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Image Pyramids and Curves

An Overview

Walter G. Kropatsch

Abstract

This technical report represents the first part of my habilitation (University of Innsbruck, Austria,
1990). It contains the quintessence of my scientific work in the years 1984-1989. The second part
of the habilitation consists of a series of my own publications to the subject. It was not reproduced
here since the papers already appeared separately.

The present report offers a condensed survey over the international literature in this branch,
arranged and commented according to a personal weighting in order to relate it to my works on
the one hand and on the other hand, to put the significance of the single publications in the
greater context of the current state of the art in computer vision.

Pyramids are important structures in the processing of digital images. Invented as an ordered
collection of images at multiple resolutions they have developed into efficient data and processing
structures. They give us the hope to achieve acceptable performance in vision tasks that have to
process millions of bytes in extremely short time.

Curves represent shapes at an intermediate level. They describe either the boundary of a region
or the central axis of an elongated region in the image. Hierarchical curve representations aim
at a stepwise reduction of the data to ’significant parts’ like corners or curvature extrema while
preserving the major property of a curve: its connectivity.



Contents
1 Introduction

2 Analysis of Digital Images

2.1 Levels of Abstraction . . . . . . . . . .. ...
2.2 Representation levels . . . . . . . .. . L Lo
2.3 Processing levels in image analysis . . . . . . ... ... ...,
2.4 Control mechanisms and evidence accumulation . . . . . . .. ... ... ...
2.4.1 SIGMA . . . e
24.2 PSEIKI . . . . . . e

3 Image Pyramids

3.1 The contents of a pyramidalcell . . . ... ... ... ... ... ... ..
3.2 Operations in a pyramid machine . . . . . . . . . ... ..o oo,

3.2.1 Mesh-connected multi-processor architectures . . . . . . ... ... ..

3.2.2 Pipeline architectures . . . . . .. ... ... . 0o,
3.3 Biological motivation . . . . . . . .. ... L L
3.4 The pyramid as a model for real time computer vision . . . . ... ... ...
3.5 German articles . . . . . . .. L L
3.6 Bibliographical Notes . . . . . . . .. . ... . ... ... ... ... ...

4 Numerical Computations in a Pyramid

4.1 Calculating sum and mean . . . . . . ... ..o oL oL
4.2 Calculating the variance . . . . . . .. ... L L L
4.3 Calculating the bimodality . . . . . . . .. . ... ... oL oL

5 Different Pyramid Structures

51 The2x2/2pyramid . . . . . .. ... ..o
5.2 Properties of regular structures . . . . ... ... . o o L
5.3 The robustness of pyramids . . . . . . ... ... o o oo
5.4 Pyramidal and non-pyramidal architectures . . . . . ... .. ...,

6 Irregular Pyramids

6.1 Parallel graph contraction . . . . .. ... ... ... oo,
6.2 Decimation . . . .. ... ..
6.3 Neuralnetwork . . . . . . . . . ...



6.4 Fractals . . . . . . . . e

7 Gray Level Pyramids

7.1 Reduction by linear filtering . . . . . . . .. ... ... o oL
7.2 Edge-preserving reduction . . . . . . . ... L o oo
7.3 The maximum pyramid . . . . . .. .. . ... e
7.4 Morphological reduction . . . . . ... ... L o
7.5 Pyramid linking and segmentation . . . ... ... ... ... L.
7.6 Hierarchical Hough-transforms . . . . . ... ... ... ... .........
7.7 Bibliographicalnotes . . . . . . . ... .. L Lo

8 Laplacian Pyramids

8.1 Image compression by 5 x 5/4 and 3 x 3/2 Laplacian pyramids . . . . .. ..
8.2 Filtering in the space domain versus the frequency domain . . . . . . . . . ..
8.3 Further applications . . . . . . . .. . .. .

9 The Wavelet Representation

10 Curves
10.1 Curve detection . . . . . . . . . L L e
10.1.1 In two dimensions . . . . . . . . . . . . . e
10.1.2 In three dimensions . . . . . . . . . . ... ... ...
10.2 Primal sketch . . . . . . . . . Lo
10.2.1 Terrain related primitives . . . . . . . . . ... oL
10.2.2 Shape related primitives . . . . . . . . ... oo
10.3 Shape representations . . . . . . . . . . . ... e
10.3.1 CODONS . . . . .
10.3.2 Generalized ribbons . . . . . .. ..o oL oo
10.3.3 Relating the skeleton with the boundary . . . . . . .. ... ... ...
10.4 Scale-space representations . . . . . . . . .. ... e
10.4.1 The uniqueness of the Gaussian kernel . . . . . . . . ... ... ....
10.4.2 1D-smoothing of parametrical curves . . . . . .. ... ... ... ...
10.4.3 Detecting features in 2D smoothed images . . . . . . . .. ... .. ..
10.5 Discrete representations . . . . . . . . ... ..o oo
10.5.1 Splines. . . . . . . .
10.5.2 Moments . . . . . . . . . . e



10.6 Digital straight lines . . . . .. ..

10.6.1 A sufficient condition for digital straightness . . ... ... ... ...
10.6.2 Other straight line algorithms . . . . . . . . ... ... ... .. ....

10.7 Corners . . . . . . . ... ... ..

10.7.1 Corner detection by imperfect sequences . . . . . . . . ... ... ...

10.7.2 Other corner detectors . . .

11 The Curve Pyramid

11.1 The 2 x 2/2 curve pyramid and the RULI-chain code . . . . . ... ... ...

11.2 Hartmann’s hierarchical structurecode . . . . . . . . . . . . ... ... ....

11.3 The multiresolution intensity axis of symmetry . . . . . ... ... ... ...

11.4 Further approaches . . . . ... ..

12 Dual Pyramids
12.1 Dual grids and pyramid structures

12.2 Cooperation between dual pyramids
13 Conclusion
Index

References

63
64
64
65
66
68

69
69
71
71
72

73
73
76

78

79

82



Zusammenfassung

Dieser technische Bericht stellt den ersten Teil meiner Habilitationsschrift (Universitat Inns-
bruck, 1990) dar. Sie enthilt die Quintessenz meiner wissenschaftlichen Arbeit in den Jahren
von 1984-1989. Der zweite Teil der Habilitation besteht aus einer Reihe eigener Publikationen
zum Thema. Er wurde hier weggelassen, da diese Beitrage separat erschienen sind.

Der vorliegende Bericht bietet einen zusammenfassenden Uberblick iiber die internationale
Literatur zu diesem Fachbereich, allerdings nach personlicher Gewichtung geordnet und mit
Kommentaren versehen, um sie einerseits in Beziehung zu meinen Arbeiten zu setzen, an-
dererseits aber die Bedeutung der Einzelpublikationen in einen grofleren Zusammenhang zu
stellen, und zwar den des Fachgebietes ” Computer Vision”.

Pyramiden stellen wichtige Strukturen bei der Bearbeitung digitaler Bilder dar. Erfunden
als geordnete Sammlung von Bildern in verschiedenen Auflosungen haben sie sich zu effizienten
Daten- und Verarbeitungsstrukturen entwickelt. Sie geben uns die Hoffnung auf akzeptable
Leistungen bei Aufgaben des Computersehens, bei denen Millionen von Bytes in extrem kurzer
Zeit zu verarbeiten sind.

Kurven stellen Formen in Bildern auf einer mittleren Ebene dar. Sie beschreiben en-
tweder den Randverlauf einer Region oder die Hauptachse einer langlichen Region im Bild.
Hierarchische Kurvenreprisentationen haben das Ziel, die Datenmenge schrittweise auf ’sig-
nifikante Teile’ wie Ecken oder Krimmungsextrema zu reduzieren, wihrend gleichzeitig die
Haupteigenschaft einer Kurve, ihr Zusammenhang, erhalten bleibt.



1 Introduction

This report gives an overview of the state of the art in the field of computer vision embedding
the new pyramid structures and curve representation schemes. It is combined with a guide
to the related literature. It represents a methodical preparation and combines branches of
computer vision that have been treated separately in the past. In particular following research
areas are covered and aggregated to show several underlying general principles:

e The role of abstraction and of different levels of processing in image analysis.
e New pyramidal structures and their properties.

e Various numerical and symbolic computations in a pyramid.

e Efficient multi-scale representations.

e The role and representation of curves

e in continuous scale-space and

e in discrete curve pyramids.

e Cooperation between both dual pyramids and complementary representation schemes.

The intention of this document is to summarize the own research contributions in the
contextof the important works in the related fields and to explain some of the underlying key
principles. The survey is certainly not complete and can sometimes only scratch the surface
of the problems. A compendium of references to the related literature should help to find
specific information in more detail. An index lists the citations with the referencing page
numbers and should provide a convenient way to localize the related sections in the text.

Since images are digitized and stored in computers many techniques have been developed
to process and analyze them. Although a lot of interesting results could be achieved so far,
we are not yet arrived at a stage where we could say that the computer can see. The
challenge in the area of computer vision is certainly that humans are able to perform vision
in so many tasks nearly without any effort.

The problems and goals of analyzing digital images by computer algorithms will be de-
scribed in chapter 2. It shows the special need for hierarchical structures to convert the huge
array of numbers, the image, into a sort of description of what is observed in the image.
Chapter 3 introduces pyramidal data and processing structures and gives also a biologically
plausible motivation. Many parallel numerical algorithms need only O(logn) steps to com-
pute results like sum, average, or variance (chapter 4). Special emphasis is put on properties
of different pyramidal structures, on regular (chapter 5) and on irregular ones (chapter 6).
Gray level pyramids contain low-pass filtered versions of the high resolution input image
(chapter 7) and in Laplacian pyramids (chapter 8) the levels contain band-pass filtered im-
ages at multiple resolutions. The wavelet representation is a recent extension of Laplacian
pyramids (chapter 9).



