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Abstract
Since the beginning of the use of pyramidal structures for processing
images some 40 years ago, several different operations have been applied
for a large variety of different applications. The basic advantage of the
pyramids is the progressive reduction of the data, level by level by a
reduction factor that limits the pyramid’s height to the logarithm of
the diameter of the base level. Differently from the classical (Gaussian)
pyramids, we focus on pyramids where the basic data structure is not an
array but a graph structure embedded in the image space. In this chapter,
we target (1) topological issues of objects in images like holes in a region,
(2) what operations can be used to propagate image information from
the input to the high levels as well as in the opposite direction, (3) what
specific properties can be generalized by what operations, (4) how to
achieve the logarithmic computational complexity, and last but not least,
(5) how to coordinate the different processes. In the second part, we
focus on a new type of pyramid, the LBP pyramid, that uses a variant
of the local binary patterns to recognize critical points and contracts
lowest contrast edges during the bottom-up phase. Not only the topology
among the relevant parts of the image is preserved, but, as experiments
have shown, it also allows the reconstruction of images with only a few
colors that are often hard to distinguish from the original.
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28 W. G. Kropatsch et al.

2.1 Introduction

In this chapter, we describe a hierarchical structure that has its ori-
gins in the classical image pyramids like Gaussian or Laplacian pyra-
mids but with the big advantage that the data structure for the
individual levels of the pyramid are no more rigid grids or arrays but
are based on planar embedded graphs. This enables the pyramid to
adapt its structure to the needs of the data: Parts of the data that
are considered important for the processing can survive to higher
levels while redundancies in the data like homogeneous regions can
be reduced during the bottom-up construction phase. Graphs are
used here because they are widely known as versatile data structures
although the proper representation of topological relations needs the
dual graphs. However, there are other less known data structures like
combinatorial maps [1] or generalized maps [2] or cell complexes [3,4]
that can replace the graphs in the pyramid.

All these data structures do not only describe the topological
arrangement of the data but can also describe the complex arrange-
ments of semantic objects of different sizes and shapes that should
appear as results of the processing. An important issue in dealing
with the huge amounts of data is the possibility to process them
in a massive parallel way to reach reasonable processing efficiency.
A requirement for parallelism is the independence of the operations
such that the result does not depend on the order of the applied
operations.

Controlling the big variety of possible choices in the general con-
cept of irregular pyramids is one of the main issues of this chapter.
There are several choices in the bottom-up construction of the pyra-
mids but also parameters that have an influence on the abstract
concepts surviving to the higher levels need to be chosen or even
optimized and adapted to the data. But not only the bottom-up
processes are important, irregular pyramids allow also a top-down
expansion process that provides an insight into the visual informa-
tion at the higher levels by, i.e., visualization but also enable to bet-
ter tune the repeated bottom-up processes with a better overview
of what objects with known properties are where in the input. In
such cases, attention could be put on particular object details in a

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
al

te
r 

K
ro

pa
ts

ch
 o

n 
10

/0
7/

24
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.

Kropatsch2024a



Controlling Topology Preserving Graph Pyramids 29

repeated bottom-up phase. These up and down phases also provide
explanations of what the pyramid has found in its higher levels.

At some places, we also relate the presented concepts to the very
popular methods of machine learning (ML) and artificial intelligence
(AI). There are differences but also similarities, advantages as well
as drawbacks. We see the irregular pyramids not as a competitor of
the ML approaches but see possibilities for fruitful combinations.

Section 2.2 starts with five subsections giving motivations and
some background of the presented concepts. It follows a recall on
irregular pyramids in Section 2.3, the processes for propagating data
from the base level to the top as well as in the opposite direction, the
expansion from top down to the base. Section 2.4 discusses the many
options for controlling the processes, the tasks, and the properties
that have been explored in different applications (Section 2.4.5).

In Section 2.5, we adapt the local binary patterns (LBP) to the
basic data structure: the graphs, and study their relation to the crit-
ical points of curves and surfaces. Monotonic paths, curves, and pro-
files through an image show that these 1D manifolds have invariant
LBPs. On this basis, we construct the LBP pyramid (Section 2.6)
and show reconstructions with only a small percentage of the origi-
nal input. These reconstructions are visually difficult to distinguish
from the original data. We draw the conclusion that the structure
of the critical points and their adjacencies extracted by the LBP
pyramid is extremely important, while the actual gray levels or col-
ors of the image are visually less relevant. This raises the question
about the space between the critical points (Section 2.6). We give a
simple definition of the concept of a ‘slope’ with several interesting
properties leading to future directions of research addressed in the
conclusion.

2.2 Motivations and Background

In this section, we mention five different motivations for the use
of irregular pyramids. We start with some requirements described
by Leonard Uhr, 1986. We continue with some facts about biolog-
ical plausibility often used as arguments to justify approaches in
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30 W. G. Kropatsch et al.

recent AI. We then shortly mention a recent project: There we study
biological images with extremely high resolutions. The next moti-
vation addresses the problem that not all problems can be solved
by the same architecture. Psychology has identified so-called insight
problems that cannot be solved by simply optimizing a universal
architecture. Finally, we shortly summarize some crucial insights of
a seminal paper by Jan Koenderink [6]. They gave us the strong
motivation for the research presented in this chapter.

2.2.1 The problem of biological perception

Leonard Uhr [5] summarized the problem of human visual perception
in 1986 with a few facts and some conclusions: Each human eye has
about 107 cones and 108 rods sensing the light entering the human
eye. The measured intensities and frequencies are processed by a
large number of synapses where each one takes about 1.5μs allowing
about 1000 serial operations in one second. In order to “see” and
to accurately react on the visual stimuli, no more than 600 serial
steps are available. This can be achieved by the human brain only by
massive parallel processes that converge in logarithmic complexity
toward the location where decisions are taken.

Leonard Uhr proposed pyramidal data structures as the only
chance to solve the vision problem. But he also clarified that “pyra-
mids are not (only) multiresolution, parallel bottlenecks, low level,
array processors, or trees.” He further stated that “a pyramid needs
augmentation” and “. . . any connected (data-flow) graph could be
used.” Furthermore, they need to “combine bottom-up and top-down”
processes to solve the complex vision problems.

2.2.2 The human retina is irregular

Most neural network architectures claim biological plausibility. This
is partly true for the general functionality of the signal processing
(weighted averages and activation functions), but it certainly does
not apply to the underlying architecture: Both the sensors for the
visual input as well as the many other sensors providing valuable
input for the information processing of the human brain are not
regular grids in contrast to most of the artificial neural networks
that are currently popular. Figure 2.1 shows a small segment of the
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Controlling Topology Preserving Graph Pyramids 31

Fig. 2.1. A section of rods and cones in the retina.

retina of a monkey’s eye.a It is very similar to the human retina and
it is clearly not an array! The natural arrangement of sensors in the
human eye needs data structures such as graphs to properly represent
the irregular embeddings and to learn more about the benefits of
these irregular sensor arrangements, in particular the relationship
to saccadic eye movements that certainly are not just an accident
of nature but may have a considerable importance for the reliable
processing of noisy visual data.

2.2.3 Project: Water’s gateway to heaven

This research projectb that our group started in 2020 together with
two groups in biology raised some very essential problems typical
for the trend to use extremely high resolutions and also temporal
changes in three dimensions (Figure 2.2).

The project studies 3D imaging and modeling of transient
stomatal responses in plant leaves. Input to these studies are

aData of the monkey’s retina have been gratefully provided by Peter Ahnelt.
bhttps://waters-gateway.boku.ac.at/.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
al

te
r 

K
ro

pa
ts

ch
 o

n 
10

/0
7/

24
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.

Kropatsch2024a

https://waters-gateway.boku.ac.at/


32 W. G. Kropatsch et al.

Fig. 2.2. 3D µCT image with color labels.

high-resolution X-ray micro-tomography (μCT) and fluorescence
microscopy images. μCT images have the challenging dimensions
ranging up to 2000 × 2000 × 2000 ≈ 233 voxels and are taken at 2–4
instances of time. Visible objects are different cells, water ways, and
the airspace in between. Leaves are not rigid but to a certain extent
deformable. Consequently, rigid matching may not work so well when
comparing different images of the same specimen, in particular if the
concentration of water is different in the two acquisitions.

The main goal in this project is to understand the causality of
opening and closing of the stomata. These are cells that can open to
allow gases to enter (e.g., CO2) for photosynthesis and water to
leave.

