true for other image processing tools (e.g. Photoshop), for example,
when working with thin and elongated objects. Fig. 6 shows an example of a
thin line (Fig. 6 a)) which is rotated by 50 degrees. As the new coordinates of
the points of the line do not correspond to integer coordinates most of the image
processing tools interpolate and resample the rotated coordinates in order to
obtain the new position of the points. This results in a disconnected line (Fig. 6
b)) or in a thicker line if bilinear interpolation or anti-aliasing is applied. In the
images of Fig. 6 b), the (red) stars mark the new rounded coordinates of each
point and the black squares show the position of the points estimated by the
processing tool. In our approach each pyramid level is a graph and the relations
between adjacent regions are defined by the edges of the graph. When the top-
down reconstruction is done, the position of each cell in each level is updated
according to its correction vector but the edges of the graphs are always con-
necting the same vertices independently of their position. Therefore the region
adjacency relations and connectivity are preserved (Fig. 6 c)).

6.2 Articulated Objects

Our approach can be extended to articulated objects. Articulated objects are
characterized by two or more rigid parts joint by articulation points. The nodes
of the graph corresponding to the articulation point as well as the ones corre-
sponding to the rigid parts are identified in the graph pyramid [47]. The nodes
that compose each of the rigid parts will be merged in one apex in a certain
pyramid level so that to follow the movement of each rigid part it is only needed
to apply the geometric transformations in its apex and then doing the top-down
reconstruction.

The top row of the Fig. 7 shows the movement of an arm in a sequence of 5
video frames. For the process of tracking the movement of the arm, in the first



14

a) a thin line rotated b) by Photoshop

*

*

*

c) as attributed graph

Fig. 6. 50o rotation of a thin line.

frame the structure is initialized and the pyramid is built (Fig. 7 a) ). In this
case only the lower part of the arm is moving, so that it will be only needed to
apply all the transformations in the apex of the set of nodes that correspond to
this part of the arm and reconstruct the graph at the end (7 b)). All the other
nodes in the structure will remain in the same position. In that way, the tracking
of articulated objects can be facilitated.

a) Sequence of frames where an arm is moving

b) Structure initialization c) Top-down reconstruction.

Fig. 7. Example with an articulated object.
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6.3 Adaptive Zoom–In: an Approaching Object

One application of the new object pyramid is the incremental update of the
object description when the object approaches the camera. If the object gets
closer to the camera, the distance camera-object decreases while the resolution
of the object increases. We obtain a bigger picture of the object with more details
to be inserted into the existing model of the object.

From the irregular graph pyramid perspective, this new image can be seen as
a projection of the original base graph which includes more details. The pyramid
will expand one level below the current base graph, this new base graph encodes
both structures due to a higher resolution of the object. The new base graph is
relinked to the current pyramid by finding the vertical connection between the
new base graph and the existing upper part of the pyramid.

Assumption. We assume the approaching speed is not too fast. The current size
of the target object cannot exceed twice as the one in previous image frame.
This means the maximum scaling factor cannot exceed 2. Otherwise there might
be a gap between the new base graph and the previous base graph so that we
have to insert extra levels to bridge the new base graph with the old base graph.

The integration of several resolutions is also needed in surveillance applica-
tions involving multiple cameras observing the same area. The observed object
will be closer to some cameras but further away from others. This creates the
need to integrate the different views into a consistent description.

7 Conclusion

This paper presented some aspects of the development of image pyramids from
stacks of arrays to a stack of graphs describing object’s surfaces at multiple reso-
lutions and multiple levels of abstraction. By decoupling the object’s description
from the projected view in an image frame into an object centered pyramid rep-
resentation several operations become feasible: moving the object modifies only
one cell of the structure much like the step of the foot when walking: the apex.

For a rigid object, the structure of the object pyramid is invariant to basic
geometric transformation, such as translation, scaling and rotation. All the infor-
mation about position and orientation of the object is concentrated in the apex.
All the lower levels of a rigid object are invariant to translation, rotation and
scale changes but still allowing accurate reconstruction of the object’s geometry.

Tracking of structured objects is facilitated by the fact that the pyramid re-
lates the different tracked points and can compensate tracking failures in case
of partial occlusions. Articulation between rigid parts can be expressed by first
selecting one of the related parts as the parent and describing the articulation
by the change in Euler angles in the apex of the child. Different moving ob-
ject pyramids can be related by superimposing a graph describing their spatial
arrangement. In this graph the apexes of the objects appear as nodes related
by edges describing the particular neighborhood relations. In some cases this
graph could be embedded in IR3 using a 3D combinatorial pyramid [49]. In the
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future several applications of the new concept are promising besides the spatio-
temporal tracking of moving objects, i.e. the integration of views from different
view points for surveillance.