Curves are derived during the analysis process and represent shapes of different origins
(chapter 10). Continuous (e.g. scale-space) and discrete (e.g. chain code) models are pre-
sented with emphasis on possibilities for hierarchical processing. The cells of the curve pyra-
mids in chapter 11 represent curve segments ordered by their length. The concept of dual
pyramids (chapter 12) combines both gray level and curve pyramids in a cooperational model.

2 Analysis of Digital Images

The general goal of image analysis (also known under the term Image Understanding in Ar-
tificial Intelligence) is to find semantic interpretations of images, in particular to localize and
name objects contained in a scene and to assess their mutual relationships. The central prob-
lem is to recognize known objects reliably, independent of variations in position, orientation,
and size, even when those objects are partially occluded. Although some information is lost
by the image formation process, biological vision systems demonstrate that this task can be
accomplished reliably and efficiently even under difficult viewing conditions.

To see the world, the human eye is equipped with approximately 130.000.000 receptors
and 12.000.000.000 neurons in the brain. "Technical’ characteristics of the biological vision
system are: 1-2 milliseconds are needed to forward data from one neuron to the next; and
often 1 second is sufficient for a human to recognize a complex scene (like a busy street) and
to react appropriately. With these time constraints it can be concluded that only several 100
massively parallel processing steps (neuron-to-neuron connections) must suffice for the task
[Uhr86].

Further comparisons between human thinking processes with similar processes in com-
puters are drawn in [Ger87]. This book gives a good overview of the neurophysiological
foundations. The information processing of the neurons is explained in terms of notions from
computer science. Neuron structures form hierarchies similar to pyramids as introduced in
chapter 3. Coding and decoding of information is shown as the principle of mapping and stor-
ing events in the human brain. A similarity principle assigns similar events to similar codes
(compare with 'matching’ below). Both recognition and learning make use of this principle.

Most of the current approaches in image analysis can be described as a sequential multi-
stage process (Fig. 1). For detailed information on image processing and analysis we refer
to standard books like [Moi80], [RK82], [Mar82], [Ser82], or [Jae89]. This multi-stage pro-
cess can be seen as a step-wise translation that is guided by the interpretation goal and
counstrained by its knowledge about the external world and about the available vocabularies
at different processing levels. To correctly interpret a given image it is important to know
the classes of OBJECTS that can be expected in the WORLD, and what the properties of
their REFLECTING SURFACES are. In the image formation stage, the raw image data are
collected by a sensing camera, which outputs an array of intensity values. This DIGITAL
IMAGE is processed to produce a set of data primitives, often called FEATURES. Similar
features are then assembled to more complex structures (e.g. REGIONS). A survey on image
segmentation techniques can be found in [HS85]. SPECIFIC image PARTS can be derived
from those regions by e.g. geometrical properties. They are useful components for OBJECT
models and SCENE DESCRIPTION. In the final phase, these complex features are matched
against existing object models in a data base (e.g. OBJECTS in the WORLD vs. OBJECTS
in the SCENE).
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Figure 1: Processing stages in digital image analysis

Some of the pictorial entities, their information content, and the operations that can be
performed at different processing levels are summarized in Table 1.

There exist many different methods to analyze digital images, many sceneries of applica-
tion, many different vocabularies in which the final description should be expressed, but a
very simple data structure at the input side. Hence the need to introduce abstract classes of
operation, different levels of representation. Even the world shows many different aspects. To
deal with this huge variety of data and to focus the processing to the final goal, mechanisms
are necessary to agglomerate and compact the data, probably repeated in several stages, until
the amount of data is small enough to make final decisions.

Abstraction is a powerful data fusion process. It enables individuums and processes to
differentiate between important and less important informations, methods, representations
etc. Such generalizations allow to treat all the elements of a general class in the same way.
When successively applied, they imply a hierarchical structure with different levels

e of concepts for representing knowledge about the world, e.g. the conceptual hierarchy
in [BR80],

e of representation (see below),
e of processing stages (see below), e.g. hierarchies of invariance in cognition [Bal86], and

e in the complexity of processing images.

Finally we address the problem of controling the processes in a vision system and the methods
to accumulate evidence.



Table 1: Pictorial entities at different levels of processing

Entity information content examples for operations
Picture imaging conditions, geometry sampling, rectification
Pixel gray value / color vector enhancement, classification
Neighborhood | spatial locality shrink, expand
(Step) edge magnitude, orientation edge detection and linking
Region homogeneity, connectivity segmentation
Boundary shape connecting continuous curve segments
Image Part specific image properties property measurement
Object Part specific object properties property matching
Object functionality relational matching
Situation specific configuration of objects | interpretation
Scene visible situations of the world description

2.1 Levels of Abstraction

Abstraction is a scientific method for isolating facts, for generalization, or idealization. It has
the characteristic to neglect details in favour of important features. Abstracted objects form
generic classes which have common properties but differ in detail. Since there is no unique
way for abstraction it may depend on functional goals (see [FB86]). Examples for abstraction
in digital image analysis are listed in Table 2.

Table 2: Abstraction in digital image analysis

operation neglected detail preserved feature
projection higher dimension objects, properties
smoothing high signal frequences low signal frequences

small (noise) regions

grey value

absolute grey tone
individual pixel variations
appearance model

reduced resolution
thresholding/quantization
edge detection
segmentation
identification

large regions

binary shape

significance, orientation

size and homogeneity

generic properties and relations

Advantages of abstraction are: data reduction; reduced processing time by divide and
conquer, entier generic classes are handled at once, differencing between class members only
when necessary. As a consequence one tries to build abstraction hierarchies that have the
above advantages and that allow also the necessary distinction between individual members.

Generalization has a long history in cartography. It is a necessary tool when maps at
different scales have to be produced. Nowadays map data are stored in computers by geoinfor-
mation systems (GIS). In [Ric88] classical generalization is divided in two functional subareas:
editorial generalization and technical generalization. Generalization in a GIS may involve the
following:



1. feature selection (elimination)

2. linear simplification (smoothing)
3. symbolization

4. feature amalgamation

5. feature displacement

An image pyramid is a typical example for an abstraction hierarchy in image analysis. We
shall develop an extended pyramid scheme in which one cell of the pyramid structure may
contain more than just one grey value, e.g. edge information or a symbolic curve code.

2.2 Representation levels

The ’connection table’ allows the transition between the different levels in [TR87]. Five
different representation levels are identified from the real to the cognitive world:

e 2D image, ’image-based’;

e 3D skeleton, ’feature-based’, lexical level;

e connection table, 'part-based’, syntactic level;

e object description language, 'model-based’, semantic level;

e natural language, 'language-based’.

Basic descriptive notions are (comp. Fig. 1): objects - parts - primitive parts. The connection
table describes the way in which parts form an object.

In [Kro88d] the fields of (scientific) visualization (image synthesis, a subarea of computer
graphics) and image analysis, although different in their goals, are related through common
intermediate levels of representation. Visualization generates an image from a computer
stored description, digital image analysis is supposed to produce descriptions of a digital
image. Descriptions at different levels of abstraction form the basis for both fields. Following
levels are identified:

1. 2D digital image with pixels;

2. image segments such as region, edge, or texton [JB83];

3. image segments with specific properties such as generalized cylinders;
4. fragments, parts of objects, 'GEON’ [Bie87];

5. objects, models;

6. functional areas [MMB83];

7. natural language like in [TR87].



Images are a medium for communication. For evaluating the quality of a visual information
transmission process four models are presented.

It is concluded that pyramids have several of the required properties of a visual system to
approach a performance comparable with humans.

2.3 Processing levels in image analysis
Non-accidental properties allow 3-D space inference from 2-D image features in [Bie87]: e.g.

1. collinearity;
2. curvilinearity;
3. symmetry;
4. parallel curves;

9. curves terminate at a common point.

From contrasts in these five non-accidental relations, specific members of the set of gener-
alized cones can be differentiated: geons. Two or three geons suffice to unambiguously
represent most objects.

The processing stages of "Recognition-by-Components’ for object recognition are:
e edge extraction;

e detection of non-accidental properties;

e parsing at regions of concavity;

e determination of components;

e matching of components to object representations;

e object identification.

Tsotsos” model considers different levels of complexity [Tso87]. Analysis of the complexity
level is necessary to ensure that the basic space and performance constraints observed in
human vision are satisfied. The maximum power / minimum cost principle’ ranks
the many architectures that satisfy the complexity level and allows the choice of the best
one. A receptive field is defined as the area of the visual scene in which a change in the
visual stimulus causes a change in the output of the processor to which it is connected (comp.
chapter 5). Hexagonal images with hexagonal pixels are assumed and lead to a hexagonal
pyramid structure. In summary, the characteristics of a visual processing architecture are:

e spatial parallelism;
e hierarchical organization;

e localization of receptive fields;

10



e visual stimuli lead to logically separable maps;

e abstraction of the input token arrays.
Predictions:

e processor columnar organization;

e tokens of visual parameters at high resolution can be obtained only by tuning of com-
puting units and through the input abstraction hierarchy;

e token inseparability (or coarse coding).

2.4 Control mechanisms and evidence accumulation

Matsuyama characterizes the state-of-the-Art in the field [Mat88]: ”The expertise stored
in the systems is what we, image processing researchers, have acquired and accumulated
through the development of image processing techniques.” Four classes to combine complex
image analysis processes are distinguished:

e consultation;
e program composition;
e design for image segmentation;

e goal directed image segmentation.
Two methods of representing image analysis strategies are proposed:

e software engineering;

e knowledge representation.
Many problems are encountered in designing image analysis processes:

1. Assessment of image quality.

2. Selection of appropriate operators.

3. Determination of optimal parameters.
4. Combination of primitive operators.
5. Trial-and-Error experiments.

6. Evaluation of analysis result.

11



Matsuyama differentiates between IUS (image understanding systems) and ESIP (expert
systems for image processing) by means of the knowledge sources mainly used in the two
different kind of systems.

