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Abstract. Contrast pyramids have shown excellent reconstructions for 
several images with only a few number of high contrasts. The contrast 
histogram of the image shows the distribution of contrasts and allows 
to select a bound that limits the mean reconstruction error. A total 
order of the vertices enables a both the ordering of the edges with the 
same contrast and, together with max-link strategy, generates efficiently 
the contraction kernels of the pyramid. A spiral total order pushes the 
surviving vertices geometrically towards the center of the image. 
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1 Introduction 

There have been several attempts to build hierarchies to cope with the huge 
amount of data. Table 1 outlines the main categories, their signal processing 
categories and their underlying data structures. When building a graph pyramid 
one basic question relates to the space and time requirements of the related 
processes: 

Fig. 1. 3 × 4 image, graph 
G0(red) and dual face graph 
G0 (green) with background �
(Color figure online) 

(1) how many edges are contracted after 
reaching a certain level? and (2) How many edges 
can be removed? In order to answer the two ques-
tions let us recall the basic properties of graph 
pyramids (see also the 3 × 4 example in Fig. 1). 
The base graph G0 = (V0, E0) has as many ver-
tices as there are pixels in the m × n 2D image, 
then the base graph contains |V 0| = mn ver-
tices. Edges E0 connect vertices of neighboring 
pixels. Assuming 4-neighborhood (graphs of 8-
neighborhood would not be planar) in the images 
we have |E0| = 2mn − m − n edges. 

We first recall the basic concepts of building 
a pyramid of graphs that preserves high image 
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Table 1. Hierarchies, their signal and data characteristics 

Hierarchy signal data more details 
Gaussian pyramids lowpass rigid array [ 8] 
Laplacian pyramids bandpass rigid array [ 8] 
Wavelets bandpass rigid array [ 14] 
Graph neur.netw. message passing rigid graph [ 5] 
Graph pyramid highpass multigraph [ 13] 

contrasts (Sect. 2). Then Sect. 3 computes the contrast histogram directly from 
the original image as a pre-processing step. A total order on the graph’s vertices 
in Sect. 4 defines the order of edges that have the same contrast. The extremely 
efficient max-link strategy generates from the spiral total order a spanning tree 
that can be directly used for constructing the contrast pyramid. Finally the 
contrast histogram of a given image allows to predict an upper bound for the 
mean error of reconstruction. 

2 Recall on the Irregular Contrast Pyramid 

2.1 Edge Contractions and Removals 

The only operations to generate higher pyramid levels are edge contractions 
and edge removals [ 6]. The operation of contracting an edge deletes the edge 
and one of its end points (the other “survives”) while the removal of an edge 
deletes the edge and merges its adjacent (dual) faces. A set of edges that are con-
tracted with the same surviving vertex are called contraction kernels (CK) 
and all the edges to remove are called removal kernels (RK). The result of 
contracting graph G by a contraction kernel CK is denoted G/CK, the result of 
removing a removal kernel RK: G \ RK. 

To properly preserve inclusion relationships and topology not all parallel 
edges and self-loops resulting from edge contractions can be removed. Contract-
ing a double edge e1 = (v, w) ∈ E with e2 = (v, w) ∈ E creates a self-loop 
e2 = (v, v) if v ∈ V survives. Contracting one of multiple parallel edges (v, w) cre-
ates one less self-loops as there were multiple edges connecting the same pair of 
vertices. Self-loops (v, v) ∈ E cannot be contracted since the two end points are 
already the same vertex. They can only be removed. 

The concept of equivalent contraction kernels (ECK) [ 12] allows to 
combine multiple contraction kernels resulting in the same simpler graph than 
several successive contractions. Similar to the concept of ECK the removed edges 
are combined in the equivalent removal kernel, ERK. The  receptive field 
RF (vt) ⊂ V0 of a higher level vertex vt ∈ Vt, t  >  0, can be derived directly 
from the base by the ECK of vt that is a tree spanning the receptive field of vt. 
The receptive fields of a graph Gt = (Vt, Et) at a level t >  0 partition the base 
vertices, V0 =

⋃

vt∈Vt 

RF (vt) the receptive fields are the connected components
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of the spanning forest of the base graph G0. Every ECK contracts |RF (vt)| −  1 
edges to collapse all the covered vertices of V0 into a single surviving vertex vt. 
All together

∑
vt∈Vt 

(|RF (vt)| −  1) = |V0| − |Vt| edges need to be contracted to 
reach Gt from G0. 

2.2 Only Contractions Without Removals 

The top graph Gt(Vt, Et) of the pyramid can be a single vertex, e.g. |Vt| = 1. 
|V0|−  1 edges are contracted and the remaining edges Er are not removed. Since 
there is only one vertex left, all the remaining edges Et are self-loops. Due to the 
inheritance of contrast, the contrast attribute of the self-loops corresponds to 
the highest contrast in the equivalent cycle in G0. In terms of pixels this means 
that |Ec| = nm − 1 and |Et| = (m − 1)(n − 1). 

