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Abstract. Human vision is dynamic: body, head, and eye movements
change the view of the actual environment. Regions and features close to
the boundary are likely to disappear while the probability in the center
is high that they re-appear after the movements. We therefore exploit a
re-arrangement of the pixels that orders the pixels such that the center
of the image is on one end of the sequence and the boundary pixels are
on the other end. A discrete spiral that connects a corner of the image
with the center and contains all the pixels satisfies these constraints. In
addition it is a strict total order. This order enables a max-link strategy
generating efficiently a spanning forest of the image. It allows the efficient
contraction for the levels of an irregular pyramid. The max-link strategy
on the spiral pushes the surviving vertices geometrically towards the cen-
ter of the image. We explore the properties of the proposed combination
and their integration into the contrast pyramid.

Keywords: Spiral total order - Max-Link strategy - Irregular Image
Pyramids

1 Introduction

A gpiral is a frequent concept appearing also in nature: spiral galaxies, young
spiral ferns, or simply hose carts'. The Stochastic pyramid of Peter Meer |13] was
the first image pyramid where the levels of the pyramid were irregular graphs
instead of arrays. The selection of survivors was done by choosing the local
maxima of random numbers associated with every pixel. In this way the distance
between surviving vertices in the next higher pyramid level was at least two.
Then all the non-surviving vertices chose one survivor in their neighborhood. If
there were gaps the process was repeated for the undecided pixels until every non-
survivor had a surviving neighbor. Since the random numbers are not necessarily
all different, decisions at such (rare cases) enhance the influence of noise and
led to different pyramidal structures although the inputs were not substantially
different.

i.e., https://en.wikipedia.org/wiki/NGC_ 1300, https://www.shutterstock.com /search /ferns-
spiral
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Jolion and Montanvert extended Meer’s concept in the adaptive pyramid [8]
by replacing the random selection by a data-dependent adaptation of the graphs
at higher pyramid levels. Also the adaptive pyramid suffers from the fact that
some of the decisions are very weak and hence also influenced by noise.

In the current paper we make only a small modification to the above concepts:
We replace the random numbers by a strict total order of ranks that are derived
from a spiral covering the image. Experience with the total order of a column
major show that pyramids with identical input always create the same structure
but representative pixels of homogeneous regions tend to move towards a corner
of the image [1,3]. The spiral connects the center of the image with one of
the corners by a Hamiltonian path. This allows to push vertices that represent
relevant regions of the image towards the center. The center of a bounded image
is more likely to re-appear in a sub-sequent view than a corner even by a slight
shift of successive image captures. For the selection of survivors we use a max-link
strategy that is somehow related to the principle of Peter Meer but it generates
a spanning forest that can be used to construct the irregular pyramid. It also
allows to adapt the structure to the image’s salient regions.

We first recall the basic principles of the irregular graph pyramid (Section 2).
Then the strict total order is introduced together with the max-link strategy for
efficiently deriving a spanning forest (Section 3). Section 4 introduces the discrete
spirals, how they can be computed from a template and how to combine them
efficiently with the max-link strategy. The parallel computational complexity is
addressed in Section 5. Section 6 proposes how to combine data adaptivity with
the spiral total order in areas of low saliency. Section 7 reports some preliminary
results with the contrast pyramid that is the first pyramid that is able to prop-
agate high spatial frequency to the higher pyramid levels and enables top-down
reconstructions which are hard to distinguish from the original images although
only a few percent of the original colors are used. The Conclusion summarizes
the paper and enumerates a few future research issues.