The ESIP-architecture has the following major objective: formulate and describe visual
information (e.g.image features, properties, and relations). ESIP should combine qualitive
symbolic reasoning and quantitative signal processing. The reasoning cousists of :

1. Analysis plan generation

2. Operator selection and parameter adjustment
Four types of ESIP are identified:

A: Consultation system: EXPLAIN. Initiated by a user request the system develops a pro-
cessing plan as an ordered sequence of abstract image processing algorithms, which are
then instantiated step by step allowing user interaction and backtracking.

B: Knowledge-based program composition system. Here, the user writes an ”abstract pro-
gram specification”. For example, DIA-Expert uses the operation tree. The level of
the operation tree means the level of abstraction. At each level a sequence of image
analysis algorithms is described. The sequence of the bottom of the tree (i.e. leaf nodes)
represents that of executable software modules in the program library.

C: Rule-based Design System for Image Segmentation Algorithms.

D: Goal-Directed Image Segmentation System. LLVE is originally the low level part of
SIGMA [HLMS86]. There, the user specifies the goal in a graph consisting of image
features (as nodes) and transfer processes as arcs.

The software engineering strategy uses three types of heterogeneous compositions:

1. Composition of multiple analysis results.
2. Mask controlled operation.

3. Parameter optimization.

As an extension to LLVE’s single resolution image features Matsuyama proposes as second
strategy to represent the system’s knowledge in a hierarchical hypergraph. Using a reso-
lution parameter it can be compressed for storage purposes into a single layered hypergraph
which is expanded into the multilayered hypergraph during search.

2.4.1 SIGMA

SIGMA is a system developed at the University of Maryland. The goal of this research
[HLMS86] is to develop a robust control strategy for constructing image understanding sys-
tems (IUS). This paper proposes a general framework based on the integration of “related”
hypotheses. Hypotheses are regarded as predictions of the occurrences of objects in the image.

12



Related hypotheses are clustered together to accumulate evidence. A “composite hypothesis”
is computed for each cluster. The goal of the TUS is to verify the hypotheses. An image
understanding system, called SIGMA, has been constructed based on this framework and
demonstrated its performance on an aerial image of suburban housing development.

2.4.2 PSEIKI

The paper [KHK88| surveys the planning and reasoning research being carried out in the
Robot Vision Lab at Purdue. In particular, it describes the working of a new planning
system called SPAR, which uses a constraint posting approach for simultaneously fulfilling the
operational, geometric and uncertainty reduction goals, and the PSEIKI system for evidential
reasoning in a tangled hierarchy. The authors also mention briefly their other related research
in high precision assembly under forceltorque control and robotic manipulation with structural
stereopsis for depth perception.

3 Image Pyramids

An important parameter of a digital image is its resolution. The spatial resolution is de-
scribed in terms of the smallest dimension of the object that can just be discriminated. In an
image with high resolution many detail objects can be observed, at low resolution only large
objects are recognized. A resolution cell is the smallest most elementary areal constituent in
a digital image. The area of a resolution cell is usually a square or a rectangle. Other shapes
are possible and will be discussed in chapter 5. The position of a resolution cell within the
2D plane is determined by the coordinates (z,y) of its center. How many cells are needed to
cover a given image area depends on the size of the cells. Table 3 compares the qualitative
consequences of different cell sizes.

Table 3: Image qualities of different resolutions

small cells large cells
resolution high low
data amount huge smaller
computing times | (very) long (relatively) short
details rich and many | very few if at all
overview bad good
precision high low

Tanimoto [Tan86] defines a pyramid as a collection of images of a single scene at
different resolutions. The images of this collection can be ordered according to their cell
sizes and numbered as levels of the resulting ordered set of images.

Two terms describe the structure of a (regular) pyramid: the reduction factor and the
reduction window. The reduction factor determines the rate by which the number of cells
decrease from level to level. The reduction window associates to every (higher level) cell a
set of cells in the level directly below. In general the reduction window covers the area of its

13
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Figure 2: Classical 2 x 2/4 pyramid

associated cell. In square or rectangular images reduction windows are mostly rectangularly
shaped and can be described by (number_of _columns) x (number_of _rows).

In the classical pyramid (Fig. 2) every 2 x 2 block of cells is merged recursively into one
cell of the lower resolution. We formally describe this structure by 2 x 2/4 which specifies
the 2 x 2 reduction window and the reduction factor of 4. This type of pyramid has been
extensively studied (e.g. [TK80], [Ros84]).

A quadtree (e.g. [Sam85]) is a similar tree structure. The cells and connections of the
quadtree form a substructure of the 2 x 2/4 classical pyramid. Pyramid and quadtree mainly
differ in the fact that a quadtree has no communication links between cells of the same level.

Tanimoto’s formal definitions refer to this type of pyramid [Tan88]. He defines a cell (Tan-
imoto uses the term pizel) in a pyramid as a triple (z,y,v) which is defined in a hierarchical
domain of L + 1 levels:

{(z,y,0)0 <z <2°,0<y<2",0<v < L} (1)
Then a pyramid is any function whose domain is a hierarchical domain. This function

assigus to every cell in the simplest case a value, but also structures of higher complexity can
be stored. This definition of a pyramid will be generalized in the next section.

3.1 The contents of a pyramidal cell

If the value of the (pyramidal) function represents a gray value we call it a gray level
pyramid. It was the model used in Hong’s PhD-thesis [Hon82]. Different construction

14



methods for such pyramids will be introduced in section 7.
Hartley [Har84b] allows a cell to contain more than just one (gray) value:

"...each cell in the pyramid contains a more complicated model of the region which it
represents.” Examples of hierarchical (parametrical) models for extracting edges, (smooth)
curves and lines, corners, Glass and flow patterns, and textures are used within the pyramid
framework. The parameters of the models are best fitted in a least square optimization by
building the necessary sums in the pyramid in logarithmic time complexity. (See section 4.)
A main advantage of such pyramidal computations is pointed out: "relative locality”.

Ahuja [AAS85] differentiates between two broad categories of image representations: (1)
those which describe the interiors of the cells and (2) those which specify their borders. Most
of the pyramidal approaches belong to category (1).

A concept that falls in category (2) has been introduced for curve representation in pyra-
mids [Kro85a]. The details of this approach will be described in more detail in section 11. In
this concept, a pyramidal cell is considered as a window through which the underlying image
is observed. Objects that are completely within the field of view of a cell can be recognized
and described by this cell. Objects (e.g. curves) that are only partly covered must cross the
boundary of the observation window. Hence the entier object cannot be recognized at this
resolution level (of the pyramid). Information necessary to connect the observed part of the
object with the parts in the adjacent cells must be passed up to the next lower resolution
level (or equivalently, to the next higher pyramid level). There, the cells cover a larger area
and can join some parts of the level below. This process is repeated up to successively lower
resolutions until the whole object is within the observation window of a cell.

More formally, this concept defines the cell that represents pictorial entities (e.g.primitive
image parts, objects, configuration of objects) within a pyramid:

A pictorial entity of an image (stored in the base of a pyramid) should be represented in
that cell of the pyramid that satisfies following conditions:

1. The region corresponding to that cell in the image space (that is a subarea of the
base level in discrete reprsentations) covers the pictorial entity completely.

2. No smaller cell in the pyramid fulfills property (1).

This definition assigns to every pictorial entity a unique cell in the pyramid in which it
should be represented. Unfortunately, in some pyramid structures a small rigid motion (shift,
rotation) of the object may cause a completely different representation (the representation
cell may be many levels below or above). We therefore require as pyramidal representation
goal that the pyramid should order the pictorial entities by a specified property like size,
length, etc. such that a certain property can be related directly to a bounded range of levels
in which the entity must be represented if it appears in the image.

3.2 Operations in a pyramid machine

The operations in a pyramid are mostly local. The new value of a cell may be computed using
as input either external parameters (constants) or values from the cell’s contents or values
from the neighboring cells in the pyramidal structure. These are the neighbors within the

15



same pyramid level, the cells of the next lower level which are within the reduction window of
the cell (called sons), and the cells of the next higher level (called fathers or parents). Every
cell except the top has at least one parent cell, but may have more than one in overlapping
pyramids, where a cell may be part of several reduction windows (see section 5 for more
detail on different pyramid structures).

An important class of operations is responsible for the bottom-up information flow within
the pyramid: the reduction function. It computes the new value of a cell exclusively
from the contents of its sons. Given an image in the base of the pyramid, application of a
reduction function (e.g.average) to all first level cells fills this level. Once the cell of the first
level received a value, the same process can be repeated to fill the second level and so on to
the top cell.

Further operations depend on the architecture of the pyramid and will be treated in one
of the two following subsections. Two architecturally different types of pyramid machines are
distinguished: (1) a mesh-connected multi-processor architecture, a realization of a special,
generalized cellular automaton [Ros81], and (2) a pipeline architecture.

3.2.1 Mesh-connected multi-processor architectures

In a mesh-connected multi-processor pyramid machine there exists one processing element
per cell. Since Tanimoto’s machine [Tan86] is a bit pyramid where every cell only contains
a binary value, the basic operations are the binary operators AND, OR, and NEGATE with
some additional instructions like LOAD, STORE, and COPY. The most interesting operation
in this set is a general matching operation. For any cell a vector v = [X(Ny), X (N2), .. ]
of the values of all the neighboring cells N; is built. The operand of the operation is a
vector P = [P}, P, ...] taking values 0, 1, and D. Tanimoto defines an AND_Match and an
OR_Match operation. They both combine first the elements of vectors v and P logically by
a point operation ®*. The resulting binary values are then summarized by either a logical
AND or by a logical OR operation:

matching operation | point operation | z ®@*y =1if: | log. combination
o* (0 otherwise)
AND_Match N* z=Dorz=y | NP N X(NV))
i
OR_Match V* z=Dorz#y | V(P V" X(N))
i

Other pyramid machines have been proposed and/or built [Mal86], [MCM™86], [SHS6].
They use similar operations in their machines.