The top level consists of a single vertex |Vt| = 1  and self-loops Et in different 
topological constellations (examples in Figs. 4(b), (c), 5(b), (c)). The number 
of top edges |Et| = (m − 1)(n − 1) corresponds exactly to the number of non-
background faces of the dual graph (the 2 × 3 green vertices in Fig. 1). 

3 Contrast Histogram 

The structure of the pyramids constructed by Cerman and Batavia et al. [ 3, 10] 
are determined by following main properties: (1) low contrast edges contract 
before higher contrast edges; (2) the spatial arrangement of critical points with 
high contrast is preserved; and (3) independence criteria for parallel applica-
tion. The local contrast c(v, w) of an edge (v, w) ∈ E compares the grey values 
g(v), g(w), with v, w ∈ V, 0 ≤ g(v), g(w) ≤ Gmax 

1, of two 4-adjacent pixels 
(Fig. 2). 

Fig. 2. 481 × 321 image of pheasant with contrast histogram. The red bars in the 
contrast histogram mark the surviving edges. (Color figure online)

1 Gmax is the largest grey value, in most cases 255. 
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Definition 1 (Contrast Histogram). Let (v, w) ∈ E be two neighboring 
vertices of the image. The distribution of local contrasts c(v, w) of a digital image 
counts the frequency of the different contrasts 0 ≤ cj ≤ Gmax: 

h0(cj) =  |{(v, w) ∈ E|c(v, w) =  cj}| (1) 

3.1 Pre-selection of Parameters 

The top level of the pyramid is reached after contracting edges with c(v, w) < 
ct, v �= w, and contains the representatives of the |Et| surviving edges from the 
base level E0 with largest contrasts. In the SCIS concept of Cerman etal [ 10] 
edges with lowest contrast are contracted first, then redundant edges are removed 
before iterating contraction and removal with higher contrasts until reaching the 
selected top level. 

Using h0, the edges can be brought into the canonical ordering [ 16] before 
actually starting the contraction process. The use of h0 avoids to sort of the 
edges to determine the next block of edges with lowest contrast. However the 
order of the edges with the same contrast is not determined by the data. For 
those edges we pre-compute a total order of vertices (see below). 

Edges that connect vertices of the same subtree of the ECK collapse into a 
self-loop after G/ECK. If their contrast is below ct they are considered redun-
dant. These edges can be removed before the contractions start. Reverse oper-
ations (for reconstruction) use the reverse canonical order. The original graph 
is completely reconstructed, only the attributes like the pixel value or the edge 
contrast may vary. 

In the contrast histogram we know beforehand how many edges have con-
trast 0: h0(0), contrast 1: h0(1) etc. We also know that the redundant parallel 
edges and self-loops created by the contractions of edges with contrast h0(k) 
are removed after contraction. Notice further that removal of an edge does not 
change vertices and, hence, no vertex attributes are lost by removing edges. Con-
sequently one could bring the edges of the image into the canonical order from 
the contrast histogram before actually starting the pyramid construction. 

4 A Total Order of Vertices in the Base Graph 

We know that the ECKs of a high level of the pyramid form spanning forests of 
the receptive fields of the roots [ 12]. 

Definition 2 (Strict Total Vertex Order). Given a plane graph G(V, E) 
we define the rank of a vertex as a function TO : V �→ [1, |V |] with binary 
relations TO(v) satisfying the following properties: irreflexive, asymmetric, 
transitive, and connected. 

The (strict) total order of the vertices determine unique contraction kernels 
and, in addition, enable a large number of independent contraction kernels that 
can be contracted simultaneously with low parallel complexity.
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Definition 3 (Independence). Two contraction kernels CKa and CKb are 
independent if their intersection CKa∩ CKb = ∅ does not contain any common 
vertex. Furthermore, in combinatorial maps [ 7] two edges are independent if they 
are not adjacent in the circular order around the same vertex. 

4.1 Deriving Spanning Trees and Spanning Forests 

ECK ⊂ E0 are spanning forests of the base graph. 

Definition 4. Let G(V, E) denote the plane graph and TO(v) :  V �→ [1, |V |] be 
the rank of a vertex in the TO. The local neighborhood Γ : V �→ V of a vertex 
v ∈ V is defined by all vertices that are related by an edge in E: 

Γ (v) =  {w ∈ V |(v, w) ∈ E or (w, v) ∈ E}. 
With max-link(TO), every vertex w ∈ V \ Rmax chooses the vertex v ∈ Γ (w) 
that has the highest rank in the TO among the neighbors of v. (v, w) is then an 
edge of the ECK, Tmax: 

Tmax = {(v, w) ∈ E|w ∈ V \ Rmax, TO(w) = max 
v∈Γ (w) 

TO(v)}. (2) 

The roots Rmax ⊂ V of each tree of the spanning forest Tmax ⊂ E are the local 
maxima of TO. 