The huge amount of data and the complexity of the models
describing the processes require a very efficient processing of the data.
We are confident that pyramids provide the requested performance.

2.2.4 Critical/stationary points are relevant

Jan Koenderink [6] draws some important conclusions in his seminal
contribution “The Structure of Images” (1984). He considers inten-
sity images as a function in three-dimensional space Φ(x, y, t), where
(x, y) are the spatial coordinates and t is the scale dimension. He
considers the scale as generated by convolution with a Gaussian ker-
nel Φ(x, y, 0) ∗ G(t). The Diffusion ΔΦ = Φt is the basis for his
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Controlling Topology Preserving Graph Pyramids 33

scale space theory. He requests that “Any feature at a coarse resolu-
tion is required to possess a ‘cause’ at finer resolution.” He considers
stationary (critical) points by setting the spatial derivatives to zero:
Φx = Φy = 0. Among those satisfying these constraints, the Hessian
distinguishes between the different critical points:

ΦxxΦyy − Φ2
xy ≥ 0 for extrema and (2.1)

ΦxxΦyy − Φ2
xy < 0 for a saddle point. (2.2)

We shall find a solution in Section 2.5.4 for both decisions without
the noise-sensitive partial derivatives. A particular observation
of Jan Koenderink could be verified after the new identification of
critical points: Extrema and saddle points disappear pairwise when
t increases. It turns out to be useful to eliminate pairs of critical
points that are not persistent (i.e., very close peaks with similar
height separated by a saddle not much below the peaks).

2.2.5 An insight problem

In this fifth motivation, we discuss the limitations of solutions found
by optimization processes. In his book, Pizlo [7] demonstrates impres-
sively that there exist problems that cannot be solved simply by
optimization (the most frequent strategy for most machine learning
approaches). He gives a very simple example:

Create n equilateral triangles (�) with m matchsticks:

(1) Create one triangle with three matchsticks (Figure 2.3).
This has the obvious solution in Figure 2.3.

(2) Make two triangles with two more matchsticks (Figure 2.4).
(3) Can you produce four triangles with one more matchstick?

m=3 =⇒ 1 :

Fig. 2.3. Three match sticks form one triangle.
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34 W. G. Kropatsch et al.

m=5 =⇒ 2 :

Fig. 2.4. Five matchsticks form two triangles.

For the solution, consider the Euler–Poincaré characteristic to bal-
ance the number of points (•), the number of matchsticks (m), and
the number of triangles (�):

Euler–Poincaré characteristic
#P - #E + #F = 1

Case • - m + � = 1
1. 3 - 3 + 1 = 1
2. 4 - 5 + 2 = 1
3. ? - 6 + 4 = 1

The last case would suggest that the solution has three points that
seems impossible. This is the characteristic of an ‘insight problem’:
An ‘insight problem’ is typically difficult to solve.

Reference [7] shows an elegant solution with a change in represen-
tation: “If you exclaim ‘aha!’ at the moment the solution suddenly
occurs to you, you had an insight.” Once the solution strategy is
understood, it is easy to explain. However, the above Euler–Poincaré
characteristic shows that the optimization would not find a proper
solution. A similar reasoning could be applied to several machine
learning solutions.

2.3 Recall on Irregular Pyramids

The irregular pyramid consists of a stack of graphs with decreasing
size. Each graph of this stack is called a level of the pyramid and the
lowest level is the base graph corresponding to the input image where
pixels correspond to the graph’s vertices and two vertices are joined
by an edge if the corresponding pixels are 4-connected. This base
graph is also called the neighborhood graph G(V,E) of the image.
4-neighborhood is preferred since edges between diagonal neighbors
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Controlling Topology Preserving Graph Pyramids 35

of 2 × 2 pixels would intersect, with the consequence that the 8-
connected graph is not planar. The pixel value is an attribute to the
corresponding vertex and it can range from a single gray value to a
vector of either spectral channels or additional information like filter
responses, lengths, and distances. In order to properly describe the
embedding in the image plane, we use the dual graph G = ( V , E)
that is implicitly given by the embedding of the image. The dual
vertices V identify the face formed by any 2× 2 block of pixels and
the dual edges E correspond to the boundary segment between any
two adjacent pixels.

2.3.1 Extended region adjacency graph

Image segmentation typically assigns each pixel a label identifying
the set of pixels having the same or a similar property. The adjacen-
cies of these regions are typically described by the region adjacency
graph (RAG) where each vertex represents a connected set of pixels
with the same label and two vertices are connected in the RAG if
two regions with two different labels share a common boundary.

Most approaches consider the RAG as a simple graph without
multiple edges and without self-loops. But the simple graph cannot
describe all the topological configurations that these regions can be
related to in practice: The left and right riverbanks of a river may
be connected by more than one bridge. The simple RAG just states
that the two riverbanks are connected but not by how many bridges.
This can be resolved by simple RAGs by sub-dividing each riverbank
into as many segments as there are bridges. This is not only increas-
ing the size of the graph, but it is also difficult to handle since the
characteristic features of the segments may be similar if not identical
such that they cannot be easily classified.

A second example where the simple RAG has problems describes
the relationship between a lake and its islands. The outer boundary of
the lake is a closed curve and each island is also bounded by a closed
curve: In a typical inclusion relationship, the islands are completely
surrounded by the lake. Let us describe the mainland with a vertex
of the RAG, the lake with a vertex, and each island also with a
vertex. Clearly, the mainland is connected to the lake and the lake is
connected to each of its islands. But what expresses the fact that the
lake surrounds all islands? One solution is to introduce a separate
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data structure, an inclusion tree. It works in 2D, but what about a
tunnel in 3D?

We found the extension of the simple RAG, a good solution to
solve both problems: The multiple bridges can be represented by
multiple edges without the need to arbitrarily sub-divide the homo-
geneous riverbanks and self-loops that surround the islands can rep-
resent the inclusion relation. To distinguish the more frequently used
RAG from the non-simple RAG, we denote the extended version by
E-RAG.

2.3.2 Overview of the bottom-up construction

Figure 2.5 gives an overview of irregular pyramids. The base level is
the 4-neighborhood graph of the image and each level above the base
represents an E-RAG G = (V,E).

The next higher level is reached by contracting selected edges
while preserving certain relevant points. They form the contraction
kernel. The smaller graph contains less vertices and less edges, but
some edges have become multiple and some even self-loops. There-
fore, the next step is to simplify the graph from unnecessary multi-
edges and self-loops. Before repeating the contraction, the attributes
of the newly generated, smaller graph need to be derived by reduc-
tion functions taking as input the receptive field of each surviving
vertex and edge and computing the attributes of the elements of
the higher-level graph. Then, this process can be repeated until a
termination criterium is satisfied and the apex of the pyramid is
reached. The overall process is controlled by the following steps:

• the selected contraction kernel,
• the simplification process,
• the reduction function, and
• the termination criterium.

apex −→ apex

input image −→ reconstruction

Fig. 2.5. Bottom-up and top-down processes in an irregular pyramid.
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Controlling Topology Preserving Graph Pyramids 37

If the reduction process reduces the graph from level to level by a con-
stant reduction factor ≥ 2, then the height of the pyramid is bound
by the logarithm of the diameter of the base graph. This contributes
to the efficiency of the pyramid when the level by level processing
can be massively parallel (compare with Uhr [5] and Section 2.2.1).

2.3.3 Overview of the top-down reconstruction

The apex graph of the pyramid is a very abstract representation
of the visual entities of the image and their spatial and topological
relations. For the purpose of explaining what has been derived from
the given input image, the high levels can be successively down-
projected to the lower levels and to the base in order to show the
entities that have been derived above. For this purpose, we keep some
information about the bottom-up process that enables then to reverse
the construction and to propagate downwards the insights gained at
the higher levels hopefully explaining what and why certain entities
have been found.

The basis for the reconstruction is the canonical representation of
Torres and Kropatsch [8]. It stores the contraction kernels and sim-
plification parameters in chronological order together with links that
enable to undo edge contraction by edge decontraction, edge removal
by edge reinsertion, and the attributes at input for the reduction
function.

The following subsections introduce more details about these pro-
cesses with the purpose of showing some interesting properties.

2.3.4 Contracting an edge

Definition 2.1 (Edge contraction). The operation of contract-
ing an edge e = (v1, v2) ∈ E, v1 �= v2 ∈ V , of a graph G = (V,E)
consists in first identifying the two end points v1 �→ vs, v2 �→ vs of
the edge e into a new ‘surviving’ vertex vs ∈ {v1, v2} and replacing
v1, v2 in all edges by vs. Finally, the edge e is removed.