3.2.2 Pipeline architectures
The RCA group [vS85] has built a pipelined preprocessor hardware to generate Gaussian and

Laplacian pyramids using 2 programmable Multibus (Intel) boards with a memory update in
1/30 sec.

Burt [BASv86] identifies four basic (numerical) pyramid operations for this concept:

e filter convolution,
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e point operations,
e image - image operations, and
e local integration.

Pyramid construction operations include

o filtering F,
e decimate or reduce steps R, and

e expansion F.

With these operations the levels G;,i = 0..,n of a (Gaussian) pyramid (see section 7) are
generated by following iterative process:

Go = I; Gi+1 = R(F(GZ)) (2)

The pyramid machine is a pipeline with five computational units:

a filter with kernel size 5 x 5;

a decimator to reduce the resolution by a factor of 4;

e an expander, to insert zeros;

an ALU for sum and difference of images; and

e several image frame stores.

A comparison with a bit serial mesh-connected multi-processor architecture shows that
the mesh machine would need 5000 chips to do the same pyramid operations as 100 chips
used for the pipelined approach.

3.3 Biological motivation

In 1984 Leonard Uhr [US84] introduced the notion 'Recognition Cone’ to describe the char-
acteristic of a recognition system similar to biological systems. The only conclusion that can
be drawn from the efficiency and the known constraints of natural recognition systems is that
such systems must process the data massively parallel. Uhr’s recognition cone captures the
necessary structure of the system: it receives at the bottom a huge amount of visual stimuli,
processes them in parallel while reducing at the same time the data amount step by step until
final recognition takes place by consulting only a few of the remaining data.

Rosenfeld [Ros87b] proposed an approach for recognizing unexpected objects in a scene
where a pyramid forms the basic communication structure.

First he makes conjectures on how humans represent and describe:

1. 3D object representation by characteristic views;
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2. 'Primitive’ parts: pieces of regions, pieces of boundaries;
3. Describe parts by local property values, or combinations of such values;
4. Relations for combinations are relative values of properties;

5. Classes of objects are characterized by unidimensional constraints.
Hence the general structure of the system:

1. Bottom: hypercube or pyramid;

2. Part properties are broadcast to

3. a set of object processors.

In [BASv86], Burt gives his motivations for image recognition in pyramid machines: ’..as
pattern information becomes more complex, position information becomes less precise: there
is a gradual shift from encoding ”where” to encoding ”what”.” These ideas have been further
developed and are summarized in Burt’s survey paper [Bur88] at the ICPR 1988. The fol-
lowing subsection brings some of the basic ideas of this paper. Although it refers to several

concepts that will be introduced in the subsequent chapters, it is not split among the different
chapters to keep the compactness of the concept.

3.4 The pyramid as a model for real time computer vision

Systems for real time computer vision must locate and analyze just that information essential
to the task at hand, while ignoring the vast flow of irrelevant detail. Attention mechanisms
support efficient, responsive analysis by focusing the system’s sensing and computing resources
on selected areas of a scene. (Compare with O’Rourke who has implemented an attention
control mechanism using a dynamic k-d-tree [O’R81].)

Three elements of attention in computer vision are described: foveation, tracking and high
level interpretation.

In human vision, acuity falls roughly in inverse proportion to the visual angle, 8, from the
fovea. The non-uniform distribution of acuity in the human eye represents a balance between
conflicting requirements. It provides both a wide field of view and high acuity.

A rudimentary fovea is formed within the Laplacian pyramid (see section 8). Pyramid
levels are indicated in one dimension as rows of sample points, with sample density reduced
from level to level. After constructing the pyramid from an original image, pyramid data
is discarded (set to zero) outside a central zone at each level, Figure 3. Because the region
covered by each resolution level of the pyramid is double that of the next higher level, this
implements a discrete approximation to a 1/6 acuity distribution. In Figure 3 the width of
the central zone is just 5 samples at each level, although 16 or 32 are typical in computer
vision applications. This approximates what a human eye is able to resolve.

It is possible to represent image detail at much reduced resolution through the use of
integrated feature measures [BHR81]. An original image is first decomposed into a set
of band pass components through Laplacian pyramid construction. The band (level) best
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Figure 3: Formation of an electronic fovea

matched in scale to a feature of interest is selected for further processing. This is convolved
with a filter, f, selective for the feature. Samples of the filtered image are then squared. The
integration is achieved through construction of a second, Gaussian pyramid, with the filtered
and squared image as its base level. A positive value of a sample of the integrated measure
indicates that the feature selected by the filter is present in the image, but its position within
the image is encoded at low resolution. When a critical feature or combination of features is
detected at low resolution, the system follows a coarse-to-fine homing procedure to examine
the indicated region of the image more closely.

In human vision there are two distinct classes of eye movements, saccades, trough which
the eye brings critical regions of a scene into a foveal vision, and pursuit movements,
through which it follows moving objects in order to stabilize their images on the retina.
Tracking is a key element in the control of selective, attention-based analysis in computer
vision, as it is in human vision. Tracking may be said to isolate selected regions of a scene in
time just as foveation isolates regions in space.

Tracking begins with the estimation of background motion. Frames 1 and 2 are corre-
lated to obtain a rough estimate of motion. Because correlation search is costly, analysis
is performed first at reduced resolution. A pyramid is constructed for each frame, and a
level k is chosen for analysis at which the sample distance, 2%, is expected to be larger than
displacement due to image motion. At this level, correlation needs to be computed only for
displacements of plus or minus one sample distance in the horizontal and vertical directions.
Frame 2 is shifted by an amount equal to the estimated motion, then it is compared to Frame
3. Since the estimate was obtained at reduced resolution, and hence is imprecise, the shifted
Frame 2 will not exactly cancel motion between Frames 2 and 3. It will, however, reduce
the magnitude of this motion. The correlation analysis is repeated for the shifted Frame 2
and Frame 3, but now at the next higher pyramid level, £ — 1. These steps are repeated for
Frames 3-4, then 4-5, and so on.

The techniques described here illustrate two important aspects of tracking in dynamic
vision. First, relatively crude computations within a feedback loop can achieve very precise
estimates of background motion. Second, when background motion is nulled through tracking,
subsequent detection of object motion is greatly simplified. When a human performs a vision
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task he 'knows where to look’.

One approach to implementing reasoning procedures is based on fast, hierarchical struc-
tured search. To implement this type of search we define an object representation called a
pattern tree. The object pattern is decomposed into distinctive pattern components, or
at various resolutions within a pyramid structure. The representation is constructed by first
forming a full pyramid for the original pattern. Component patterns are then selected as
small arrays of samples taken from this pyramid. Typically, large pattern components are
represented at low resolution, while small components are respresented at high resolution.
The links between components define their relative positions within the overall pattern.

Search is then formulated as a sequence of simple pattern matching steps.

Attention is presented here as essential control mechanisms for dynamic vision systems
that perform real time tasks in an ever changing environment. Such systems are confronted
with far more visual information than any practical system can process in real time. Attention
mechanisms allow the system to function in a data rich world by directing system sensing
and analysis resources to just that information critical to the system’s current visual task.

3.5 German articles

A german introduction to image pyramids from the signal-theoretic point of view is given in
[Jae89, chapter 7].

3.6 Bibliographical Notes

Good survey’s about image pyramids and its applications can be found in [TK80], [AAB*84],
[OS87]; [Ros84] is a collection of papers dealing with pyramids.

Comparisons of pyramidal architectures with different other architectures like arrays and
hypercubes are given in [Tan72], [Bes86], [Can86], [Cas86], [Duf86], [Fri86], [Sto86], [Uhr86],
[Fou88], [Lev88], [SC88].

Many systems for image analysis use recently pyramid representations, e.g.
e Neveu for recogizing 2D objects [NDC86];

e PSEIKO [AKS88a|, [AK88b] for spatial reasoning;

e Jiang for detecting thresholds [JMP88];

e Kalvin [KPH88] for image segmentation;

e Shapiro [SL88] in a CAD-to-Vision system for relational representation.

Languages to program pyramidal architectures can be found in [Di 86], [Lev86].

Ebner [EF86b], [EF86a] applies a multigrid (which is the mathematically equivalent to
multiresolution in image processing) method to digital elevation models.

Some research objectives of image pyramids have been compiled in [Kro88b].
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This survey summarizes some of the actual benefits of image pyramids. 'Pyra-
mid structures represent information about an image at a set of exponentially
decreasing scales. The represented information takes the form of a series of ab-
stractions that describe the contents of the image.’

Pyramids can perform numerical computations in a very efficient way. All
the basic statistical computations such as summing, counting, averaging, take on
the order of log(n) steps. Extensions of the basic operations such as least square
fitting, statistical moments, or the detection of ’coarse’ features show similar effi-
ciency.

Edge detection and contour coding is a step from numerical to symbolic rep-
resentation and computation. The curve pyramid and Hartmann’s hierarchical
structure code [Har86b] are examples of pure symbolic reduction processes.

The concept of the ’dual pyramids’ combines both numerical and symbolic
computations and allows free local flow of information within the structure.

4 Numerical Computations in a Pyramid

The claim is made that pyramids are efficient computational structures [BHR81]. [BHR81] is
a historical reference that elaborated the potential of pyramids for calculating image region
properties efficiently.

