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Abstract. Contrast pyramids have shown excellent reconstructions for
several images with only a few number of high contrasts. The contrast
histogram of the image shows the distribution of contrasts and allows
to select a bound that limits the mean reconstruction error. A total
order of the vertices enables a both the ordering of the edges with the
same contrast and, together with max-link strategy, generates efficiently
the contraction kernels of the pyramid. A spiral total order pushes the
surviving vertices geometrically towards the center of the image.
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1 Introduction

There have been several attempts to build hierarchies to cope with the huge
amount of data. Table1 outlines the main categories, their signal processing
categories and their underlying data structures. When building a graph pyramid
one basic question relates to the space and time requirements of the related

processes:

(1) how many edges are contracted after
reaching a certain level? and (2) How many edges
can be removed? In order to answer the two ques-
tions let us recall the basic properties of graph
pyramids (see also the 3 x 4 example in Fig. 1).
The base graph Gy = (Vo, Ep) has as many ver-
tices as there are pixels in the m x n 2D image,
then the base graph contains |V0| = mn ver-
tices. Edges Ey connect vertices of neighboring
pixels. Assuming 4-neighborhood (graphs of 8-
neighborhood would not be planar) in the images
we have |Eg| = 2mn — m — n edges.

We first recall the basic concepts of building
a pyramid of graphs that preserves high image
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Fig.1. 3 x 4 image, graph
Go(red) and dual face graph
Go (green) with background W
(Color figure online)
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Table 1. Hierarchies, their signal and data characteristics

Hierarchy signal data more details
Gaussian pyramids [lowpass rigid array |[8]
Laplacian pyramidsbandpass rigid array |[8]

Wavelets bandpass rigid array |[14]

Graph neur.netw. |message passingrigid graph|[5]

Graph pyramid highpass multigraph|[13]

contrasts (Sect.2). Then Sect. 3 computes the contrast histogram directly from
the original image as a pre-processing step. A total order on the graph’s vertices
in Sect. 4 defines the order of edges that have the same contrast. The extremely
efficient max-link strategy generates from the spiral total order a spanning tree
that can be directly used for constructing the contrast pyramid. Finally the
contrast histogram of a given image allows to predict an upper bound for the
mean error of reconstruction.

2 Recall on the Irregular Contrast Pyramid
2.1 Edge Contractions and Removals

The only operations to generate higher pyramid levels are edge contractions
and edge removals [6]. The operation of contracting an edge deletes the edge
and one of its end points (the other “survives”) while the removal of an edge
deletes the edge and merges its adjacent (dual) faces. A set of edges that are con-
tracted with the same surviving vertex are called contraction kernels (CK)
and all the edges to remove are called removal kernels (RK). The result of
contracting graph G by a contraction kernel CK is denoted G/CK, the result of
removing a removal kernel RK: G\ RK.

To properly preserve inclusion relationships and topology not all parallel
edges and self-loops resulting from edge contractions can be removed. Contract-
ing a double edge e; = (v,w) € E with e3 = (v,w) € E creates a self-loop
ez = (v,v) if v € V survives. Contracting one of multiple parallel edges (v, w) cre-
ates one less self-loops as there were multiple edges connecting the same pair of
vertices. Self-loops (v,v) € E cannot be contracted since the two end points are
already the same vertex. They can only be removed.

The concept of equivalent contraction kernels (ECK) [12] allows to
combine multiple contraction kernels resulting in the same simpler graph than
several successive contractions. Similar to the concept of ECK the removed edges
are combined in the equivalent removal kernel, ERK. The receptive field
RF(v;) C Vy of a higher level vertex v; € V,t > 0, can be derived directly
from the base by the ECK of v; that is a tree spanning the receptive field of v;.
The receptive fields of a graph Gy = (V, E;) at a level ¢ > 0 partition the base

vertices, Vo = |J RF(v:) the receptive fields are the connected components
v €V
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of the spanning forest of the base graph Gy. Every ECK contracts |[RF (v;)| — 1
edges to collapse all the covered vertices of V; into a single surviving vertex vy.
All together > . (|[RF(vi)| — 1) = [Vo| — [Vi| edges need to be contracted to
reach G; from Gy.

2.2  Only Contractions Without Removals

The top graph G:(V;, Et) of the pyramid can be a single vertex, e.g. |[V;| = 1.
[Vo| — 1 edges are contracted and the remaining edges E, are not removed. Since
there is only one vertex left, all the remaining edges F; are self-loops. Due to the
inheritance of contrast, the contrast attribute of the self-loops corresponds to
the highest contrast in the equivalent cycle in Gg. In terms of pixels this means
that |E.| =nm —1 and |E¢| = (m —1)(n —1).