The graph after the contraction of edge e has one less edge and one
less vertex: G′ = G/e = (V \ {v1, v2} ∪ {vs}, E \ {e}). Note that the
condition v1 �= v2 excludes self-loops (v, v) from being contracted.
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Contraction preserves the connectivity of G in G′. As the dual
operation of contracting an edge in G/e, the corresponding dual edge
is removed from G: G′ = G \ e. Consequently, the dual graph of
G′ needs only the dual operation applied to G and the duality is
preserved.

As a result of contraction, G′ may contain parallel edges and even
self-loops. Most of them can be removed in the successive simplifica-
tion step in Section 2.3.6. The remaining parallel edges and self-loops
identify special topological properties like the inclusion of holes.

Independent edges can be contracted simultaneously in parallel.
All edges that are simultaneously contracted form a contraction
kernel.

2.3.5 Contraction kernel

In order to be able to execute many contractions in parallel (with
many processors), they must be independent of each other. In other
words, the order in which the set of edges is contracted should not
affect the result. Several methods have been used to create con-
traction kernels (CK) with independent edges: maximal independent
vertex set (MIS), Meer [9], maximal independent edge set (MIES),
and maximal independent, directed edge set (MIDES), Kropatsch
et al. [10] with different properties and advantages.

Definition 2.2 (Contraction kernel). Let G(V,E) be the input
graph to be contracted. A contraction kernel K ⊂ E is a subset
of edges that forms a spanning forest of G. Each tree of the forest
contains one surviving vertex; in some extreme cases, the tree can
even be a single (surviving) vertex.

There may be different criteria (examples are given in Section 2.4)
for selecting concrete edges to contract and for selecting vertices to
survive. The surviving vertices are the vertices of the next pyramid
level; the edges are the result of the contraction processes. If each
connected component of the contraction kernel covers at least two
vertices of Vn, the number of vertices Vn+1 will be less than |Vn|/2.
We call this the reduction factor of 2. Isolated vertices can be com-
pensated by larger trees in different parts of the graph. Both selection
methods, MIES and MIDES, have this property. If the trees of the
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contraction kernel are independent of each other, all can be con-
tracted in parallel, while the edges of each tree may need sequential
processing. The most efficient contraction kernels are many small
trees with more than one vertex.

Consequently, if the height of the pyramid has h levels, then the
base graph has |V0| ≥ 2h vertices. If all the trees of the forest are inde-
pendent and a sufficient number of processors are available, the next
pyramid level can be computed in O(max{deg(v)|v ∈ Vn}) parallel
steps.

2.3.6 Simplifying multiple edges and self-loops

The contraction of one edge of a triangle leads to the creation of
a double edge or even multiple edges. The contraction of one of the
multiple edges creates self-loops (Figure 2.6). Note that the dual faces
f1, f2 are preserved. Before the first two contractions, the degree of
the faces deg(f1) = deg(f2) = 3. Inside the triple edges, the degrees
shrink to 2 and the self-loops surround faces with degree 1. This
example also shows that a simplification after the first contraction
would simplify the further processing.

Multiple edges and self-loops are not topology relevant if they
don’t surround any further (sub-)structure. This can be decided by
looking at the dual graph G( V , E) where the degree of a face ∈ V
provides such a decision:

Definition 2.3 (Topology-relevant). A face of the dual graph G
is topology relevant for G if its degree is higher than 2: deg( v) > 2
for v ∈ V .

f1

f2

−→
f1

f2

−→
f1

f2

Fig. 2.6. Creation of multiple edges and self-loops.
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R R R R B B

R B B

R B B

R B B

(a) (b)

(c) (d)

B

R

Fig. 2.7. A pseudo-edge connects the white island. (a) 4 × 6 colored pixels;
(b) equivalent CK and RK; (c) resulting E-RAG and E −RAG; (d) 4 colored
regions with pseudo-edge.

Multiple edges and self-loops surrounding topology-irrelevant
faces are not relevant for topology; self-loops can be removed without
disconnecting either a hole or any sub-structure in the dual graph.
Multiple edges can be removed as well, as long as the last remaining
edge is preserved to keep the connectivity. The remaining edges are
called pseudo-edges since they have the same face on both sides (see
the example in Figure 2.7). Let us denote all the edges that can be
removed as the removal kernel (RK).

Definition 2.4 (Removal kernel). Let G′(V ′, E′) = G(V,E)/K
be the graph after contracting all edges of the contraction kernel K
and let G′ be its dual:

R′(G′) = {(v, v) ∈ E′|f ∈ (v, v) ⊂ V ′,deg(f) = 1}, (2.3)

∪ {e1 = e2 = (v,w) ∈ E′|f = e1 ∩ e2 ⊂ V ,deg(f) = 2}.
(2.4)

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
al

te
r 

K
ro

pa
ts

ch
 o

n 
10

/0
7/

24
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.

Kropatsch2024a



Controlling Topology Preserving Graph Pyramids 41

The set of edges in R′ can be removed without modifying the topol-
ogy relevance of the graph. Note that removing the edges of the
removal kernel may create further redundant edges. For the com-
plete simplification, a few more iterations of simplification may be
needed, since the removal of an edge may decrease the degree of
adjacent faces and may create further edges that can be removed.
The complexity of this process has been shown to be the inverse of
the Ackermann function [11]. A faster version has been proposed by
Banaeyan and Kropatsch [12] by anticipating the contractions and
removing the redundant edges in parallel before actually executing
the contractions.

2.3.7 Example with a hole and a pseudo-edge

Edges that are not relevant for topology are often called redundant.
There is one exception: if the removal of an edge would disconnect
the graph or its dual graph. Consider the example in Figure 2.7(a).
It shows the 24 pixels with the colors red, black, blue, and white.
The white pixel is completely surrounded by the black connected
component. Figure 2.7(b) shows the contraction kernels for the three
colors red, black, and blue together with the selected surviving ver-
tices. The white pixel survives and is indicated in Figure 2.7(b) by
two concentric circles. The removal kernels are shown in green with
surviving dual vertices (these are the intersections of the boundaries)
marked by green squares. The background is the larger square in the
left bottom corner.

Figure 2.7(c) shows the pair of dual graphs after contracting
and simplifying the CK and RK. The fact that the black region
completely surrounds the white pixel is expressed by the self-loop
attached to the black vertex in G(V,E). The edge dual to this self-
loop is the pseudo-edge which connects the boundary of the white
pixel with the intersection of the three connected components of the
red, black, and blue regions. We call it “pseudo”-edge since both sides
have the same color black while all other dual edges have different
colors on both sides. The geometric placement of the pseudo-edge
can be any connection of the boundary of the white with any inter-
section of the black region with other colors. It is illustrated by the
white line in Figure 2.7(d).
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The main role of the pseudo-edge is to keep the graph G(V,E)

connected. The pseudo-edge is a bridge in G(V,E), the dual of which
expresses the fact that black surrounds white.

If there are multiple holes in a region, each hole creates one
pseudo-edge. Since their placements just need to cross the surround-
ing region, both can connect to the outer boundary of the surround-
ing region or, equivalently, only one connects to the outer boundary
and the other connects the two holes. Together with the pseudo-
edges the surrounding region remains homeomorphic to a topologi-
cal ball. And reversely, each pseudo-edge indicates the presence of
a hole in 2D. Extensions to higher dimensions exist but are not
treated here.

2.3.8 The bottom-up construction of the
irregular pyramid

The bottom-up construction of an irregular pyramid is an itera-
tive parallel process that can be repeated until all the properties
to be transferred bottom-up are application-relevant and any further
shrinking would destroy relevant properties or relations. This process
generates an abstraction of the base-level graph.

Given graph G0(V0, E0) and its dual graph G0( V0, E0),
iteration count n = 0.

While further abstraction is possible do

(1) select contraction kernels Kn ⊂ En as in Definition 2.2;
(2) perform contraction G′ = G/Kn, n = n + 1;
(3) select removal kernel R′(G′) as in Definition 2.4;
(4) and simplify Gn = G′ \R′;
(5) apply reduction functions RF (·) : G(Kn−1) → new reduced

content

attr(vn) = RF (NV (vn−1)), vn ∈ Vn and
attr(en) = RF (NE(en−1)), en ∈ En.