Proposition 1. The max-link algorithm (2) can be applied in parallel to all 
vertices of the graph. The parallel complexity depends only on the degree of the 
vertices and NOT on the number of vertices. 

4.2 Column Major Order 

A common total order follows the linear arrangement of pixels in a computer, 
called column major order (Fig. 3, [  1]). The ECK contracts all the edges fol-
lowing the max-link strategy. Figure 4(a) shows both the ECK (in red) and the 
equivalent removal kernel (in green) that is not removed in this case (according 

Fig. 3. Max-link of column major order, and annotations.
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to Sect. 3.1). The background face b is added to the ERK. We observe  the gen-
eral relation [ 4] between the spanning tree ECK of G(V, E) and the spanning 
tree ERK of the dual face graph G including the background face b: 

ERK(G) =  E \ ECK(G) (3) 

Figure 4(b) shows the contracted graph G/ECK in red after contracting the 
maximal contraction kernel ECK without removing any parallel edges and self-
loops. The nine surviving self-loops each surround one of the green dual faces 
and all self-loops connect to the root. 

Fig. 4. 4 × 4 maximal contractions of column major TO (Color figure online) 

To establish the correspondence between Fig. 4(b) and (c) the 9 faces have 
been numbered. Figure 4(c) shows the isomorphic unfolded graph and the struc-
ture of the self-loops of G/ECK. The three branches of the ERK, (1, 2, 3), (4, 
5, 6), (7, 8, 9) correspond to the inclusions of self-loops along these branches. 

4.3 Spiral Total Order 

A second example, spiral in Fig. 5, shows  an  ECKspiral that starts in the left 
lower corner of the image, and follows the pixels along a spiral curve in clockwise 
order. This path is Hamiltonian 2 and visits all vertices once. 

Fig. 5. 4 × 4 ECK of max-link of spiral.
2 A Hamiltonian path is a path visiting every vertex of the graph exactly once. 
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In Fig. 5(a) the TO of the spiral is transformed into another ECK= Tmax 
by max-link. The result of the contractions G/ECK is the graph ({•}, Et) 
(Fig. 5(b)) with TO(•) = 16  and 8 self-loops Et directly attached to the root •. 
Only the self-loop around 2 includes self-loop 9 in Fig. 5(c). 

4.4 Properties of the Spanning Forests T 

Figure 6 shows a rectangular 5 × 7 example and its max-link ECK (b). 

Fig. 6. Spiral: total order(TO) of the vertices 

Proposition 2. Let TO denote the strict total order of vertices of graph 
G(V, E). 

1. In general the max-link algorithm (2) produces a spanning forest SF ⊂ E 
of the graph G where each connected component contains one local maximum 
of the TO. It is the root of the tree spanning the connected component. 

2. If we require the TO to form a slope 3 Tmax remains connected and forms a 
spanning tree of the graph G. 

3. Independence of edges: All 4-neighbors (v, w) ∈ E of a spiral TO con-
nect a vertex with even TO(v) and odd TO(w). Then all edges of the subset 
SF0 = {(v, w) ∈ SF | TO(v) is even, TO(w) is odd} are pairwise indepen-
dent except at branching points of SF i.e., (2,21) and (20,21) in Fig. 6(a). 
CKs with more than one edge must be contracted sequentially. 

Proof. (Independence) Since the boundary of an m × n image has always an 
even length 2(m + n − 2) the vertex starting the next inner loop of the spiral 
starts with an odd number (Fig. 6(a)). After contracting all vertices with even 
rank (except the root) only odd ranks of TO0 = TO survive. Compacting 
TOi+1 = (1  +  TOi)/2 in G/SFi+1, i  = 1, 2, . . .  creates again even ranks that 

can be contracted into their max-link odd neighbors iteratively until the root is 
left. The compaction of ranks reduces the number of ranks by a factor of two 
and hence it has logarithmic parallel complexity. 

(Spanning forest) Every vertex v ∈ V creates only one link to its highest 
neighbor.
3 In a slope region, every pair of vertices is connected by a monotonic path [ 11]. 
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Since there are no identical ranks in the 
TO no cycle can be created. Any local 
extremum cannot link to a neighbor, fol-
lowing the created link backwards deter-
mines the receptive field of the extremum 
that is a connected component. 
In Fig. 7 the local maxima are 17 and 18. 

Fig. 7. TO with two local extrema. 