2 Recall on the Irregular Graph Pyramid

The irregular graph pyramid [10] consists of several levels of plane graphs G;(V;, E;),
1 =0,1,...t where the base level GGy is the 4-neighborhood graph of an image.
The pixel values g(v),v € Vp, are the attributes of the vertices Vj. Two operations
generate the higher pyramid levels: edge contractions and edge removals [4].
The operation of contracting an edge deletes the edge and one of its end points
(the other "survives") while the removal of an edge deletes the edge and merges
its adjacent (dual) faces. Contracting an edge has the important property of
preserving the connectivity of the graph while removing an edge merges the two
adjacent faces. A set of edges that are contracted with the same surviving vertex
are called contraction kernels (CK). The result of contracting graph G by a
contraction kernel CK is denoted by G/CK.
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The concept of equivalent contraction kernels (ECK) [9] allows to com-
bine multiple contraction kernels resulting in the same graph

G = ((Go/CKy)/CK ... |CK,) = Go/ ECK (1)

as after several successive contractions. The receptive field RF(v,) C 1, of a
higher level vertex v, € Vi, ¢t > 0, can be derived directly from the base by the
ECK(v;) that is a forest spanning the receptive fields of all top vertices v, € V;.
A tree is an acyclic connected graph with one less edges T" C E than vertices:
|T'| = |V| — 1. The receptive fields of a graph G = (V;, E;) at a (top) level t > 0
partition the base vertices,

Vo= |J RF(w), (2)

v €V

the receptive fields are the connected components of the spanning forest of the
base graph G corresponding to the ECK.

3 Total Order and Max-Link

The ECKs of a high level of the pyramid form spanning forests of the receptive
fields of the roots [9]. In regular pyramids [5] the receptive fields are determined
by the position of the surviving pixel, the reduction factor (in ML? called stride)
and the shape of the reduction window. In irregular pyramids they are the result
of the contraction process with selected contraction kernels. This selection can
be related to properties of the data and, hence, the contraction adapts to the
data like in the contrast pyramid [10]. But this may, in certain cases, lead to
ambiguous selections that may also be influenced by noise. A simple example
are large homogeneous regions where the surviving representative vertex should
be in the middle of the region. To avoid that these representative vertices are
located along the boundary of the region or of the image, and disappear by small
shifts of the camera, we introduce a strict total order as additional attribute of
the vertices.

Definition 1 (Strict Total Vertex Order (TO)). Given a plane graph G(V, E)
we define the rank of a vertex as a function p : 'V +— N with binary relations

p(v) satisfying Yv £ w € V : p(v) # p(w).

The (strict) total order of the vertices determines unique contraction kernels
and, in addition, enable a large number of independent contraction kernels that
can be contracted simultaneously with low parallel complexity.

Definition 2 (Independence). Two contraction kernels CK, and CK, are
independent if the intersection of their receptive fields RF(CK,)N RF(CK,) =
0 is empty.

% machine learning
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3.1 Deriving spanning trees and spanning forests
ECK C Ey are spanning forests of the base graph [9].

Definition 3. Let G(V, E) denote the plane graph and p(v) : V +— N be the
rank of a vertex in the TO. The local neighborhood I'(v) C V of a vertex v € V
is defined by all vertices that are related by an edge in E:
() ={w e V|(v,w) € E or (w,v) € E}3. With max-link(TO), every vertex
w € V\ Rypas chooses the vertex v € I'(w) C V that has the highest rank in the
TO. The link (w,v) € Ty is then an edge of the ECK:

Te = {(w,v) € Elw € V\ Ryqgqu, v = arg mlg(x)p(u)}. (3)

uwel (w

The 100ts Ryaz C V' of each tree of the spanning forest Ty, C E are the local
maxima of the TO (see Fig. 4a).

Proposition 1. The edges T, C E computed by (3) can be computed in parallel
by all vertices of the graph. The parallel complexity depends only on the degree
of the vertices and NOT on the number of vertices.