Each iteration creates a new level Gi(Vi, Ei), i = 0, . . . n, of the
pyramid.
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2.3.9 Preserving topology

Already in Section 2.2.5 we used the Euler–Poincaré characteris-
tic referring to the relationship between the number of points P ,
of edges E, and of faces F in a 2D plane graph. Let us now consider
the changes Δ created by the primitive operations, edge contraction,
and edge removal:

Change of Euler–Poincaré characteristic

Operation Δ#P − Δ#E + Δ#F = 0

Contraction 1 − 1 + 0 = 0
Removal 0 − 1 + 1 = 0

That means that the characteristic does not change after the applica-
tion of our primitive operations. More generally, any number of con-
tractions and removals do NOT change the characteristic!

We have seen that regions surround their holes by a self-loop,
the dual of which is a pseudo-edge. By keeping these pseudo-edges,
the characteristic of the region is not changed since together with the
pseudo-edges the region remains homeomorphic to a topological ball.

2.3.10 Equivalent contraction kernels

Similar to the equivalent weighting functions in Burt’s regular pyra-
mid, Ref. [13] introduces equivalent contraction kernels. Contrac-
tion kernels cover the receptive field of the surviving vertex. For
every edge en in a higher pyramid level n, there exists one edge
ei, 0 ≤ i < n, in the levels below that survives to en in the sense that
if en is contracted at level n + 1, then edge e0 can be added to the
contraction kernel K0(vn+1) at the base level such that the recep-
tive field is covered by K0(vn+1) for vertex vn+1. With the same
argument, the equivalent contraction kernel of the top vertex is a
spanning tree of the receptive field in the base level of the pyramid.

2.3.11 The top-down expansion process

Top-down expansion has been used effectively in classical Laplacian
pyramids by Burt and Adelson [14]. In regular pyramids, the struc-
ture of the pyramid depends only on the size of the base image and
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hence the size of the different levels above the base does NOT vary for
images with the same input size. For irregular pyramids, the structure
of the graphs of the different levels depends strongly on the content
of the data. The selection, the contracted edges, as well as the other
control parameters may depend on the content of the image. Hence,
irregular pyramids on different images may have a completely dif-
ferent graph structure. However, we built them bottom-up, level by
level, and with only two different operations: contraction and removal
of edges.

In Ref. [8], we have shown (1) that there are inverse operations to
the two basic operations and (2) that we need to remember only a
few parameters of the bottom-up process to reconstruct the higher-
resolution graph. We call the inverse operations decontraction of
a contracted edge and reinsertion of a removed edge (Figure 2.8).
In this canonical encoding of the irregular pyramid, we store the
parameters of the contracted and removed edges in the order they
have been applied. These recycled garbage parameters allow us in the
top-down reverse process to recover the graphs at the lower levels.

Gn+1
f1

f6

f7

f8 f3

f4

f5

f2

f1 ∪ f2

f3

f4

f5

f6

↑ Gn+1/{e} ↓ de-contract ↑ Gn+1/{e×} ↓ re-insert e×

Gn
f1

f6

f7

f8 f3

f4

f5

f2

×
f1

f2

f3

f4

f5

f6

Fig. 2.8. Inverse operations: contract and de-contract, remove, and reinsert.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
al

te
r 

K
ro

pa
ts

ch
 o

n 
10

/0
7/

24
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.

Kropatsch2024a



Controlling Topology Preserving Graph Pyramids 45

The canonical encoding enables first of all to reconstruct the
levels below the top level. However, more importantly, we can
down-propagate the abstract attributes collected in the higher levels.
Different options are discussed in Section 2.4.4.

2.4 Control by the Content

The previous section covered the main components for construct-
ing an irregular pyramid and for expanding the abstract information
from the top level down to the pixels of the original image. We can
identify four categories of control over the general process, influencing
either the constructed structure or the architecture of the hierarchy
or preserving certain real-world properties of objects to be repre-
sented in the base-level image: The selection of contraction kernels
identifies the surviving vertices and some of the incident edges that
are not relevant for the main properties of the objects. The simplifi-
cation strategies ‘clean’ the graph after each contraction phase. Also
here there are possible choices, e.g., what parallel edges should sur-
vive. Reduction functions use the attributes of the survivor’s children
to compute a more abstract description of the content of the recep-
tive field. Once a certain number of levels of the pyramid has been
generated, the extracted high-level description can be expanded to
the lower levels in order to (1) display the abstract content of any
higher level in the form of an image and (2) probably revise some
decisions taken at the bottom-up process in order to make the con-
tent of the complete pyramid consistent with the abstract findings
at the higher levels.

2.4.1 Select contraction kernels

The simplest choice of contraction kernels is a random choice for con-
structing the stochastic pyramid of Meer [9]. In the adaptive pyra-
mid of Jolion and Montanvert [15], the random choice is replaced by
choosing the irregular sampling from the content of the data. Such
adaptation could be convolution filters of which a local maximum
identifies the surviving vertex. Note the high similarity to common
‘max-pooling’ layer in deep learning architectures. But also rules can
be used to select edges to be contracted. In connected component
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Fig. 2.9. Technical drawing of a motor engine.

labeling (CCL), a simple rule is to contract only edges connecting
vertices with the same label. A more complicated rule for select-
ing contraction kernels has been used for closing gaps in scanned
line drawings [16, 17] (see the example in Figure 2.9). Even para-
metric models could be used for determining the important vertices
to preserve and the edges to contract. This could be as simple as
correlating the data with the model or finding the best ‘goodness of
match’. Finally, the matching of graphs that is in general NP hard
could be done using the fact that using the same selection rules for
two images is likely to generate much simpler and similar graphs at
higher levels of the two pyramids in this case [18].

2.4.2 Simplification strategies

There are two different criteria for selecting the removal kernels:
either the content-based choice in choosing the surviving edge of
multiple edges according to the attributes of the edge (e.g., short-
est accumulated arc length) or the attributes of the two adjacent
faces of the dual graph (e.g., distance to the outer most parallel
edge) or the computational choice of how many iterations of sim-
plification should be done. Complete simplification after each con-
traction needs O(a−1(n, n)) steps in the worst case where a(n, n) is
the Ackermann function. Alternatively, only one simplification pass
is executed after contraction, leaving the remaining multiple edges
and self-loops for simplification at higher levels. This may of course
indirectly slow down the construction since neighborhoods with non-
simplified redundant edges are larger. The last alternative is to do
all simplifications after all contractions.
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Under certain conditions (having a total order of all vertices),
simplification can be anticipated before contraction.

A noteworthy alternative has recently been proposed by
Banaeyan [19]. This approach can achieve simplification prior to con-
traction under certain conditions, specifically when a total order of
all the vertices exists. In the case of a binary image, independent
edges (i.e., edges not sharing an endpoint, [20]) are encoded to allow
for the removal of redundant edges originally at an upper level, at
the current level with parallel constant complexity [12]. This method
accelerates the construction of the pyramid and transforms it into
an efficient tool for computing the distance transform of a binary
image with parallel logarithmic complexity [21], provided that there
is sufficient number of processing elements for parallel computations.

2.4.3 Reduction functions

The role of reduction functions is to propagate the image content to
a lower resolution while at the same time increasing the degree of
abstraction. While a pixel in the base may have the color, i.e., red,
it may be aggregated at a higher level into a red ball.

The simplest reduction function is used in CCL: All the vertices
in the contraction kernel have the same color hence the surviving
vertex will inherit the same color. The second most frequently used
choice is a (weighted) average or, more generally, a convolution filter
(as frequently used in DCNNc). A more sophisticated reduction uses
the transitive closure of a set of relations (i.e., describing the layout
of curves in line drawings, such as Figure 2.9 [16]). Both in the pro-
cessing of line drawings as in the closing of gaps [22], i.e., between
the dashes of a dashed line, the introduction of an isolated blob
�� allows establishing neighbor relations between the dashes rather

than connecting all the dashes to the common (white) background.
Figure 2.10 shows an example: the input image, the resulting graph,
and the receptive fields of the different isolated blobs. The survivor
received an additional symbol �� for dashed/dotted lines if the black
dash � appears completely surrounded by the white background � .
The rule for contraction is then extended by the isolated blob �� : in
addition to the fact that the same categories � , � can be merged as

cDeep Convolutional Neural Network.
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binary dashed line graph ({ , , }, E) receptive fields

Fig. 2.10. Recognizing a dashed line.

in CCL, we allow �� to merge with � but not with �� . The growth of
the isolated blobs happens concurrently to the growth of the (empty)
background � such that close-by �� neighbors are detected before
all the background merges into a large region where the individual
blobs are all surrounded by individual self-loops.