Rosenfeld [Ros86b] gives an overview. He distinguishes between two main flow streams
in the pyramid: bottom-up summarizing and top-down delineation. Computations include
intensity (gray level pyramids), where modality detection and fitting are typical examples,
and contour recognition, where blobs and ribbons need different treatment.

4.1 Calculating sum and mean

Let us illustrate the principles of operation by means of a simple example using a 1D (linear)
pyramid. Our goal is to calculate the sum, the mean, and the variance of the 8 pixels in the
base of our four level pyramid (Fig. 4). The process is very similar to counting the number
of pixels of a binary image, as described in [SH86] for the GAM-pyramid. To compute the
sum, we proceed bottom-up:

1. Four parallel additions produce the sums [ ]at level 2;
2. two further additions are needed to fill level 3; and

3. the final result at the top level 4 is the sum of the two values and at level 3.

Seven additions are needed and the sum of our 8 (= 23) pixels is computed in 3 steps.
The results in intermediate levels represent sums of the receptive fields of all cells.

The mean p is defined as the sum divided by the number of elements. We can either
calculate the size of the receptive field, store it in a separate entry of every cell, and build the
quotient as illustrated in Fig. 4. An alternative to the above procedure, where large values
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Figure 4: Computing sum [s]and mean g in a pyramid
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have to be stored, computes the mean Hz(j U of level j 4+ 1 using the arithmetic mean of the
means H%)’Héﬁrl in the level 5 below:
6)) ()
; P + Boig1
HE]H) === =T 5 e (3)

Using the mean as reduction function, the levels above the base appear as reduced version of
the original image.

4.2 Calculating the variance

n=38 8(23.25|—4%) =823 Level 4

n=4 2(10.5]-3%) =2 2(36] - 5%) = 14.67 Level 3

n=2 |{(4]-2)=03(17]-4) =27 (40]-6*) =8F(32]-4*) =37  Level 2

x 22 22 32 52 82 42 02 82 Level 1

Figure 5: Computing the variance 02 (equ. 5) in a pyramid

The variance o2 of the pixels measures the deviations from the mean. If all pixels have
the same value, the variance is zero, the larger the difference to the mean the greater is o

23



The variance of n values x1, z2, ...z, with mean p is defined by ([Kre65]):

o? = nil (Zx?—mﬁ) (4)
j=

_ _n S22
- n—l( jzlxj ,u) ®)

The first term [ ] in equ. 5 can be calculated in the same way as the mean (equ. 3) after
squaring the values in the base. The result in every cell combines the precomputed values
independently of the others (Fig. 5).

S=

In the same way as sum, mean, and variance are computed in the pyramid, also statistical
moments and model fitting can use the bottom-up summarization scheme that fills the
cells in O(logn) steps.

Tanimoto [Tan88] accomplishes bottom-up feature extraction with a hierarchical elec-
tion scheme.

4.3 Calculating the bimodality

The last example of this section measures the bimodality of circular histograms [JR89].
Circular histograms describe measurements on a cyclic scale such as the slope of edges which
varies modulo 360°. A histogram is called bimodal if it is a mixture of two Gaussian subpopu-
lations. The range of measurements is divided into two intervals, the maximum-distance (MD)
partition, so as to maximize the Fisher distance between the resulting two subpopulations P;
and P,. The squared Fisher distance between P, and P, is defined as
p Y
n —
pp? = M) (6)
n107 + N20j
where 711, Mg, fi1, fio, 62,63 are the sizes, the means, and the variances of P;, P, respectively.

For a linear scale, there are n — 1 possibilities to subdivide [1,n] into two intervals. Hence
n — 1 Fisher distances are to be computed. For the cyclic scale, the computational cost
increases to (g) FD calculations. Therefore a coarse-fine strategy is proposed.

The resolution reduction groups the 2* original values into 2¥~" intervals of the length
2". The reduction function m : [0,2%) s [0,2%) requantizes the values into the midpoints of
the subdivision intervals : m(g) = [3F] 2" 4 2h=1 (compare requantization by half-toning of
Werman [WP88]).

Let f(i) be the distribution of the original values, f(i) = f o m be the distribution of the
reduced resolution. Then the coarse-fine strategy proceeds in two steps:

(a) Find the MD-partition [ry, sp), [Sh,Th), of fh.

(b) Examine all partitions [r;+a, s, +b) where a and b vary independently within [—2/—1, 4+2h—1)
and choose the best MD-partition.

If the reduction factor 2" becomes larger than the expected distance between the peaks
of f, the coarse-fine strategy may not discover the correct bimodal partition. The required
number of FD-computations reduces to ()% + O(k?).
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5 Different Pyramid Structures

Besides the most frequently used ’classical’ 2 x 2/4 and 4 x 4/4 pyramid structures, other
types of structures have also been used recently. This section starts with some new regular
structures, then investigates into other possible pyramid structures and compares some of
their properties, among which there is their robustness with respect to perturbations in their
structure. Before describing one of the newest research objectives in section 6, irregular
pyramids, we compare pyramidal performance with some non-pyramidal architectures for
image analysis.

5.1 The 2 x 2/2 pyramid

The first who worked with this type of pyramid was Crowley at CMU! [CP84], [CS84]. He
computed a 2 x 2/2 Laplacian pyramid (he used the term DOLP2-transform) for detecting
the peaks and ridges in the ’terrain’ of gray values.

In [Kro85b]the major properties of the 2 x 2/2 pyramid structure are presented:

e The shape of the receptor field is an octagone, the side lenghts of which are derived in
the number of border cells.

e Giving equal weights to all sons, the equivalent weighting in the base is formed by
Gaussian-like parabolas.

e If all cell centers of the pyramid are down projected to the base plane, the projected
points are part of a grid that is a refinement of the base level of the pyramid.

The same refinement grid solves the representation problem in [GB88]: the one pixel
wide medial axis (skeleton) of an arbitrary shape is uniquely defined on this ’derived’
grid even if the corresponding region has a diameter of an even number of pixels.

e Every son has two parents, every parent four sons.

e Using wrap around, the pyramid levels can be conveniently stored in rectangular arrays
of sizes 1 x 1,2 x 1,2 x2,4x2,4%x4,8x4,8x8,..

e The area of a cell is twice the area of a cell in the level below.
e Adjacent reduction windows have one cell in common (overlap).

e The grid axes of the higher levels are rotated by 45 with respect to the level below.

5.2 Properties of regular structures

Polygonal decompositions for hierarchical representation have been studied by Ahuja [Ahu83].

11 different hierarchical partitions of the two-dimensional plane are compared in [BDHJ83]
by means of properties and relations among the cells:

!Carnegie Mellon University in Pittsburgh, Pennsylvania
Difference Of Low-Pass
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1. adjacency;
2. rotational symmetry;

aperture (corresponds to our term observation window);

- W

circularity;

ot

convexity;
orientation;

limit: if the shapes of higher level cells are not similar to cell shapes of the level below;

© N>

shape similarity;
9. regularity: if atomic cells are composed of regular polygons;
10. isohedrality;

11. democracy: if it is impossible for a cell to differentiate between its sons; compare with
Tanimoto’s hierarchical election scheme [Tan88|.

It is concluded that no tiling satisfies all the criteria. But the square grid and the hexagonal
grid display most of the desirable properties.

In [Kro88c| pyramids are compared by means of their receptive fields and some other
related properties. In pyramids the contents of a large number of high resolution cells is
propagated up to a successively smaller number of lower resolution cells. At the first level
the contents of the base level’s reduction windows is summarized, the second sumimarizes the
local summarizations of the first level and so on. To interpret the contents of a high level cell
it is important to know the domain in the base from which information is summarized in that
cell. This region in the infinitely fine base plane is called the receptive field of the cell.

Non-overlapping structures form tree structures such that the receptive field is just the
union of all leave nodes. The refinement of the starting cell is a partition of that region.
Receptive fields of overlapping structures tend to grow, the refinement of a cell is larger than
the cell. The importance of overlap in pyramids is pointed out in [Fer86]. It is also a key
property for curve pyramids as we will see in chapter 11.

Fig. 6 shows the sizes and shapes of the receptive fields of five overlapping pyramid
structures. Table 4 summarizes the structural properties of the eight most commonly used
pyramids. It enumerates the characteristics of a cell’s receptive field, its size in units of the
cells area and its shape, the number of sons that two neighboring parents share (overlap), the
number of sons of every cell except those in the base, and the number of parents and their
frequency weight if there are more than one (e.g. % means that every n-th cell has f parents).

Hartmann’s hexagonal pyramid structure [Har84c| shows some interesting similarities with
the n x n/2 pyramids:

e Cell centers are positioned above each other as in the 3 x 3/2 pyramid.

e It has the same refinement rule as the 2 x 2/2 pyramid to generate the higher resolution
from the lower resolution: insert inbetween every pair of brothers a new cell.
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Figure 6: Receptive fields of 5 pyramid structures

Table 4: Properties of regular pyramid structures
Pyramid receptive field structural features

size ‘ shape overlap ‘ sons ‘ parents (weighted)
(2m)?/4 (even) || (2m —1)? | square 2m(2m — 1) 4m? m?
+1)? +1 2

(2m +1)%/4 4m? square | 4m? +2m +1 | (2m + 1)? (m4 L m(n; Ly e
2x2/4 1 square 0 4 1
4x4/4 9 square 8 16 4
5x5/4 16 square 15 25 1+5+1
2x2/2 7 octagone 1 4 2
3x3/2 28 octagone 4 9 2+5
7/4 hexagon 3 hexagone 1 7 % + %

We finish with a list of papers describing applications of the respective structure:

2 x 2/4 : [Tan72], [Ram75], [TK80], [Shus1], [Shu82], [SW84], [Sam84], [US84], [SSWS5),
[Sam85], [Den86], [DMS86], [LLL86], [Par86], [SH86], [Uhr86], [Tan88], [Mal89] .