4 Spirals

In polar coordinates (r,0) an Archimedean spiral (Fig. 1(a)) can be described by
the equation r = b- 0 with real number b. The constant parameter b controls the
distance between the loops. The continuous spiral can be sub-sampled (Fig. 1(b))
with constant arc length between successive sampling points. After sub-sampling
by a factor of 8 the first sampling point after the center covers nearly the complete
first loop of the spiral. This creates complicated configurations around the center
in all further sub-samplings. A discrete version is shown in Fig. 1(c). Choosing

e ﬁenter

€ Samplin
o Sup-samplin
o sup-samplin
sub-samplin

o]

(a) Archimedean spiral (b) samplings (c) discrete spiral

Fig. 1. Continuous to discrete spirals

b =1 the discrete spiral is image-filling i.e. covering all the pixels of the square
array of the image. Pixels along the Hamiltonian* path of the spiral receive an

® In images 4-neighborhood is I'u(z,y) = {(p,q)| |r —p|+ |y — ¢ < 1} and 8
neighborhood Is(z,y) = {(p, ¢)| max(jz — p|, |y — q|) < 1}.
% A Hamiltonian path is a path visiting every vertex of the graph exactly once.
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additional attribute: This rank p measures the number of discrete steps of the
path from the starting pixel.

Spirals for different images and even shapes can be cut out from a pre-
computed large template. Fig. 2(a) shows the onion-like relations between spirals
of different sizes. Larger versions can be created without re-computing the central
part and smaller versions simply remove the respective differences. Smaller sub-
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Fig. 2. Related smaller and larger sub-windows

regions can be cut out from a larger template: sub-windows as centered squares
in Fig. 2(a,b). The ranks of the smaller window correspond to the ranks of
the template. Centered rectangular sub-windows can also be cut out from the
template (Fig. 2(c)). In these cases the ranks are no more contiguous and contain
gaps. However they still form a strict total order.

Virtual links (Fig. 3) in the same orientation as the spi-
rals of the template connect the created gaps of the 2 x 6
subwindow. The selected ranks in Fig. 3 are cut out from
Fig. 7(b). Non-rectangular shapes can also be cut-off
from the template but they may create further local ex-
trema. Consequently the resulting ranks may form only a
spanning forest. How to resolve such situations is shown Fig. 3. Virtual links
in Section 6.

4.1 Max-link of the Spiral Total Order

We consider now the use of the max-link strategy as defined in Def. 3 for gen-
erating a spanning forest of the image from the spiral ranks with the purpose
of using the spanning forest as ECK for constructing the irregular pyramid ef-
ficiently. The 4 x 4 example in Figure 4 shows ranks of the spiral that start in
the left lower corner (p = 1) of the image, and follows the pixels along a spiral
curve in clockwise order. This path is Hamiltonian and visits all vertices once.
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(a) Spiral ECK=Tg (b) G/ECK (red), G/ECK (green) (c) structure of self-loops

Fig. 4. 4 x 4 ECK of max-link of spiral

The max-links Ty, computed from the spiral are shown in Fig. 4(a) by arrows
pointing towards the highest ranked 4-neighbor. It constructs the pyramid with
ECK= Tg. The result of the contractions G/ECK is the graph ({e}, E}) with a
single vertex (Fig. 4(b)) and rank p(e) = 16 in the base. The nine surviving edges
form nine self-loops E; directly attached to the root e. Only the self-loop around
includes self-loop @ in Fig. 4(c). This ECK spans the complete image if the
spiral ranks are used for max-link and the branches of the spanning tree connect
the root with 4-connected paths of length not longer than \/m =n = 4 that
are well suited for constructing the pyramid efficiently.

4.2 Properties of the Spanning Forests T

Fig. 5 shows a 4-connected 9 x 9 neighborhood
graph G(V,E), with |[V| = n? = 81,|E| =
2n(n — 1) = 144, a 9 x 9 discrete spiral Ga =
(V.Ea),Ea C E (in green). The 80 edges of
the spiral cover all vertices of the image and
form a Hamiltonian 4-path that connects a cor-
ner of the image with its center. The 80 max-
links Gg = (V,Tg) are shown in red. The spi-
ral and the max-links together contain all edges:
Fa UTg = E. Both the spiral and the max-link
|Fa| = |Ts| = n? —1 are trees spanning V. There

are only |Ea N Ty| = 2(n® — 1) — 2n* + 2n = Fig. 5. Spiral and Max-links
2(n—1) = 16 common edges (red line inside green
rectangle).