But also parametric models may determine the parameters best
describing the receptive field of the surviving vertex. Of course, mod-
els can become more complex and parameters that best match the
data [23] can be used to describe the vertex by the name of the
model and its parameters. All these models offer opportunities for
optimization and learning.

There is no need to use the same reduction function when reducing
one level to the next. Of course, it is the simplest choice if no other
source of information is available. But if you consider the dynamic
processing of visual data or have a target segmentation available,
there may be previous labels and features available such that the
reduction function can be adapted for the general model from the
previous image frame. And not only concerning the parameters of
the reduction function but also the principle type of function, e.g.,
switching from a filter to inheritance or the transitive closure of the
boundary segments.

2.4.4 Controlling the top-down expansion

As with the classical Laplacian pyramid [14], a first motivation is to
show that the original image can be reconstructed from the higher
levels. But even more, a simple inheritance expansion where children
inherit their attributes from its parents, without trying to reconstruct
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the original attributes, provides some insight into what has been
aggregated in the higher levels. In the Laplacian expansion, the high
frequencies of the lower levels have not been added.

In the irregular pyramid, the expansion has become feasible by the
inverse operations [8], decontraction for contraction and reinsertion
for removed edges. Originally, these inverse operations were applied
in reverse order to be able to re-establish properly the links to the
already expanded graphs. However, this strict order, which would
prevent parallel application, can be relaxed since also the bottom-up
operations were independent and create layers of contracted edges
(by one contraction kernel) alternating with removed edges through
simplification. Similar to the concept of wavelets, this process can be
memory neutral in the sense that the active level where the current
top level graph is stored complements the passive part where links
of the contracted and removed edges are kept. Together they occupy
the same memory as the base level.

The recovery of structure of the lower levels of the pyramid offers
a wide variety of possibilities to propagate high-level information
(referred to as the parents, the surviving vertex together with its
neighbors) to the lower levels (referred to as the children). Options
that have been used are as follows:

• interpolating the attributes of the children from the attributes of
the parents,

• or using convolution filters applied on the parent’s level,
• or inheriting the parent’s attributes (as for CCL),
• or refining the high-level model and potentially updating the

bottom-up model by properties like straightness of a dotted line
that cannot be done locally during the bottom-up process,

• or reinsertion of curve segments to re-establish connectivity,
• or generative models like fractals.

We give examples for some of the operations in the following section.

2.4.5 Preserving relevant properties

In Table 2.1, we give examples of the different choices of the con-
trol decisions used by specific applications together with citations to
papers with the details and results. In nearly all cases, empty faces,
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Table 2.1. Overview of control for specific applications.

Application
Important elements

survive
Negligible elements

are merged

CCL 1 repr/CC(lab) (L,L)
segmentation 1 repr/ region similar, end points
2x on curve X, ends empty space,

connections
line images ends, junctions empty space, connections
matching discrim.template,

object boundary
simil.inside object

motion foreground,
static background,
articulations

occluded backgr.
moving foregr.

gap closing 1 repr/lab
incl. background

(L,L)

E-RAG Hierarchy max.ext.Contrast, MST min.int.Contrast

with deg < 3, are considered redundant in the simplification and
merged with one adjacent face (corresponding to the removal of the
separating edge).

Connected component labeling (CCL) [17, 24–26] has as input
a labeled image. It could be a hand-labeled ground truth or the
result of a segmentation, and the task is to find the connected
components of the different labels together with their adjacencies.
One vertex of every connected component should survive to the top
(1 repr/CC(lab) in Table 2.1) while edges connecting vertices with
the same label can be contracted (denoted by (L,L) in Table 2.1).

There are numerous studies of segmentation, i.e., [27–30]. In
this case, every connected region will be represented by one surviv-
ing vertex in the top level and edges connecting similar vertices are
contracted to the edges of the RAG. For thin regions, it may be useful
to keep the end points to some higher levels.

The psychological test of “2X on a curve” consists in finding
out whether two X placed on two complicated but non-overlapping
curves are on the same curve or on different curves. It was argued
that humans need a time proportional to the length of the curves.
In our paper [31], we showed that the pyramid can solve it in loga-
rithmic time by (1) preserving the “X” vertices and (2) contracting
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the empty space without curve segments and contracting connected
curve segments.

In processing line images (e.g., technical drawings, Figure 2.9),
the preservation of line ends and of junctions is important [32–34].
Similar to the previous application, contraction applies to the empty
space and to connected curve segments. For line images, there was
an additional constraint that the face should not touch any curve
because it would establish a wrong connectivity. Here the adaptivity
of the irregular pyramids is a great advantage.

In the application of finding matchings between two images [18,
35, 36], as in stereo or in image mosaics, the most discriminative
template should survive together with the object boundaries while
edges connecting similar vertices inside an object can be contracted.

The problem of detecting motion in image sequences involves
more than a single or a pair of images [37–39]. In this application, the
task is to identify a moving object in front of a static background and
to identify the moving parts of an articulated movement (walking or
hand gestures). It is important to keep one vertex of each connected
foreground object and the static parts of the background. In addition,
the articulation points need to be preserved in order to derive, e.g.,
a proper walking pattern. Contraction can be applied to edges inside
the background or inside a moving foreground object. Expansion can
be used to build a more complete background model by inserting
parts that have been temporarily occluded by a moving foreground
as well as tracking the moving foreground objects over time.

The gap closing application [40,41] has been discussed together
with the drawing of line images in Section 2.4.3. We have shown that
the introduction of a new label �� for isolated blobs can be deter-
mined locally by the given graph structure (the self-loop surrounding
a blob) and can be efficiently used as new entity to control the growth
of the different categories of labels.

The last example in Table 2.1 is entitled “E-RAG hierarchy”
[42–44]. The preservation of topology enables the classical region
adjacency graph to allow also self-loops and multiple edges. These
are necessary to properly represent the inclusion of holes in a large
region and the fact that two regions may be connected by more than
one connected boundary. The criteria used in this application were
that vertices with the highest external contrast (according to [45])
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survive and the edges of a minimal spanning tree of the internal
contrast are contracted.

The last application, the LBP-pyramid, is discussed in Section 2.6.

2.4.6 Properties of topological pyramids

Let us call topological the pyramids that preserve the topological
properties of the data/images. In particular, it concerns holes of
regions and the related inclusion relationships. Topological proper-
ties are to a large extent invariant to geometric deformations like
different view points, perspective projection, articulated movements,
etc. But topological properties are also sensitive to noise and care
must be taken when removing noise.

Concerning the data structure for storing the topological pyra-
mid, the matrix structure of a regular pyramid is definitely not able
to properly represent all relevant topological features explicitly. For
example, a small hole may quickly be too small to be represented at
lower resolutions. But more importantly, thin structures like roads
or rivers in a remotely sensed image are likely to disappear when
their width drops below the sampling distance. That is why we have
focussed on embedded graphs as a primary data structure, although
there are less known representations like combinatorial maps, gener-
alized maps, or cellular complexes that suit the purpose for preserv-
ing topology as well.

We already addressed an important aspect of graphs: Simple
graphs without multiple edges and self-loops cannot capture holes
and multiple connected boundaries. We showed that graph pyramids
can be constructed with only two operations: edge contraction and
edge removal.

We have seen also the particular importance of preserving key
vertices to higher levels; they allow keeping the overview of the main
components of an image and often relax particular details that may
not be necessary once the object has been identified.

In two dimensions, plane graphs represent the graph embedded
in the plane as shown in Figure 2.11. The base of the primal graph
corresponds to the 4-neighborhood of the image while the dual graph
has an important role in deciding the removal kernels without long
search processes.

The bottom-up construction is controlled by application-specific
properties. It preserves the connectivity and the relevant inclusions
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Top Top

←→
primal graph G(V, E) ←→ dual graph G( V , E)

Fig. 2.11. Dual graph pyramid.

during the bottom-up process. Pseudo-edges are bridges in the dual
graph that connect a hole with the remaining graph. Their deletion
would disconnect the graph and remove the information about what
end point is included in the receptive field of the other. Its dual edge
is a self-loop indicating the inclusion. Each hole can be associated
with one pseudo-edge. This remains true also in higher dimensions,
i.e., a pseudo-face characterizes a tunnel through a volume, a typical
example is a torus.