4 x4/4 : [BHR81], [Bur8l], [Hon82|, [Har84b], [GHRS85], [HR85], [Har85], [Fer86],
[GJ86], [Gro86], [KD86], [Wel86], [Ros87b] .

5x 5/4 : [BA83a), [BA83b], [AABT84], [ABv85], [vS85], [BASV86], [Burss] .

2 x2/2 : [CP84], [CS84], [Kro85b], [Kro85a], [Kro86e], [Kro86b], [Kro87b] .

3 x3/2 : [Kro86a], [Kro86d], [Kro86¢], [Her87], [KP87], [KH88], [Paa87] .

7/4 hexagonal structure :

[Har84c], [DH86], [Har86b], [Har87a) .
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5.3 The robustness of pyramids

The robustness of pyramidal algorithmus to pertubations of the structure of the pyramid is
studied by Meer et al [MJBR88]. The perturbations are of three different natures:

e Gaussian noise added to the generating kernels‘s weights;
e random local offsets of child-parent links;

e stochastic pyramid structures.

The first two perturbations apply to regular (2 x 2/4) pyramid structures. Burt [Bur81]
showed that generating kernels should fulfil the following spatial constraints:

e normalisation (the sum of the weights is one)
e syminetry
e unimodality

e equal contribution to the next level.

Since adding noise to the kernels destroys Burt’s constraints, several methods are given to
reinstitute certain constraints on the noisy kernels. From those reinstitutions, normalisation
appears to be the most important constraint and thus may help to improve the quality of low
resolution pyramid levels.

Perturbations of child-parent links include offsets introduced at the children’s level and
offsets introduced at the parent’s level. When the positions of the links were perturbed at
the parent’s level, normalisation was not preserved and the effects were severe. Reinstitution
of normalisation improved the results in that case. The effects of perturbing the children’s
level were milder, because normalisation was preserved.

From the extensive experiments a general principle for constructing robust pyramid repre-
sentations is concluded: the parent should control the computation so that he may normalize
his weights.

Stochastic pyramid structures (see chapter 6 for more detail) are built by a stochastic re-
cursive decimation process on the pixels of the base. Even on such severly perturbed pyramid
structures two selected algorithms only show a mild degradation. In the bimodality detection
algorithm, the pyramid fuses locally computed statistics. There is a reason why a stochastic
implementation should lead to greatly different results than a regular one. In the second
algorithm, object delineations, the low resolution representations show great discrepances to
the original object but greatly the top-down delineation process successfully recovers from
incorrect root definitions.

Multiresolution algorithms appear to be very robust and only weakly dependent on the
structure on which they are implemented.
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5.4 Pyramidal and non-pyramidal architectures

Structures with which the pyramid is often compared are the cellular array, the hypercube
or n-cube, and the prism. They differ in the connections between the cells in the structure.
The connections in a cellular array connect a cell with its three (triangular array), four
(square grid with 4-connectivity), six (hexagonal array), or eight neighbors (square grid with
8-connectivity). An n-cube (also called hypercube) has 2™ cells and every cell is connected
to n other cells. A prism [Ros85b] is a stack of cellular arrays, all of the same size. It has
the same number of levels as the (n x n/4) pyramid resulting in a total of n-4" cells. Besides
the usual neighbor connections every cell is connected to three cells in the level above.

Fountain [Fou88] evaluates the differences between the pyramid, the n-cube, and the (lin-
ear) array: The pyramid and the n-cube are rather evenly matched in cost, total processor
performance and low-level processing times. In higher-level symbolic operations, the addi-
tional layers of the pyramid structure offer a significant improvement over the n-cube. The
linear array is obviously in a lower category than the other two in cost and some aspects of
performance.

Image pyramids are built in log(image_size) time with the consecutive levels having their
size and resolution reduced by a constant factor. Similar structures with the representations
decreasing only in resolution but not in size are also of interest. Meer [Mee88] simulates such
constant size multiresolution representations of the input on image pyramids by increasing
the number of values stored in the cells of the host structure. Constant size representations
allow parallel processing in applications such as scale-space filtering and multiresolution edge
detection.

Some important statements in [Mee88] are:

e At higher levels of image pyramids, the amount of noise is significantly decreased. Ob-
jects may become easier to detect. They allow fast data gathering across the input
image.

e The resolution reduction in pyramids can be regarded as the discrete case of scale-space
smoothing.

e Multiresolution edge detection is another class of applications requiring the same size
for all the representations.

In pyramids a parent at level [ carries a scalar value, the weighted average of its children.
Instead of allocating a scalar value to each cell at level [, Meer allows it to carry a Qmin(l) = st
dimensional vector. Each (vector) component can be computed recursively by a pyramid
PYR|[qg-s+1,s], where g-s+1 is the size of the reduction window, and s is the reduction factor.
The PYR|[g-s+1,s] pyramids are hosted by the initial PYR]|q,s] structure.

A (one-dimensional) prism, PSM[q,s], is the concatenation of s” interleaved (one-dimensional)
PYR|[q,s] pyramids. In his paper ([Mee88]), Meer simulates the essential levels of prism ma-
chines, the PSM[g-s+1,s] prism, on a PYR|q,s] pyramid. Another constant size multiresolu-
tion representation in [Mee88] is the simulation of a window with increasing length sliding on
the input.
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Peleg and Federbush [PF86] describe pyramids with variable reduction factors (’contrac-
tion’). Such structures may enhance the flexibility in using appropriate cell sizes for repre-
sentation and recognition.

6 Irregular Pyramids

In irregular pyramids we relax the regularity constraints of regular structures, but keep the
general contraction property of pyramids. Such structures are of interest because (1) also
biological vision systems are not completely regular and (2) little perturbations may destroy
the regularity of regular pyramids (as discussed above). There are several issues for generating
irregular pyramids.

e Parallel graph contraction represents every level of the hierarchy by a (neighborhood-)
graph. The nodes of the graph are the pyramidal cells. Two nodes are connected in
the graph if the corresponding cells are neighbors. Higher level graphs are created by
successively merging a certain number of nodes in the lower level graph.

e Decimation is another approach for building an irregular hierarchy. In this concept,
the cells of a level are divided into two categories: those that survive the decimation
process and form the cells of the next higher level, and those that are eliminated.

e Recently artificial neural networks have interested many researchers. In Pao’s book
[Pao89] their special abilities for adaptive pattern recognition are described in de-
tail. The hierarchical neural network NEOCOGNITRON, as proposed by Fukushima
[FMI83], shows great similarity to pyramidal structures. We therefore also mention an
approach to fuse the irregular neural network and the regular pyramid.

e Fractals are sets which are extremely irregular at all scales. There are recently sev-
eral applications in image analysis that relate fractals with image compression, image
transmission, and texture segmentation.

6.1 Parallel graph contraction

Rosenfeld [Ros85a] explores different sorts of cellular hierarchies in a general theory. His
focus is on methods that allow a parallel generation of the structure. By describing the
interconnection network in terms of a graph, the problem is to find a parallel contraction
scheme such that the degree of the contracted graph remains bounded. This important
property would, for example, allow to simulate large networks of processors by smaller ones.
For some special, regular cases parallel contraction is possible: hypercube, k-dimensional
array, hexagonal array. However the degree of triangular array increases. The 2 x2/2 pyramid
appears as a special case of square grid hierarchies when (diagonal) pairs of cells at distance
two are merged.

Melter [Mel86] also investigated into algebraic structures to characterize regular and semi-
regular partitions of the plane using 'rosettas’.
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Abrahamson et al [ADKP87] present an efficient algorithm for contracting a tree structure
in parallel. Let

T={V,f,slf Vs VYo eV —{r}JweV: f(v) =ws: Ve (VxV)UVUB}

be a binary rooted tree with vertex set V(7T'), with root » € V, with father function f(v),
and with son function s(v). A sequence of trees T1,T5,...T} is called a tree contraction
sequence of length k for T if

(i) Ty =T;

(ii) Vi =2,3,...k: V(T;) CV(T;-1);

(iii) V(T3] < 3; and

(iv) Vi=2,3,... kif v e V(T;_1) — V(T3) then either
LEAF: visaleaf of T; 1; or
BYPASS: s; 1(v) =2 € V(T;-1) and f;—1(v) = fi(z).

Two basic operations generate the tree contraction sequence:

PRUNE(v): Eliminate leaf v (satisfies condition LEAF); and

BYPASS(f(v)): Eliminate father f(v) of leaf v if condition BYPASS is satisfied.

Let T have n leaves. The presented algorithm counstructs a contraction sequence in
O(logn) time using O(n/logn) processors by numbering first all leaves from left to right.
Then a leaf is removed in phase ¢ if the rightmost 1 in its leaf index is in position ¢. In this
way the difficulties associated with parallel path compression are avoided.

A tree contraction algorithm gives a method for solving several optimization problems,
when the underlying graph is a tree, for example minimum covering set, maximum indepen-
dent set and maximum matching.

6.2 Decimation

In Meer’s stochastic pyramid [Mee89], the decimation is based on a randomized parallel
algorithm. The surviving cells are supposed to obey two rules:

1. Surviving cells should not be too close.

2. Surviving cells that become neighbors should not be too far apart in the level below.

A fast converging parallel algorithm generates in two phases a subset of surviving cells
that satisfy the above rules both in the 1D and the 2D case. The stochastic decision process
starts by assigning every cell a uniformly distributed random number. Selecting only local
maxima as surviving cells satisfies rule 1, but may leave gaps between these cells that are
larger than desired. They are closed in the second phase by applying the same process to
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those connected subsets of the remaining non-surviving cells that are too far apart from any
surviving cell.

The concept of adaptive pyramid [JM92] differs by the selection criterium. There the
decimation process first tries to select significant cells depending on the cell’s content and
uses a random selection only where the data do not allow a decision.