The edges common to Fa and Ty appear exclusively along the diagonal
staircases and are independent.

Proposition 2. Let p denote the strict total order of the wvertices of graph
G(V,E) with |V| = n?, Ea C E denotes the edges of the spiral and Ty, C E
the max-links of the spiral ranks.
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1. In general max-link (3) produces a spanning forest SF C E of the graph
G where each connected component contains one local maximum of the TO.
It is the root of the tree spanning the connected component.

2. If we require the TO to form a slope® Ty remains connected and forms a
spanning tree of the graph G with |Ts| = n? — 1 links.

3. Independence of edges: All /-neighbors (v,w) € I'y C E of a spiral TO
connect a vertex with even p(v) and odd p(w). Then all edges of the sub-
set SFy = {(v,w) € SF|p(v) is even, p(w) is odd} are pairwise independent
except at branching points of SF.

4. All boundary vertices are connected to one of the four diagonal stair cases
of Ty by a sequence of horizontal or of vertical edges.

5. orthogonality: Vea = (z,y) € EaJdeg = (2,2) € Ty : ea L eq.

Proof. (Prop. 1) Every vertex v € V creates only one link to its highest neigh-
bor. Since there are no identical ranks in the TO no cycle can be created. Any
local extremum cannot link to a neighbor, following the created link backwards
determines the receptive field of the extremum that is a connected component.

(Prop. 2) A slope cannot contain more than one maximum and one mini-
mum [10, 7]. Consequently a TO that is a slope has no other extrema than the
global extrema and (3) produces a spanning tree.

(Prop. 3) Since the boundary of an m X n image has always an even length
2(m + n — 2) the last vertex of any loop has the opposite parity to the start
vertex of the loop. This property propagates along the spiral (Fig. 4(a) and
Fig. 7(b)). After contracting all vertices with even rank (except the root) only
the edges with odd ranks py = p survive. Compacting p;+1 = (1 + p;)/2 in
G/SF;41,i=1,2,... creates again even ranks that can be contracted into their
odd max-link neighbors iteratively until one root is left. The compaction of ranks
reduces the number of ranks by a factor of two at each iteration and, hence, it
has logarithmic parallel complexity.

(Prop. 4) Starting the spiral from a corner and incrementing the ranks along
the spirals makes all ranks of the respective inner loops higher than the ad-
jacent outer loop. Consequently max-link at vertices of the outer loop create
4-connected links to the inner loop. The only exceptions occur at the corners
and when the spiral proceeds to the next inner loop.

(Prop. 5) This property is related to Property 4: links from the outer loop
to the next inner loop are clearly orthogonal to the orientation of the spiral
edge. Since the spiral edges at the corners form a right angle the max-link at the
corners and the end-of-spiral-loop edges, the claim is satisfied. O

5 Parallel Computational Complexity

Independence of edges is a pre-condition for contracting a set of edges in parallel
(Def. 2). If both end points of an edge (x,y) € Ty have degrees < 3 then the
resulting (new) vertex has the lower degree of both end points, e.g. degree 1

® In a slope region, every pair of vertices is connected by a monotonic path [7].
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S S

(a) linear: 2 parallel steps  (b) pending: 1 parallel step  (c) 3 independent subsets

Fig. 6. Parallel steps to contract max-link of the spiral

or 2. In a linear sequence every second edge (indicated by alternating red and
yellow background in Fig. 6(a)) can be contracted in parallel. The surviving
edges form again a linear sequence. In this shorter sequence every second edge
can be contracted again. This process reduces the length of the sequence each
time by a factor of 2 until a single vertex is left.