Acknowledgements

The presented work is the result of the collaboration within the working group on
robust hierarchies of PRIP. Substantial contributions came from Nicole Artner,
Adrian Ion, Esther Antunez-Ortiz, Luis Alfredo Mateos, Dan Shao, Yll Hax-
himusa, Helena Molina Abril, and Mabel Iglesias Ham. All these contributions
are gratefully acknowledged.

References

1. Feldman, J.A., Ballard, D.H.: Connectionist models and their properties. Cognitive
Science (6) (1982) 205–254

2. Tsotsos, J.K.: On the relative complexity of passive vs active visual search. Intl.
J. Computer Vision 7(2) (1992) 127–141

3. Tsotsos, J.K.: How does human vision beat the computational complexity of visual
perception? In Pylyshyn, Z., ed.: Computational Processes in Human Vision: An
Interdisciplinary Perspective. Ablex Press, Notwood, NJ (1988) 286–338

4. Zeki, S.: A Vision of the Brain. Oxford: Blackwell (1993)
5. Pizlo, Z., Salach-Golyska, M., Rosenfeld, A.: Curve detection in a noisy image.

Vision Research 37(9) (1997) 1217–1241
6. Pizlo, Z.: Perception viewed as an inverse problem. Vision Research 41(24) (2001)

3145–3161
7. Privitera, C.M., Stark, L.W.: Algorithms for defining visual regions-of-interest:

Comparison with eye fixations. IEEE Tr. Pattern Analysis and Machine Intelli-
gence 22(9) (2000) 970–982

8. Jolion, J.M., Rosenfeld, A.: A Pyramid Framework for Early Vision. Kluwer (1994)
9. Tanimoto, S.L.: Paradigms for pyramid machine algorithms. In Cantoni, V.,

Levialdi, S., eds.: Pyramidal Systems for Image Processing and Computer Vision.
Volume F25 of NATO ASI Series. Springer-Verlag Berlin, Heidelberg (1986) 173–
194

10. Tanimoto, S.L., Klinger, A., eds.: Structured Computer Vision: Machine Perception
through Hierarchical Computation Structures. Academic Press, New York (1980)

11. Rosenfeld, A., ed.: Multiresolution Image Processing and Analysis. Springer, Berlin
(1984)

12. Tanimoto, S.L.: From pixels to predicates in pyramid machines. In Simon, J.C., ed.:
Proceedings of the COST-13 workshop ’From the Pixels to the Features’. AFCET,
Bonas, France (August 1988)

13. Bister, M., Cornelis, J., Rosenfeld, A.: A critical view of pyramid segmentation
algorithms. Pattern Recognition Letters Vol. 11(No. 9) (September 1990) pp. 605–
617

14. Jolion, J.M., Montanvert, A.: The adaptive pyramid, a framework for 2D image
analysis. Computer Vision, Graphics, and Image Processing: Image Understanding
55(3) (May 1992) pp.339–348



17

15. Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE
Transactions on Communications Vol. COM-31(No.4) (April 1983) pp.532–540

16. Anderson, C.H., Burt, P.J., van der Wal, G.S.: Change detection and tracking
using pyramid transform techniques. Intelligent Robots and Computer Vision
SPIE Vol.579 (Sept.16-20 1985) pp.72–78

17. Kropatsch, W.G., Haxhimusa, Y., Ion, A.: Multiresolution Image Segmentations
in Graph Pyramids. In Kandel, A., Bunke, H., Last, M., eds.: Applied Graph
Theory in Computer Vision and Pattern Recognition. Volume 52. Springer Wien
New York (2007) 3–41

18. Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recog-
nition 26(3) (1993) 1277–1294

19. Nacken, P.F.: Image segmentation by connectivity preserving relinking in hierar-
chical graph structures. Pattern Recognition 28(6) (June 1995) 907–920

20. Keselman, Y., Dickinson, S.: Generic Model Abstraction from Examples. IEEE
Trans. on Pattern Analysis and Machine Intelligence (PAMI) 27(7) (July 2005)
1141–1156

21. Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object
motion and behaviors. IEEE Transactions on Systems, Man and Cybernetics 34
(2004) 334–352

22. Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Comput. Surv.
38(4) (2006) Article 13
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