(Spanning tree) A slope cannot contain more than one maximum and one 
minimum [ 11, 13]. Consequently a TO that is a slope has no other extrema than 
the global extrema and algorithm (2) produces a spanning tree. 
�

5 Combining Contrast Order with TO 

The basic strategy is to contract edges with increasing contrast. In real images 
there are many edges with the same contrast since there are only 256 different 
contrasts between grey values in the range 0 ≤ g(v) ≤ 255 while image sizes 
are typically much larger. Hence we aim at using the TO of vertices to deter-
ministically select the edges with same contrast by max-link in the canonical 
order. 

To process several contractions in parallel one further criterion is to group 
edges that are independent of each other. We observed in Proposition 2 that the 
spiral TO provides independent subsets of edges by the parity of the ranks of 
the edge’s end points. Special care must be taken (1) at the diagonals from the 
four corners since CKs contain more than one edge and (2) in the center where 
the diagonals meet (see Fig. 6(b)). Also there the CKs may be larger. But these 
cases are limited and do not increase the parallel computational complexity. 

5.1 An Upper Bound for the Reconstruction 

The reconstruction of the base level of the pyramid can use simple inheritance: 
lower level vertices just receive the value of their parents from the level above. 
The graph’s structure can be computed from the level above by inverse opera-
tions: re-insertion and de-contraction. The base level corresponds to the original 
structure. Let the values of the original image be Orig(v), and the values of the 
reconstruction be Recont(v) with t the top level and v ∈ V0. Then the qual-
ity of reconstruction can be computed as the mean of the pixel-wise absolute 
difference: 

MREt =
∑

v∈V 

|Orig(v) − Recont(v)|/|V0| (4) 

Contracting an edge (v, w) of a contrast c(v, w) =  g(v) − g(w), only one of 
the two vertices v, w survives,s ∈ {v, w}. After reconstruction, the end points 
of the edge will have the same value gr(v) =  g(s) and gr(w) =  g(s) and the 
difference between the original and the reconstruction will be |gr(v) − g(v)| +
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|gr(w) − g(w)| = c(v, w). Taking the mean of the absolute differences is directly 
related to the contrasts: 

MREt(ct) =

∑

(v,w)∈Ec 

c(v, w) 

|V0| = 

t−1∑

j=0 

cj · h0(cj) 

|V0| (5) 

In other words we can bound the reconstruction error with the contrast ct of the 
highest contracted edge: MREt(ct) =

∑
v∈V |Orig(v) − Recont(v)|/|V0| < ct. 

5.2 Some Concrete Results 

Table 2 lists the maximal number of contractions ct satisfying 
ct∑

c=0 
h0(c) < |V0| 

Table 2. Maximally contractible edges 

Berkeley# Picture ct |Vt| # crit 
43074 Pheasant 3 4632 19788 
210088 Fish 4 9264 18019 
41069 squirrel 8 9264 
55073 stone statue 12 15440 
156065 Coral 13 12352 45915 
295087 arc 13 12352 
160068 Cat 19 9264 20541 

for some images from the Berke-
ley data base [ 15]. All images 
have the same size |V0| = 154401, 
|Vt| is the number of vertices at 
the top and # crit is the number 
of critical points (local max, local 
min, saddle) in the base. 

Therefore MREt(ct) of the 
reconstructed pixel values from 
the original is 3 and 4 for images 
Pheasant and Fish, but still 
below 20 for other images. 

Empirical tests have shown 
(see section Gallery in [ 9]) that this is below the noticeable deviation for human 
observers, that can hardly distinguish the reconstruction from the original! A 
high number of critical points (# crit., i.e., coral) indicates the presence of tex-
ture or noise and raises the contrast ct. To overcome such degradations ct could 
be decreased or the brightness contrast could be replaced by a texture contrast. 

6 Conclusion and Outlook 

This paper lifts some secrets about the contrast pyramids: the contrast histogram 
as a tool to determine the maximally possible contrast for contracting edges in 
the contrast pyramid; the spiral total order together with the max-link strat-
egy determine the ECK for maximally contracting a given image before actually 
constructing the pyramid. Contrast is calculated from the pixel’s brightness but 
both bottom up reduction as well as top-down refinement use inheritance such 
that the original color values can be used in the reconstruction. These improve-
ments explain results of reconstructions and allow to adapt the few parameters 
(like ct and TO) controlling the pyramid’s construction. 

There is a wide range of potential applications beyond the efficient deriva-
tion of the region adjacency graph in [ 2]. Using the contrast histogram during
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reconstruction enables to correctly recompute the values of the non-surviving 
vertices. For the computation of the max-links also the 8-neighborhood can be 
used. The inside of a bounding box of an image object can be linearized by a 
spiral and contrast-contracted as a signature of the object The total order for 
voxel images in 3D could enable efficient processing of volumetric data like CT 
or MRI in medical imaging. 

Acknowledgement. Great thanks go to Noriane Petit who produced the experimen-
tal results with the contrast histogram during her internship in Wien, 2024. 

Disclosure of Interests. The author has no competing interest. 
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