According to Property 2.3 the 4-adjacent vertices of different spiral loops have
different parity. All boundary vertices except corners and their two 4-neighbors
form linear sequences until reaching either a diagonal staircase or the center
(Prop. 2.4). Every linear sequence can be contracted to a single vertex by con-
tracting repeatedly every second edge. Hence only a logarithmic number of par-
allel steps is needed.

What remains is shown in Fig. 6(b): there are the red pending edges and the
blue diagonal staircases. Clearly all the pending edges do not share any common
vertex and can be contracted in a single parallel step.

Finally the remaining staircases in Fig. 6(c) can be subdivided into following
subsets of independent edges: the green horizontal edges and the red vertical
edges. Two edges in the central region are colored blue because they have an end
point of degree 3 (marked by a circle) in the central region where the two adjacent
edges are already colored red and green. Both the green and the red subsets are
independent, form linear sequences and can be contracted in logarithmic parallel
steps. The remaining two blue edges need maximally two steps.

6 Combining Data Order with TO

The order of the data can be given by the different labels of connected regions as
a result from a segmentation. Or it can be simply the order determined by the
different grey or color values. Or the order imposed by a local brightness contrast
between pixels such as used in the contrast pyramid [10]. In all these cases the
order of the data may not be strict, e.g. there are pixels with the same value,
label or contrast. In such cases we want to combine the order of the data with
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the strict total order of the image pixels and decide on the rank inside regions of
same/similar value or label based on the pre-defined total order of every pixel.

- 910 11 12 13 14|15 16 17 —
:I_! I | !_I 839 40 41142 43 44 45 18 —I IQIJI IQIDI
7 38161 62 63 64|65 46|19 :I
1O 6 37/60 75 76 77|66 47|20 :I—l— EEM
4 536 59 74 81|78 67 48 21 X j9
4 35 58 73 80(79 68 49 22 _I

—t— —||:E 334[57 72 71 70 69 50 23 -- | —
| 23356 55|54 53 52 51 24
] | 132 31 30 29 28|27 26 25 :réf—L_ C
(a) Regions A,B,C with (P) Ranks of spiral with ) 7 _ 1, 1y UTL.
max-link of spiral local maxima

Fig. 7. Image partition into 3 regions: A,B,C

Consider a simple example: Fig. 7(a) shows a 9 x 9 image that is partitioned
into 3 regions: V = AUBUC. The boundaries between the regions A and B are
colored in red and between B and C in green. C is completely inside B. The
overlay of the image with max-link of spiral in Fig. 7(b) intersects the red and
green boundaries at 20 positions. Instead of removing these edges of Ty and
re-connecting the different sub-trees, we apply max-link on each of the regions
A, B, C separately and get links 77 = T4 U Tp U T¢. This may still create
local maxima (@) in T’ and disconnect the max-links inside the regions A,B,C.
Fig. 7(b,c) show 4 local maxima @ in A, 3 in B and one in C.

<) | 3ElE] K
A A A
@_ZE B " B
(a) A/Ta,B/T5,C/Tc (b) Ta, Ts,Tc (¢) G/(TAUTBUTE), self-

loop around C

Fig. 8. Deriving the topologically correct region adjacency graph

Since the regions A,B,C are no more connected in the spanning forest T’
we contract A/T4, B/Tg,C/Tc. The surviving vertices are the local maxima
of T" and the surviving edges re-connect the different components of Ty C
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FEs,Tp C Ep,Tc C Ec. But the connections may not be acyclic and with
multiple edges. In such case we re-apply max-link on the contracted graphs
(A/Ta,Ea),(B/Tg, Ep),(C/Tc, Ec). Since the contracted graphs contain only
the local maxima but still form a TO, the result is a spanning forest with less
local maxima. The contraction of the sub-trees and re-linking with max-tree
can be repeated until reaching a spanning tree for all regions®. Our example
shows the result in Fig. 8(a) where the new connections are marked by double
edges. Because the original regions are connected and contraction preserves the
connectivity, the process converges to the resulting spanning trees which can
be down-projected to the ECK of the original graph using the unique ranks
(Fig. 8(b)). The result of contracting G/(T4 UTp U T¢) is shown in Fig 8(c).
Redundant edges have been removed, the self-loop around region C is preserved.
All three top vertices are at the closest position within their regions A,B,C.