The top level consists of a single vertex |V;| = 1 and self-loops F; in different
topological constellations (examples in Figs.4(b), (c), 5(b), (c)). The number
of top edges |E;| = (m — 1)(n — 1) corresponds exactly to the number of non-
background faces of the dual graph (the 2 x 3 green vertices in Fig. 1).

3 Contrast Histogram

The structure of the pyramids constructed by Cerman and Batavia et al. [3,10]
are determined by following main properties: (1) low contrast edges contract
before higher contrast edges; (2) the spatial arrangement of critical points with
high contrast is preserved; and (3) independence criteria for parallel applica-
tion. The local contrast c¢(v,w) of an edge (v,w) € E compares the grey values
g(v), g(w), with v,w € V, 0 < g(v),g(w) < Gas', of two 4-adjacent pixels
(Fig. 2).

77889

2768

<20
0 20 40 60 80... 256

Fig. 2. 481 x 321 image of pheasant with contrast histogram. The red bars in the
contrast histogram mark the surviving edges. (Color figure online)

1 Guae is the largest grey value, in most cases 255.
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Definition 1 (Contrast Histogram). Let (v,w) € E be two neighboring
vertices of the image. The distribution of local contrasts c(v,w) of a digital image
counts the frequency of the different contrasts 0 < c¢; < Gmaa:

ho(ej) = [{(v,w) € Ele(v, w) = ¢} (1)

3.1 Pre-selection of Parameters

The top level of the pyramid is reached after contracting edges with ¢(v,w) <
¢, v # w, and contains the representatives of the |E;| surviving edges from the
base level Ey with largest contrasts. In the SCIS concept of Cerman etal [10]
edges with lowest contrast are contracted first, then redundant edges are removed
before iterating contraction and removal with higher contrasts until reaching the
selected top level.

Using hg, the edges can be brought into the canonical ordering [16] before
actually starting the contraction process. The use of hy avoids to sort of the
edges to determine the next block of edges with lowest contrast. However the
order of the edges with the same contrast is not determined by the data. For
those edges we pre-compute a total order of vertices (see below).

Edges that connect vertices of the same subtree of the ECK collapse into a
self-loop after G/ECK. If their contrast is below ¢; they are considered redun-
dant. These edges can be removed before the contractions start. Reverse oper-
ations (for reconstruction) use the reverse canonical order. The original graph
is completely reconstructed, only the attributes like the pixel value or the edge
contrast may vary.

In the contrast histogram we know beforehand how many edges have con-
trast 0: ho(0), contrast 1: ho(1) etc. We also know that the redundant parallel
edges and self-loops created by the contractions of edges with contrast ho(k)
are removed after contraction. Notice further that removal of an edge does not
change vertices and, hence, no vertex attributes are lost by removing edges. Con-
sequently one could bring the edges of the image into the canonical order from
the contrast histogram before actually starting the pyramid construction.

4 A Total Order of Vertices in the Base Graph

We know that the ECKs of a high level of the pyramid form spanning forests of
the receptive fields of the roots [12].

Definition 2 (Strict Total Vertex Order). Given a plane graph G(V, E)
we define the rank of a vertex as a function TO : V — [1,|V|] with binary
relations TO(v) satisfying the following properties: irreflexive, asymmetric,
transitive, and connected.

The (strict) total order of the vertices determine unique contraction kernels
and, in addition, enable a large number of independent contraction kernels that
can be contracted simultaneously with low parallel complexity.
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Definition 3 (Independence). Two contraction kernels CK, and CK, are
independent if their intersection CK,N CK, = () does not contain any common
vertex. Furthermore, in combinatorial maps [7] two edges are independent if they
are not adjacent in the circular order around the same vertex.

4.1 Deriving Spanning Trees and Spanning Forests
ECK C Ey are spanning forests of the base graph.

Definition 4. Let G(V, E) denote the plane graph and TO(v) : V — [1,|V]] be
the rank of a vertex in the TO. The local neighborhood I' : V +— V of a vertex
v € V is defined by all vertices that are related by an edge in E:

I'(v) ={w e V|(v,w) € E or (w,v) € E}.
With max-link(TO), every vertexr w € V' \ Ry chooses the vertex v € I'(w)
that has the highest rank in the TO among the neighbors of v. (v,w) is then an
edge of the ECK, Tynar:

Tz = {(v,w) € Elw € V\ Rpaz, TO(w) = H}a(x) TO(v)}. (2)
vel(w

The roots Ryae C V' of each tree of the spanning forest Tynqar C E are the local
mazxima of TO.

Proposition 1. The maz-link algorithm (2) can be applied in parallel to all
vertices of the graph. The parallel complexity depends only on the degree of the
vertices and NOT on the number of vertices.