The concept of equivalent contraction kernel (ECK) relates the
higher levels to the lower levels directly without the need to prop-
agate across several levels. The ECK(v) of any vertex of the pyra-
mid covers the complete receptive field of vertex v. This becomes
of particular interest for color images where each color channel cre-
ates a separate pyramid structure. In this case, it is very difficult to
compare the higher levels of the three pyramids directly. However,
through the ECK, each vertex can be down-projected to the common
image structure where the comparison could be done.

Another important aspect of pyramids is that many operations
can be executed in parallel on different processors. We have shown
ways to identify independent operations, making the computational
complexity even for large images as those mentioned in Section 2.2.3
feasible [19].

2.5 Local Binary Patterns (LBPs)

Local binary patterns have been introduced by Ojala and
Pietikainen [46] in 1996 as an efficient descriptor for textures in
images. The eight neighbors of the center of a 3×3 window compare
their gray value with the center and set a 1 if the neighbor is higher in
value and a 0 otherwise. The resulting eight bits are concatenated in a
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pre-defined (clockwise) order and form a value in [0,255]. This works
very well for the eight neighbors of an 8-connected grid of an image.

It fails if the number of neighbors varies like in a graph with ver-
tices of different degrees. However, a graph has also edges in addition
to the vertices. We therefore store the result of the comparison not
with the (center) vertex but with the edge connecting the center
vertex with the neighbor by simply orienting the edge such that it
always points to the lower valued vertex. In this case, the character-
istic bit switches of LBPs translates into an orientation switch of the
edges surrounding a vertex. This way not only relaxes the degree of
the vertices but also saves more than 50% of the memory. In addi-
tion, all the characteristics of LBPs like the differentiation of critical
points (minima, maxima, and saddle points) translate 1-1 to the new
representation.

LBPs identify the class of uniform codes: These are codes that
contain maximally two bit-switches when turning around the center.
In our new representation, these are local configurations that are
either extrema (0 bit switches) or their neighborhood splits into a
higher connected part and a lower connected part separated by a level
curve across the center. The two bit-switch configurations roughly
form a slope (precise definition is given in the following). Non-uniform
LBPs correspond to saddle points.

2.5.1 Critical points of a height profile

Let us first consider an LBP along a one-dimensional (1D) curve
(Figure 2.12) or a profile across a two-dimensional (2D) surface. Basic
mathematics tells us that critical points are characterized by horizon-
tal tangents. In 1D, critical points are local extrema: local maxima
⊕ and local minima �. From Figure 2.12, we see that the curves

⊕

⊕
⊕

Fig. 2.12. A smooth curve with seven critical points.
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between the critical points are monotonically increasing from the
minima toward the maxima while they monotonically decrease
from the maxima toward the minima.

Definition 2.5 (Monotonic). A function f(x) : D �→ R is called
monotonically increasing in the domain D ⊂ R

n if f(y) ≤ f(x)
for all x ≤ y in D, and it is called monotonically decreasing in
the domain D ⊂ R

n if f(x) ≤ f(y) for all x ≤ y in D. It is called
strictly monotonic for strict inequalities.

2.5.2 LBPs along a monotonic curve

LBPs compare a central point f(x) with its neighbors N (x) =
{n|δ(n, x) ≤ Δ}. In 1D, we use δ(x, y) = |x − y| and Δ = 1, and
in 2D, the Euclidean distance

δ

((
x1
y1

)
,

(
x2
y2

))
=
√

(x1 − x2)2 + (y1 − y2)2. (2.5)

LBP stores a binary value of 0 if the neighbor is smaller or equal and
a value of 1 if the neighbor is greater than the central point:

LBP (x) = b0, b1 with (2.6)

bi(x) =

{
0 . . . iff f(ni) ≤ f(x)

1 . . . iff f(ni) > f(x)
and i ∈ {0, 1}. (2.7)

g(x)

x

⊕

1 · 1

0 · 1
0 · 1

0 · 0

Fig. 2.13. A 1D curve between a local minimum and a local maximum.
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In 1D, every point has two neighbors: one (n0) with lower x and
one (n1) with higher x (Figure 2.13). Consequently, there are four
different LBP codes:

code meaning
00 local maximum (⊕)
01 monotonically increasing curves
10 monotonically decreasing curves
11 local minimum (�)

2.5.3 Monotonic curves/paths π

Figure 2.14 shows a curve with two sharp peaks (local maxima) and
a flat minimum. In the following, it shows the corresponding graph
G(V,E) where V represents the critical points/segments (⊕,�) of the
curve and the edges between are oriented such that the end point is
lower than the begin of the corresponding curve segment. Along the
monotonic curves, the orientation of all the edges remains the same,
hence they can be collapsed into a single edge if a varying steepness
does not matter. The critical points in a 1D continuous curve can be
determined by a 1D LBP without computing derivatives and even
at non-smooth locations (like the two sharp peaks in Figure 2.14).
At sharp corners, there are multiple orientations of tangents and the
derivative cannot be computed.

The curve segments between the critical points correspond to the
edges and they are all oriented toward the minimum: ⊕ −→ � is
monotonically decreasing and � ←− ⊕ is monotonically increasing.
Note that the curve need not be smooth with the only requirement
that the sampling satisfies the Nyquist–Shannon theorem (at least
for the critical points [47]).

A discrete monotonic path π(p1, pn) = (p1, . . . , pn), pi ∈ R
n,

is a polygon in R
n without self-intersection. Formally, we can state

1D curve:
G(V, E)

flat minimum

⊕ ⊕ ⊕ ⊕

g

Fig. 2.14. A 1D curve with its oriented graph G(V,E).
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that the orientation of a monotonic sequence of edges (pi, pi+1) ∈ E
can be derived from the sign of σ in (2.8):

(f(pi+1)− f(pi))σ ≤ 0 ∀i ∈ [1, n − 1], σ ∈ {−1,+1}. (2.8)

The sequence is increasing with σ = +1 and decreasing with σ = −1.
The original LBP bits associated with the vertices in V are trans-

ferred to the orientation of the respective edges. Turning around any
vertex v ∈ V in a plane graph,d we can derive the corresponding
LBP: bit 0 if the edge is e = (v,w) ∈ E and 1 for e = (w, v) ∈ E.
The change in orientation corresponds to a bit switch in the LBP
code and enables vertices with different degrees.

Flat regions introduce an asymmetric LBP code in the original
definition of Ojala et al. [46] giving raise to a local ternary pattern
(LTP) in the work of Tan and Triggs [48]. The drawback is that 2 bits
are necessary instead of 1 bit doubling the size of the code and there
is no obvious translation into orientation. Since flat edges do not
contribute to the detection of critical points, we propose to contract
flat edges in the graph. This preserves the connectivity and converts
monotonicity into strict monotonicity. There is one exception: self-
loops are crucial for describing holes in a region. But self-loops are
easy to detect by the fact that both end points are the same vertex.
As we explore later, a small extension to edges with the smallest
contrast allows removing most flat edges. As a side effect, it also
shortens the paths π and preserves the critical points.

2.5.4 Critical points in 2D

Critical points in 2D can be recognized by LBP [46]. As in 1D, bit
switches translate into a change in orientation of the edges between
adjacent neighbors. We keep the downwards orientation as in 1D.
Hence, there are no changes in the orientation of an extremum and
two changes for saddle points (see examples in Figure 2.15). Even
a third category of local configuration with two bit switches can be
described by ‘uniform’ LBP codes: slopes.

dA plane graph is an embedded planar graph such that the order of edges around
every vertex in the embedding is given.
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⊕ ⊗ ⊗ ⊗

(a) (b) (c)

Fig. 2.15. Examples of critical points in 2D. (a) local max. ⊕; (b) local min. �;
(c) local saddle ⊗ with degrees 4, 8, 6.

{⊕, , ⊗ } −→ slope regions

primal and dual graphs (G(V, E), G( V , E))

input image −→ reconstruction

Fig. 2.16. Bottom-up and top-down processes in the LBP pyramid.

2.6 The LBP Pyramid

This section follows the general principles laid out in Section 2.3.
References [49, 50] focus (see overview in Figure 2.16) on the par-
ticular choices of the LBP pyramid. We have seen in the previous
section that the binary coding of local binary patterns (LBP) can be
transferred to an oriented graph and that the LBP along a monotonic
path shows the same pattern, e.g., the orientation of edges along a
monotonic path is the same. Critical points can be determined from
the number of orientation changes around a vertex, in most cases
by a local process. In case of flat regions, the detection of critical
points is postponed until all the flat regions are represented by a
single vertex. Then the detection is local.