The decimation rules can be formulated by means of a neighborhood (set) function I'(x)
which defines all cells y that are neighbors of . Let L, denote all cells at level n in the
pyramid, =, € L, a cell at this level and let x,4; at level n + 1 correspond to x, at level n.
In this notation, the two decimation rules read as follows:

1. Yn+1 € F(xn-f—l) = Un ¢ F(:Un)

2. Vo, € Ly3Ynt1 € Lyt - xn € T(yp)

Before this decimation process can be repeated at the decimated level L£,41, the neigh-
borhood I' at the decimated level n + 1 must be defined. Every surviving cell x,; is assigned
a receptive field R(xn+1) C ['(zy,) such that

1
Vyn € En = Tn+1 € En—l—l T Yn € R($n+1).

We have investigated in the effects that these two rules have on the resulting structures
by analyzing the minimum and maximum distances between neighbor cells at higher levels of
the pyramid and by computing bounds for decimation ratios in 1D and 2D.

Since all decimated levels £; are subsets of base level Ly, we can measure the distance
between every two cells z;, y; in any level i by their Euclidean distance in the base: d(x;,y;) =

d(ivo,yo) .

The factor by which the number of cells decreases is called the decimation ratio. It
corresponds to the reduction factor of regular structures, but may vary from level to level.

The conclusions of this paper are:

e The distance between two neighbors P;, Q; at level £; of the 1D irregular pyramid is
bounded by following inequality:

2 < d(P;,Qi) <3 (7)

e The distance between two neighbors P;, @; at level ¢ of the 2D irregular pyramid is
bounded by following bounds:

2< d(P,Q1) <3V2 (8)
VE< d(P,Q) <3W2,i>1 (9)
and these bounds can be reached.

e A decimation ratio of 2 at levels greater than 0 is possible in the 2D irregular pyramid
even if 8-connectivity is used in the base level. The smallest decimation ratio on a
square lattice is two.

The 2 x 2/2 pyramid is an example.

32



e A decimation ratio less than 2 and greater than % can be realized if the non-surviving

cells form a (regular) triangular network such that every surviving cell is located on one
triangle side. For large networks this lower bound is closely approached.

These bounds for distances and decimation ratios don’t take into account the uniform dis-
tribution of the random numbers used for decimation in stochastic pyramids. For stochastic
pyramids Meer [Mee89] has found an average decimation ratio greater than 4 in his experi-
ments.

The problem that distances in 2D irregular pyramids need not increase could probably be
solved by a better selection of the receptive fields. However the modification of the receptive
field selection cannot solve the problem of preserving the degree.

Another hierarchical decimation method is presented in [DP88]. There, the levels form
triangular networks, and the decimation is based data-dependent criteria like in the adaptive
pyramid. The neighborhood relations of the decimated levels are determined by a new version
of the constrained Delaunay triangulation.

The efficiency of irregular pyramids has been shown very recently: the labeling of con-
nected components of an image needs only O(logn) parallel steps [MMR&89]. This efficiency
is made possible by decimating the components separately.

Another parallel algorithm for connected component labeling [MR89a] need a total time
complexity of O((logn)3). It is implemented on NASA’s MPP processor, which has the
structure of an array. Samet’s solution [ST88] involves bintrees [ST85a], [ST85b], which are
generalizations of quadtrees and octrees.

6.3 Neural network

In [YK89b] Neocognitron [FMI83] is implemented in a pyramid scheme. The conventional cycle
for calculating the lower resolution in a pyramid (e.g. low pass filtering and subsampling) is
augmented by two functions from neural networks: pattern matching and sigmoidal contrast
stretch. Four different reduction structures are compared for their performance and their
computational complexity.

The processing structure has a considerable influence on the performance of the system
[YK89a]. The size of both the patterns and the reduction windows have been found important
for the learning and recognition performance of the pyramidal Neocognitron. Experiments
with the nine digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and various types and degrees of distortions are
reported. Further results are to be expected from Yamaguchi’s dissertation which should be
finished by July 1990.

6.4 Fractals

Fractals have been introduced by Mandelbrot [Man83] as a new method to capture a variety
of geometrical properties of nature.

Barnsley used fractals in his IFS system to describe shapes and images achieving extreme
large compression rates (1:10000) [BS88]. An input image is broken up into segments through
image-processing techniques. These image components are looked up in the IFS library using
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the Collage Theorem, and their IFS codes are recorded. A set of contractive affine transfor-
mations is chosen, so that every image component is approximated as well as possible by the
union of the subimages.

When the image is to be reconstructed, the IFS codes are input to the random iteration
algorithm. The accuracy of the reconstructed image depends only on the tolerance setting
used during the collage mapping stage.

Earlier, Ahuja [AAS85] described a similar application in image coding and secure trans-

mission:

1. Drop points randomly on image plane (Poisson distr.).
2. A Voronoi tesselation defines the cells around nuclei.
3. Assign gray/color value on region majority/size basis to nuclei.

4. Transmit parameters of random number generator and N colors.

Incorrect transmission occures mainly along object boundaries.

Miissigmann [Mue89b], [Mue89a] used the fractal dimension in the context of scale-space
filtering (see section 10.4). He calculates the surface F' of a gray level image in a certain
neighborhood in dependency of the Gaussian smoothing parameter o. The following power
law could be observed for several textures:

F(o) ~o? (10)

where p is the characteristic scaling exponent of the respective textures. The resulting fractal
dimension images’ show good discrimination between different Brodatz textures.

7 Gray Level Pyramids

In this section we concentrate on pyramids where the contents of the cells are gray values or
color vectors. In other words, every level of the pyramid is a picture. To fill the cells of the
pyramid bottom-up, different reduction functions can be used.

7.1 Reduction by linear filtering

Linear filters are used in digital image processing to remove certain unwanted effects (e.g.
noise) from images while enhancing others. One way to filter an image is to convolve it
with a spatial filter kernel that has the characteristics of the filter. In the continuous image
space, both the image I : R? — R and the filter F : R? — R are continuous functions, the
convolution I x F' is defined as
o0 o0
(I P)ay) = [ [ 1€ nF@ &y -y (1)

—00 —0O0

Filters are categorized by their characteristic in the frequency domain (Fourier space).
Filters that suppress high frequencies like bright spots or lines and let pass through the low
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frequencies of the image spectrum are called low-pass filters. High-pass filters have the
opposite characteristic. Filters that suppress frequencies outside a certain range of frequencies
are called band-pass filters.

The discrete sampling theorem (i.e. see [RK82, Vol. 1, chapter 4.1]) relates the sam-
pling (Nyquist) distance (e.g. the distance between the centers of adjacent cells) with the
frequencies that can be represented and reconstructed from the discrete image. Moik’s phys-
ical interpretation [Moi80, section 2.5.1] is useful in context with multiple resolutions: 'The
sampling intervals must be equal or smaller than one-half the period of the finest detail within
the image.’

Since a low-pass filter suppresses the high frequencies in an image, the result can be
sampled with a larger sampling distance without loosing information by sampling. This forms
the basis of gray level pyramids that are constructed by low-pass or smoothing filters (see
[Bur81] for an early and[OS87] for a recent treatment of multi-resolution low-pass transforms).

A Gaussian filter kernel has some unique properties with respect to multiresolution
representation [YP86] which will be analysed in more detail in section 10.4. The weights
G(t,o0) are highest at the center (¢ = 0) and decrease depending on the parameter o with
increasing distance |t| to the center:

10]
1 —=(=
G(t,o) = e 2\0 12
(t.0) = —= (12)
It has been studied in [KH88] for building gray level pyramids and will be summarized in the
following. Properties of the Gaussian smoothing filter G(o) (in this simplified notation ¢ has
been suppressed) for building gray level pyramids are investigated:

1. Convolving an image I: G(0) * (G(0) * I) = G(0v/2) * I [CS84]. G(0v/2) is called the
equivalent weighting function [BA83a.

2. The mean u(G(o) * I) = p(I) remains the same except for deviations caused by the
boundary. This means that the gray value of large homogeneous regions does not
change as long as they are large compared to the size of the reduction window.

3. The standard deviation is reduced in the filtered image.
Since normal distributed noise is measured by the standard deviation, the amount of
noise is reduced in the pyramid if G(o) is used as the reduction function.

4. Since repetitive application of G(o) * I is equivalent to convolution with a larger o, the
different levels of a pyramid can be built in two ways: either iteratively level by level
from the bottom to the top or directly from the base using the equivalent weighting
function. It is shown in [KH88] that the iterative computation needs much less time
than the direct computation.

In a discrete image I the convolution is computed as the weighted sum of the gray values
with the filter kernel F;, 11, 11)x(t54+14+1) in the window [—21, 2] X [—t3,24]:

to ta

IxFlpy=> > LijFy i (13)

i=t1 j=t3
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In a discrete filter, the above discrete convolution is calculated and stored at every pixel
position by shifting the window pixel by pixel and row by row over the entier image.

When used as a reduction function in a pyramid, the convolution result need to be com-
puted only at every n-th position according to the reduction factor. The result would be
exactly the same if the filtered image would be decimated, e.g. by taking every n-th pixel.
Wells [Wel86] describes an implementation of Gaussian filters for pyramids by making effi-
cient use of separability of the Gaussian. A 2-dimensional filter with kernel Fj,«,, is called
separable if it can be split in two 1-dimensional filters

anm: n><1'F1><m-

Then the result can be obtained by convolving first the rows of I with Fj.,, and, then, the
columns of the first result with Fj,«1.

The above considerations are valid not only for the classical pyramid structure but also for
many other multiresolution structures (see section 5 for other pyramidal structures). Crowley
[CS84] used a 2 x 2/2 structure.