4.2 Column Major Order

A common total order follows the linear arrangement of pixels in a computer,
called column major order (Fig.3, [1]). The ECK contracts all the edges fol-
lowing the max-link strategy. Figure 4(a) shows both the ECK (in red) and the
equivalent removal kernel (in green) that is not removed in this case (according

l=5= 9-13 primal [ ] surviving top vertex vy € V

+ graph o vertices in V' \ V;
226210 111 G(V,E) ° © |contracted edges E. C E
357 511 — 15 dual | | _ backgljund_face b

1 graph o faces V of G, inumber of face
4—=8—=12-16 G(V, E))] o—ao | FE\ E., edges to background.

(a) max-link (b) Annotations for Figs.4 and 5

Fig. 3. Max-link of column major order, and annotations.
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to Sect. 3.1). The background face b is added to the ERK. We observe the gen-
eral relation [4] between the spanning tree ECK of G(V, E) and the spanning
tree ERK of the dual face graph G including the background face b:

ERK(G)=E\ ECK(G) (3)

Figure 4(b) shows the contracted graph G/ECK in red after contracting the
maximal contraction kernel EC' K without removing any parallel edges and self-
loops. The nine surviving self-loops each surround one of the green dual faces

and all self-loops connect to the root.

(a) ECKU ERK (b) Ge=G/ ECKU FERK (c) structure of self-loops

Fig. 4. 4 x 4 maximal contractions of column major TO (Color figure online)

To establish the correspondence between Fig.4(b) and (c) the 9 faces have
been numbered. Figure 4(c) shows the isomorphic unfolded graph and the struc-
ture of the self-loops of G/ECK. The three branches of the ERK, (1, 2, 3), (4,
5, 6), (7, 8, 9) correspond to the inclusions of self-loops along these branches.

4.3 Spiral Total Order

A second example, spiral in Fig. 5, shows an ECKpirq that starts in the left
lower corner of the image, and follows the pixels along a spiral curve in clockwise
order. This path is Hamiltonian? and visits all vertices once.

(a) Spiral ECK= Thnaz  (b)G/ECK U ERK  (c) structure of self-loops

Fig. 5. 4 x 4 ECK of max-link of spiral.

2 A Hamiltonian path is a path visiting every vertex of the graph exactly once.
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In Fig.5(a) the TO of the spiral is transformed into another ECK= T},
by max-link. The result of the contractions G/ECK is the graph ({e}, E})
(Fig.5(b)) with TO(e) = 16 and 8 self-loops E; directly attached to the root e.

Only the self-loop around | 2 | includes self-loop @ in Fig.5(c).

4.4 Properties of the Spanning Forests T

Figure 6 shows a rectangular 5 x 7 example and its max-link ECK (b).

S T ENMCOOOODoH
All5[6 [ 78] 91011 J IS B B B |
3|[4[23[24]25[26[27]12 a || |
2([3[22[33[34[35[28[13 O e O
1][2[21]32[31[30[29[14 ° ii |
0/[1[20[10[18[17[16(15 O_i_iii__o
Aofeislase]  o— 01—
(a) TO of spiral (b) max. rank

Fig. 6. Spiral: total order(TO) of the vertices

Proposition 2. Let TO denote the strict total order of wvertices of graph
G(V,E).

1. In general the max-link algorithm (2) produces a spanning forest SF C FE
of the graph G where each connected component contains one local mazimum
of the TO. It is the root of the tree spanning the connected component.

2. If we require the TO to form a slope® Tyae remains connected and forms a
spanning tree of the graph G.

3. Independence of edges: All j-neighbors (v,w) € E of a spiral TO con-
nect a vertex with even TO(v) and odd TO(w). Then all edges of the subset
SFy = {(v,w) € SF| TO(v) is even, TO(w) is odd} are pairwise indepen-
dent except at branching points of SF i.e., (2,21) and (20,21) in Fig. 6(a).
CKs with more than one edge must be contracted sequentially.

Proof. (Independence) Since the boundary of an m x n image has always an
even length 2(m + n — 2) the vertex starting the next inner loop of the spiral
starts with an odd number (Fig.6(a)). After contracting all vertices with even
rank (except the root) only odd ranks of TOp = TO survive. Compacting
TO;+1 = (1 + TO;)/2 in G/SF;11,i = 1,2,... creates again even ranks that
can be contracted into their max-link odd neighbors iteratively until the root is
left. The compaction of ranks reduces the number of ranks by a factor of two
and hence it has logarithmic parallel complexity.

(Spanning forest) Every vertex v € V creates only one link to its highest
neighbor.

3 In a slope region, every pair of vertices is connected by a monotonic path [11].
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Since there are no identical ranks in the
TO no cycle can be created. Any local
extremum cannot link to a neighbor, fol-
lowing the created link backwards deter-
mines the receptive field of the extremum
that is a connected component.

In Fig. 7 the local maxima are 17 and 18.

Fig. 7. TO with two local extrema.