General Algorithm for constructing the combined ECK
Input (Fig. 7(a,b): a) region partition G = (J,. 4 Rx with distinct labels A € A
for every vertex; and b) ranks p of the spiral TO.

1. For all A € A: Tx(\) = max-link of all connected regions R).
2. While links of any label have more than 1 component do:
— Re-run and re-compute max-links on Ry /7T) inside each region.
3. Expand the top spanning trees to the base following the ranks: ECK.
Contract G/ECK with the resulting ECK.
5. Simplify the final graph by removing redundant parallel edges and redundant
self-loops.

=

7 Max-link with spiral TO for the Contrast Pyramid

The basic strategy (see [10] for more details) is to contract edges with increasing
contrast up to a certain level that is determined by the contrast histogram [11].
In real images there are many edges with low contrast (Fig. 9(b)). Hence we
use the TO of vertices to deterministically select the edges in connected regions
with same contrast by the max-link of the spiral. To process several contractions
in parallel one further criterium is to group edges that are independent of each
other. We observed in Proposition 2 that the spiral TO provides independent
subsets of edges by the parity of the ranks of the edge’s end points.

Fig. 9 shows the example Fish of the Berkeley database [12] with its contrast
histogram Fig. 9(b). Contrasts higher than 4 are shown in red and identify the
contrast of the top level edges connecting vertices with 6% of the original colors
(more examples and algorithmic details can be found in [6]). The reconstruction
propagates the top colors down to the base image.

% The number of repetitions is the logarithm of the longest branch in the reduced
graph.
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4065

0 20 40 60
(b) Contrast histogram

(a) original Fish (c) reconstruction

Fig. 9. Original image, contrast histogram, and reconstruction with 6% of colors

Table 1 lists the highest contrasts ¢; satisfying > ho(c) < |Vp| for some images

c=0
from the Berkeley data base [12]|. All images have the same size |Vj| = 154401,
|V%| is the number of vertices at the

o o Table 1. Maximally contractible edges
top and # crit is the number of criti-

cal points (local max, local min, sad-  |Berkeley# Picture ce| |Vi| # crit]
dle) in the base. Therefore the mean 210088 Fish ][ 9264 18019
error of the reconstructed pixels has 13074 Pheasant 12| 4632 19788
a brightness difference smaller than 160068 Cat 151 9264 20541
8 and 12 for images Fish and Pheas- 156065 Coral 16112352 45915
ant, respectively, but is still below 505087 arc 16112352
30 for the other images. Empiri- 55073 stone statue 21115440
cal tests have shown (see section 11069 squirrel 250 9264

Gallery in [6]) that this is below the
noticeable deviation for human observers, that can hardly distinguish the recon-
struction from the original!

8 Conclusion and Outlook

This paper proposes complementary tools for building the contrast pyramids:
the spiral total order together with the max-link strategy determine the ECK
for maximally contracting a given image before actually constructing the pyra-
mid. The shown properties of the combination of the discrete spiral together
with the max-link strategy not only push the surviving vertices as close as pos-
sible towards the center of the spiral, they have the potential to allow a fast
parallel implementation. Since the content is actual research we expect further
experimental results soon.

There is a wide range of potential applications beyond the efficient derivation
of the region adjacency graph in [2]. For the computation of the max-links also
the 8-neighborhood can be used. The inside of a bounding box of an image
object can be linearized by a spiral and contrast-contracted as a signature of the
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object. The total order for voxel images in 3D could enable efficient processing
of volumetric data like CT or MRI in medical imaging.
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