There is one special case for a ‘hidden’ saddle point. This is a
saddle point that falls between the sampling points of the data and
is characterized by a condition related to the non-well-composed 2×2
configurations of Latecki [51]:

| | | |
−− A −−− B −− −− A −−− B −−

| | | � � |
| × | −→ | ⊗ |
| | | � � |

−− D −−− C −− −− D −−− C −−
| | | |

(2.9)
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The block of pixels A,B,C,D is not well composed if either

L = max(A,C) < H = min(B,D) or (2.10)

L = max(B,D) < H = min(A,C). (2.11)

In all such cases, an extra saddle vertex ⊗ is inserted in the center
of the 2 × 2 block of the neighborhood graph, connected to all four
vertices A, B, C, and D of the 2× 2 pixels by edges and with a gray
value f(⊗) in the interval (L,H).

2.6.1 Bottom-up construction and top-down
expansion

As contraction kernels, we select edges with the locally lowest con-
trast and choose the critical points as survivors. If an edge with
lowest contrast is not incident to a critical point, any incident vertex
can be chosen. There are two main arguments for this choice:

(1) Since low-contrast edges are visually nearly indistinguishable, we
use the following selection criterium for edges to be contracted:
Contracting edges of contrast zero shrinks successively flat areas
until reaching a single vertex for each connected flat area.e After
zero-contrast edges have been contracted, the remaining edges
with contrast > 0, e = (v,w) ∈ E are downwards-oriented, i.e.,
f(v) > f(w), and the contrast of e is the difference between
the end points: contrast(e) = f(v) − f(w). In order to satisfy
the independence condition, one can first determine a maximal
independent vertex set starting with the critical points and then
choose trees of incident edges with locally lowest contrast.

(2) Each connected component of the contraction kernel contains one
critical point, if possible. It remains critical even after contrac-
tion, and, consequently, the critical point survives the contraction
process. Preserving the critical points ⊕,�,⊗ of the base graph

eCare must be taken if these flat areas connect non-connected parts of the
boundary of the graph since the remaining vertex becomes an articulation point
the removal of which would disconnect the graph. This can be avoided by first
contracting and simplifying the boundary and then the inner flat areas while pre-
serving the boundary. This enables treating sub-graphs separately and stitching
them together after contraction.
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does not shrink the range of values (in contrast to smoothing or
interpolation). Together with a strong contrast they contribute
to the high visual quality of the reconstructed image. In case of
dense clusters of critical points or in case of critical points gener-
ated by noise, the rule of preservation may be relaxed for gener-
alization by allowing lowest contrast pairs (⊕,�), (⊕,⊗), (⊗,�)
to be contracted (as in [6]).

The attributes of the base level are the gray values of the pixels.
An alternative would be to use the contrast as an attribute of an
edge where the orientation encodes the sign of the contrast. With this
encoding, only a few gray values need to be kept with some vertices
since the other gray values can be recomputed by propagation along
the edges of the graph.

In the simplification of multiple edges, the longest equivalent path
in the base can be chosen. This length can be easily integrated in the
bottom-up process by first initializing a length attribute of each edge
by the value 1, and after each edge contraction, the length of the edge
becomes the sum of the lengths of the two involved edges.

As reduction function, surviving vertices inherit the value of the
level below. Since critical points are primarily chosen for survival,
the range of gray values is preserved.

The top-down expansion can be done using the canonical repre-
sentation [8] by edge decontraction and (removed) edge reinsertion.
During the expansion process, the children of the lower level either
retrieve their value from the status of the bottom-up process or they
inherit the value of their parent from the level above. In the experi-
ments, we chose the option of inheritance to judge the quality of the
reconstruction with only a few values of the top level.

2.6.2 Main properties of the LBP pyramid

The bottom-up construction preserves relevant critical points (see
Table 2.2) that are determined by LBP [50, 52, 53]. Hidden saddle
points are inserted in the original neighborhood graph.f The selection
of edges with the lowest contrast also preserves the original contrast

fThis is easy in a graph but would require an increase of the resolution of an
array.
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Table 2.2. Control of LBP pyramid.

Application
Important elements

survive
Negligible elements

are merged

LBP pyramid critical points, texture,
high freq.

lowest contrast

of the image as well as the quality of fine details like the grass in
Figure 2.18. Monotonic paths remain monotonic if no critical point
is removed. LBP codes are known for their texture representation
and this property is clearly visible in the reconstructions.

The reconstruction quality of the LBP pyramid has been tested in
Refs. [50,52,53] with a variety of images from the Berkeley database.
The reconstructions use much less colors and preserve very well the
structure and topology of the image. Selected pictures in Figure 2.17
are from the Berkeley image database [54]. More examples can be
found in PRIP TR-133, the Master Thesis of Martin Cerman.g

2.6.3 Image = Structure + Few Colors

In Ref. [55], we investigated the reasons why the LBP pyramid recon-
structs images with surprisingly high visual quality. We could confirm
the main observation of Koenderink [6], although he used Gaussian-
type smoothing for the construction of the lower scales that cannot
preserve so well thin structures as the LBP pyramid does. This can
be visually verified in Figure 2.18 where three reconstructions with
the LBP pyramid are compared with a classical Gaussian pyramid
with a reduction window of 5× 5 pixels and a reduction factor of 4,
corresponding to a stride of 2 in x and y directions. GE stands for one
Gaussian reduction and one expansion, and GGEE for two Gaussian
reductions and two expansions. Figure 2.18 summarizes the number
of vertices or pixels at the apex of the pyramid and the corresponding
reduction from the base to the top. Most of the critical points survive
to the low resolutions at high levels and contracting the lowest con-
trast first preserves the high contrast in the image. And, in contrast to
ALL smoothing reductions involving convolutions, it preserves high

ghttps://www.prip.tuwien.ac.at/publications/technical reports.php.
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Coral Cat

0.08 · 154401 = 1235 regions 0.06 · 154401 = 9264 regions

Which one is the original image Fish?

6%? or 100%?

Fig. 2.17. Three reconstructions with the LBP pyramid.

frequencies in the image (small, thin details). Reconstructions with
only a few highest levels give good results. Reconstructions with only
30% down to 3% of the regions of the original number of pixels are
shown in Figure 2.18.

In Ref. [55], we qualitatively and quantitatively compared the
results on 100 images of the Berkeley database with 4 other methods.
For the assessment of the quality, we used the Structural Similarity
Index Measure (SSIM) [56], the Feature Similarity Index Measure
(FSIM) [57], and the Peak Signal-to-Noise Ratio (PSNR).
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Fig. 2.18. Pheasant, Berkeley# 43074, three reconstructions, two 5 × 5/4
Gaussian.
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2.7 The Space between Critical Points

After constructing an irregular LBP pyramid, most of the vertices
correspond to critical points of the base level. Hence Ref. [58] asks the
following question: What are the spaces between the critical points?
In this section, we give an overview about the concept of slopes and
their interesting properties with some outlook for future research
directions. This concept relates the different levels of the pyramid
by covering the regions at different levels with such slopes. Since
the critical points determine a partition into slopes, it enables the
interpretation of the information at different levels of the pyramid.

We have seen in Figure 2.13 that the curves between extrema in
1D are monotonic curves or profiles. Now, we extend this concept to
two dimensions. We define the 2D counterpart of a monotonic curve
as a slope:

Definition 2.6 (Slope). A connected region R of a continuous sur-
face is a slope region iff all pairs of points ∈ R are connected by a
continuous monotonic curve ∈ R.

The smallest slope in an image is a single pixel. Locally, a slope can
be characterized by a uniform LBP.h Definition 2.6 defines the slope
in continuous Euclidean space, but it is also valid in discrete spaces
like images or graphs.

We recall some of its properties and refer to our previous publi-
cations for proofs and further examples. The domain of the image
function f can be partitioned by slopes. Critical points determine
the structure of a slope S : Every slope can contain one local maxi-
mum (⊕) and one local minimum (�). Saddles (⊗) appear exclusively
on the boundaries between slopes [59]. All level curvesi in a slope
are connected. Level curves of f may be open when intersecting the
boundary of the domain of f or closed. Level curves can intersect
exclusively at saddle points, never inside R (more in [60]).