(Spanning tree) A slope cannot contain more than one maximum and one
minimum [11,13]. Consequently a TO that is a slope has no other extrema than
the global extrema and algorithm (2) produces a spanning tree. O

5 Combining Contrast Order with TO

The basic strategy is to contract edges with increasing contrast. In real images
there are many edges with the same contrast since there are only 256 different
contrasts between grey values in the range 0 < g(v) < 255 while image sizes
are typically much larger. Hence we aim at using the TO of vertices to deter-
ministically select the edges with same contrast by max-link in the canonical
order.

To process several contractions in parallel one further criterion is to group
edges that are independent of each other. We observed in Proposition 2 that the
spiral TO provides independent subsets of edges by the parity of the ranks of
the edge’s end points. Special care must be taken (1) at the diagonals from the
four corners since CKs contain more than one edge and (2) in the center where
the diagonals meet (see Fig. 6(b)). Also there the CKs may be larger. But these
cases are limited and do not increase the parallel computational complexity.

5.1 An Upper Bound for the Reconstruction

The reconstruction of the base level of the pyramid can use simple inheritance:
lower level vertices just receive the value of their parents from the level above.
The graph’s structure can be computed from the level above by inverse opera-
tions: re-insertion and de-contraction. The base level corresponds to the original
structure. Let the values of the original image be Orig(v), and the values of the
reconstruction be Recon,(v) with ¢ the top level and v € V. Then the qual-
ity of reconstruction can be computed as the mean of the pixel-wise absolute
difference:

MRE; = Y _ [Orig(v) — Recon,(v)|/| Vo] (4)

veV

Contracting an edge (v,w) of a contrast ¢(v,w) = g(v) — g(w), only one of
the two vertices v, w survives,s € {v,w}. After reconstruction, the end points
of the edge will have the same value g,.(v) = ¢(s) and g,(w) = g(s) and the
difference between the original and the reconstruction will be |g.(v) — g(v)| +
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|gr(w) — g(w)| = ¢(v,w). Taking the mean of the absolute differences is directly
related to the contrasts:
t—1
> cvw) 3¢ ho(e)
(vyw)EE, j=0

MRE = : = 5
1o =" 7 )

In other words we can bound the reconstruction error with the contrast ¢; of the
highest contracted edge: MRE;(c;) = ), .y |Orig(v) — Recon,(v)|/|Vs| < ¢;.

5.2 Some Concrete Results

Ct
Table 2 lists the maximal number of contractions ¢; satisfying Y ho(c) < |V|

c=0

for some images from the Berke-
ley data base [15]. All images Table 2. Maximally contractible edges
have.the same size |Vp| = 154401, Berkeley# | Picture e | Vil | # crit
|V;| is the number of vertices at
the top and # crit is the number 43074 Pheasant 3 4632 | 19788
of critical points (local max, local 210088 Fish 4 19264 18019
min, saddle) in the base. 41069 squirrel 8 9264

Therefore MREt(Ct) of the 95073 stone statue | 12| 15440
reconstructed pixel values from
the original is 3 and 4 for images 196065 Coral 1311235245915
Pheasant and Fish, but still 295087 arc 1312352
below 20 for other images. 160068 | Cat 199264 | 20541

Empirical tests have shown
(see section Gallery in [9]) that this is below the noticeable deviation for human
observers, that can hardly distinguish the reconstruction from the original! A
high number of critical points (# crit., i.e., coral) indicates the presence of tex-
ture or noise and raises the contrast ¢;. To overcome such degradations c¢; could
be decreased or the brightness contrast could be replaced by a texture contrast.

6 Conclusion and Outlook

This paper lifts some secrets about the contrast pyramids: the contrast histogram
as a tool to determine the maximally possible contrast for contracting edges in
the contrast pyramid; the spiral total order together with the max-link strat-
egy determine the ECK for maximally contracting a given image before actually
constructing the pyramid. Contrast is calculated from the pixel’s brightness but
both bottom up reduction as well as top-down refinement use inheritance such
that the original color values can be used in the reconstruction. These improve-
ments explain results of reconstructions and allow to adapt the few parameters
(like ¢; and TO) controlling the pyramid’s construction.

There is a wide range of potential applications beyond the efficient deriva-
tion of the region adjacency graph in [2]. Using the contrast histogram during
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reconstruction enables to correctly recompute the values of the non-surviving
vertices. For the computation of the max-links also the 8-neighborhood can be
used. The inside of a bounding box of an image object can be linearized by a
spiral and contrast-contracted as a signature of the object The total order for
voxel images in 3D could enable efficient processing of volumetric data like CT
or MRI in medical imaging.

Acknowledgement. Great thanks go to Noriane Petit who produced the experimen-
tal results with the contrast histogram during her internship in Wien, 2024.
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