We distinguish between two types of slopes:

• slopes bounded by level curves and
• slopes bounded by monotonic curves.

hA uniform LBP has maximally two bit switches or, equivalently, maximally two
changes of orientation when turning around the center.

iAlso called contour lines or isolines.
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2.7.1 Slopes bounded by level curves

The complete boundary is a level curve at the level f(× ) of the saddle
pointj with following constraints if a local maximum ⊕ and/or a local
minimum � exists inside the slope (Figure 2.19(a)):

f(⊕) > f(×) > f(�). (2.12)

The region including the ⊕ will be higher than the boundary, and
the region with � will be below the boundary if both minimum and
maximum are inside the slope. This implies that there exists a curve
inside the slope at the level f( × ) that separates the higher from
the lower parts of the slope. This level curve connects the two saddle
points ⊗ having the same level. These two saddle points of identical
level are necessary to prevent the slope from having an articulation
point.

Both the boundary and the separation curve meet at the two sad-
dle points. All other level curves inside the slope are closed. Orienting
level curves such that the right side is higher than the left side, the
level curves opposite × have opposite directions (see Figure 2.20).

⊕

× ×

⊕

+

−
(a) (b)

Fig. 2.19. Two basic types of slopes. (a) A level-bounded slope; (b) A slope
bounded by two monotonic curves.

j× denotes a saddle point along the boundary, + and − a local maximum and
a local minimum along the boundary, while ⊕,� denote local extrema in 2D.
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×
⊕

⊕
(a) (b)

×
⊕

⊕

×
⊕

⊕

Fig. 2.20. Orientations around a saddle point.

Each extremum inside S is surrounded by closed level curves.
Regions around × alternate higher and lower parts of f (Figure 2.20;
� indicates that the edge increases from left to right). As a

consequence, there are two ways to group the higher and the lower
parts into two slopes with maximal extension: (a) using horizontal
neighbors in Figure 2.20 or (b) using vertical neighbors. Such group-
ing can be related with certain semantic properties like size, shape,
or texture. It can be established at the top level of the pyramid and
then successively refined top-down, level by level, to the base level.

2.7.2 Slope with a monotonic boundary

This is most likely the more frequent type of slope since the bound-
ing saddle points have different levels and are connected by mono-
tonic curves. Figure 2.19(b) shows a prototype of such a slope. We

draw boundary curves in green, and monotonic curves with �
pointing downwards the levels.

Level λ curves inside a slope are connected and can be open or
closed with the following constraints:

� � − � + � ⊕
[ closed ]( open )[ closed ]

Level curves around the two extrema are closed for levels λ satisfying:

f(+) ≤ f(λ) ≤ f(⊕), (2.13)

f(�) ≤ f(λ) ≤ f(−). (2.14)
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All level curves f−1(λ) with f(−) < f(λ) < f(+) are open and
connect the two monotonic branches of the boundary (except −, +).

Slopes can partition any continuous surface [59]. However, parti-
tioning into slope regions is not unique. Monotonic boundaries have
some degree of flexibility to grow or shrink within the limits of the
level curves through the saddle points. This opens also the possi-
bility to introduce a limited overlap between two slopes where the
boundary is not clearly determined.

2.7.3 Outlook on slopes

Besides the receptive fields of high level vertices and faces, slopes
provide a further tool to explain the derived structure and attributes
of the higher levels at the higher resolutions in the levels below. One
target could be to derive a covering of the base level with a minimal
number of slopes. Together with features derived for each slope it
could be used to recognize similar image regions or objects in the
image.

Since saddle points appear exclusively along the boundary of
slopes and the level curves inside have characteristic patterns, we
could consider the level curves that pass through saddle points. The
connected components between these level curves form a hierarchi-
cal structure that has great similarity with the topological tree of
shapes [61]. These similarities would be interesting to study not only
due to the continuous and the discrete concept but also where the
two concepts match and whether there are differences.

Finally, any hill-climbing inside a slope region reaches the peak,
and any steepest descent inside a slope region reaches the minimum
in all cases. There is definitely a potential for optimization processes
to avoid being trapped in intermediate local extrema.

2.8 Conclusion

In this chapter, we first give an overview of the main components of
irregular pyramids. They differ from the classical (regular) pyramids
in that they are based on irregular data structures like graphs. This
enables them to adapt their internal structure to the input data in the
base level or to the target structures important for the application.
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Irregular pyramids preserve the intrinsic (cell) structurek at
higher levels. In this chapter, we have used plane graphs as basic
topological data structures because graphs can be assumed to be
widely known. But several other data structures can be used with
varying advantages, in particular for dimensions higher than two:
combinatorial maps [1], generalized maps [2], or CW complexes [3,4].

Irregular pyramids have a strong biological motivation: They sat-
isfy the biologically motivated architectural and functional require-
ments of Uhr [5]. The basis of an irregular pyramid need not be
an array but any irregular graph as the Delaunay-triangulated [62]
human retina (or any subgraph of it). Also, the neural connections
in the brain differ strongly from the artificial counter parts that are
currently very popular; they are neither fully connected bipartite
graphs nor regular local connections. However, there is some similar-
ity in the functionality of the connections with the significant differ-
ence that natural neurons are much slower than massively parallel
architectures or modern GPUs. This efficiency of the parallel archi-
tecture has become very important in the project ‘Water’s gateway
to heaven’ where the 233 data can be processed in parallel up and
down the only 33 levels of the irregular pyramid.

The irregular pyramids accept as input an image, data from a
retina, any plane graph, combinatorial map, or generalized map. The
main goal is

to reduce the huge amount of data while preserving
certain properties.

The construction and expansion in irregular pyramids is controlled
by

• selected contraction and removal kernels,
• massive parallel graph contraction,
• different reduction functions (decoupled from the flexible architec-

ture!),

kThe term “cell” is just a coincidence with the biological cells in Section 2.2.3,
here an abstract cell is meant.
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• inverse operations of contraction and removal: decontraction and
reinsertion, and

• termination criteria.

Let us repeat here that the choice of reduction functions can vary
not only between different levels of the pyramid but also within the
same level in the case that there is a strong hypothesis that a certain
object with specific properties is located at a particular location.
In this case, a concept similar to the object-oriented programming
paradigma can be applied.

For the LBP pyramid, we first translate the binary LBP code into
the orientation of edges. This enables the recognition of critical points
⊕,�,⊗ and slopes without the need of derivatives. This follows the
principle of changing the representation to solve an insight prob-
lem (Section 2.2.5). The observation that continuous curves between
extrema are monotonic inspired the choice of the lowest contrast for
contracting edges. Experimental results showed that in images the
arrangement of critical points plays a dominant role and images can
be reconstructed with only a few colors if the structure is preserved.
Finally, monotonicity also led in 2D to the novel concept of a slope,
opening possibilities to explain the achieved results through integrat-
ing bottom-up and top-down processes and the relations between the
receptive fields at different levels of the pyramid.

In contrast to many machine learning approaches, like deep convo-
lutional neural networks, which have some architectural similarities
with the pyramid but have a strong association between the layer and
the applied functionality (i.e., convolution layers and pooling layers),
irregular pyramids separate their architecture and functionality. In
addition, the construction of the hierarchy enables the architecture
to adapt the representation to the structure of the data.

The algorithms operating in the irregular pyramid are designed to
work (also) on massively parallel architectures with a parallel com-
plexity of O(log(diameter)) following parent–child links.
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DGCI. LLAIC1, Université d’Auvergne, pp. 147–158 (1995).

[25] H. Macho and W. G. Kropatsch, Finding connected components with
dual irregular pyramids, in F. Solina and W. G. Kropatsch (eds.),
Visual Modules, OCG-Schriftenreihe, Österr. Arbeitsgemeinschaft für
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(eds.), DAGM Symposium 2004, Tübingen, Germany. Lecture Notes
in Computer Science, Vol. 3175. Springer, Berlin, pp. 432–439 (2004).

[39] N. M. Artner, A. Ion and W. G. Kropatsch, Rigid part decomposition
in a graph pyramid, in J. O. E. Eduardo Bayro-Corrochano (ed.),
The 14th International Congress on Pattern Recognition, CIARP
2009. Lecture Notes in Computer Science, Vol. 5856. Springer-Verlag,
Berlin, pp. 758–765 (2009).

[40] W. G. Kropatsch, Abstraction pyramids on discrete representations,
in A. Braquelaire, J.-O. Lachaud and A. Vialard (eds.), Discrete
Geometry for Computer Imagery, 10th DGCI, Bordeaux, France. Lec-
ture Notes in Computer Science, Vol. 2301. Springer, Berlin, pp. 1–21
(2002).

[41] W. G. Kropatsch and Y. Haxhimusa, Hierarchical grouping of
non-connected structures, in W. Burger and J. Scharinger (eds.),
Digital Imaging in Media and Education, 28th ÖAGM Workshop,
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