7.2 Edge-preserving reduction

A Gaussian reduction function has nice noise cleaning properties, but it smooths at the same
time sharp contours. Edge-preserving filters are designed to adapt the degree of smoothing
to the presence of an edge (‘Edge Preserving Smoothing’ [NMT79], [Har87b]). Since these
functions give good results when used as a filter, we used them as reduction function. We
compared three different reduction functions for generating a 3 x 3/2 gray level pyramid on
SAR? images in [Her87] and [KP87]:

e a Gaussian filter,
e the Frost filter [FSSH82] , and

e the Lee filter [Lee8l1].

The Frost filter is an adaptive filter for SAR images to remove multiplicative noise: It is
computed as a local convolution of the image with varying weights W that are recalculated
depending on the local statistics p (mean) and o2 (variance) and the local Euclidean distance
d; ; from the application center:

(~ 5 di - J)
Vig =e #7 (14)
The V; ; are locally normalized to yield the weights W; ;.

The filter proposed by Lee [Lee81] is also an adaptive filter which reduces additive noise
in radar images.

One of the five major visual observations in [KP87] seems to be characteristic for adaptive
filters:

3synthetic apertur radar; see [Gol86] for a comprehensive treatment of SAR image formation
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Such filters are normally tuned to produce sharp contrasts. Thin lines are often reduced
to one pixel width. If used as a reduction function the filtering is followed by a subsampling
process which may cut originally continuous lines into pieces. In some cases (diagonal) lines
disappear completely in 3 x 3/2 pyramids.

Theoretical results in [Her87] include that, after a reduction step with any of the in-
vestigated reduction functions, the mean within a large homogeneous region remains ap-
proximately the same, and that the noise measured by the standard deviation is reduced.
Repetitive application of Gaussian filters (with parameter ;) is equivalent with one appli-

cation of a Gaussian with appropriate parameter o = \/Za? . This makes it possible to
generate an arbitrary higher level of the pyramid directly from the base. However, the time
complexity is much less for the iterative level-by-level computation in the pyramid than for
direct computation. The effects on SAR images have been of special interest although the
conclusions are general.

Further edge-preserving pyramid constructions make use of contour information and will
be reported in chapter 12.

7.3 The maximum pyramid

Besides linear filters also other (non-linear) reduction functions have been used.

Blanford and Tanimoto [BT86] made extensive experiments on their pyramid machine.
They describe the detection of bright spots in a 2 x 2/4 pyramid structure with two different
bottom-up reduction functions: mazimum and average. The bright spot is found in a top-
down search pass that links the apex of the pyramid to one pixel in the base.

The non-overlapping structure of their pyramid produces results that depend on the lateral
position of the object region. But the width of a region, which is defined as the side length
of the largest pyramidal cell completely contained in the region, will vary by at most a factor
of 2 when subjected to lateral translation within the pyramid. The average, when applied
to a region of width 27,5 > 0, at level k produces a region of width 2/~! at level k — 1.
The maximum as reduction function produces a region of width at least 2/~! at level k — 1.
Averaging the first j levels and using the maximum above can detect bright spots of width
27 or greater, j > 0, in lieu of regions of less width.

[BT88] is a revised version of [BT86]. This paper additionally investigates 'convex’ combi-
nations of average and maximum reduction functions and observes the effects on small, bright
regions in contrast to large ones. A possible extension of the pure 2 x 2/4 structure is the
4 x 4/4 overlapping pyramid which could be used within the same framework. It improves
the results while only increasing the computational costs by a constant factor.

7.4 Morphological reduction

The first two operations of mathematical morphology [Ser82], [JH89] are the operations of
dilation and erosion. Let D denote the domain of all cell centers. The dilation of a set of
cells A C D with a set B C D is defined by

A® B = {z|for somea € Aandb € B, z =a + b} (15)
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The erosion of a set of cells A by B is defined by
Ao B = {zl|foreverybe B, z+bec A} (16)

Using B = {(0,0),(-1,0),(1,0),(0,—-1),(0,1)} in the 4-neighborhood or

B = {(070)7 (_17 0)7 (17 0)7 (07 _1)7 (07 1)7 (17 1)7 (_17 1)7 (17 _1)7 (_17 _1)}

in the 8-neighborhood, the 1’s in a binary digital image I can be shrunk: I"! = I © B,
they can be expanded by I' = I @ B. Multiple shrink and expand operations are defined
recursively: I *'=I"%* g B and I*¥! = I* @ B.

Rosenfeld [Ros87a] investigated in calculating the shrinking and expansion operations
using a cellular pyramid. His conclusions are:

(25 -1)

1. A cellular pyramid can compute I+ , resampled at intervals of 2%, in O(k).

2. In one dimension, a cellular triangle can compute [ +(2"-1)

steps each involving O(k) computation.

, without resampling, in k

3. In two dimensions, a cellular pyramid would need O(2¥) computation to compute
721 without resampling! Hence in this case, the pyramid has no speed advantage

over a conventional cellular array.

4. For a grayscale image, expansion is generalized to local MAX (compare Blanford’s and
Tanimoto’s maximum pyramid) and shrink to local MIN. In this case there is no speed
advantage of the pyramid even in one dimension.

The purpose of the following approach is that it does not attempt to calculate a high
resolution morphological operation, but rather uses morphological filtering instead of linear
filtering to reduced the image’s resolution.

The morphological filters opening (Ao B) and closing (Ae B) are combinations of dilation
and erosion:

AoB = (AeB)®B (17)
AeB = (A®B)oB (18)

Based on these definitions, Haralick and Zhuang [HLLZ87], [HZLL88] introduce a morpho-
logical reduction function. The reduction is performed in two steps: first, the input image is
morphologically filtered, second, it is morphologically resampled to the reduced image size.
A binary and a grayscale sampling theorem are formulated. It defines conditions on the
filtering kernels that must be satisfied to preserve the relevant information after sampling.
It further specifies to what precision an appropriately morphologically filtered image can be
reconstructed after sampling.

7.5 Pyramid linking and segmentation

The concept presented in this section provides an efficient method for segmenting an image
through the use of a gray level pyramid. The pyramid structure being used must be over-
lapping, e.g., the size of the reduction window must be larger than the reduction factor. The
classical 4 x 4/4 is an example.
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First, a gray level pyramid is built bottom-up as described in the previous sections. Al-
though mostly Gaussian pyramids are used there is no principle restriction on what type of
reduction function is to be used.

In a second (linking) step, every cell below the apex of the pyramid chooses one of its
fathers’ to which it is most similar in gray value. This choice is possible because in an
overlapping pyramid, cells are covered by more than one cell of the next higher level.

In the third step, all the cells above the base level recompute their gray value based on
the values of the sons that link to them.

This process is iterated until a stable state is reached. The final links constitute tree
structures that have the property that all the cells that link to a common father are similar in
gray value. There are different methods to cut the tree structure to get a segmented image.
Typical features extracted by pyramid linking are compact homogeneous regions [HR84].

Grosky and Jain [GJ86] give an overview on pyramid linking methods and segmentation
through pyramid structures. They focus on the 4 to 1 reduction of type n x n/4 pyramids.
Their segmentation method has following advantages (+) and disadvantages (—):

+: Unconnected segments (regions) will not be linked together.

—: Many long and thin regions cannot be segmented in parallel.

There are special cases in pyramid linking: a son may be different to all of its fathers
(e.g., when it should become a root in the segmentation tree), a father may be disconnected
from all its sons. Following situations may occur when a 2 x 2 reduction window is used (like
in the 2 x 2/4 or 2 x 2/2 pyramids) and labels (or events) are passed up to the father (in the
following nb-events(sons) is the number of different labels of the four observed (son-)cells):

1. if nb-events(sons)=0 then father:=no_event;
2. if nb-events(sons)=1 then event(father):=event(son);
3. if nb-events(sons)> 0 (e.g. 2,3,4) then

e event(father):= select-one-event(sons); or

e event(father):= merge-event(sons);
Merge-event can be done:

— numerically: sum, mean; or

— symbolically: existence, new labels by substitution rules: e.g., event D is
instantiated if events A, B, and C are present in the receptive field.

Wharton [Wha88] builds a 2 x 2/4 multispectral pyramid by cascaded averaging the
spectral component vectors. The segmentation aims at spatially connected regions with ho-
mogeneous average spectral response. It is essentially the classical iterative pyramid linking
algorithm with extensions for the spectral components. It differs in the choice of potential
fathers, which depends on the current set of neighbors and their father’s links. Finally a
command interpreter (CI) allows the interactive modification of the result of automatic pro-
cessing. Typical operations are merge regions into one region, split a region into two regions,
and examine the contents of a specific region.
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In [GHRS85], pyramid linking is applied to segment so-called Glass pattern. They are
constructed by displacing copies of random dot patterns and are often used to compare the
ability of computer vision methods with human performance which is very good in perceiving
structure in complex patterns. The presented approach is able to link the corresponding dots
in O(logn) computation steps.

Gross describes in [Gro86] (his PhD-thesis) and in [Gro87] (summary) several variations
of the pyramid linking scheme. To arrive at a segmented image two stages are distinguished:
detection and delineation.

In Gross’ scheme, a cell of the pyramid contains three values: the gray value, the variance
02, and an interest measure. The later determines the presence of a blob (= compact region)
in a cell of the pyramid and initiates the top-down delineation process. Two variants of the

2 2

. [ (o3 . .

interest measure have been tested: 0—5 and 0—3, where 0127 is the variance of the father cells
S F

and 0% the variance of the son-cell. The instance of a blob is detected if the interest measure
of the cell is greater than the interest measure of all its fathers.

Table 5: Delineation methods

Name Delineation method Time Quality

Local method assign labels OBJECT and BACK- | O(logn) | not satisfactory
GROUND top-down by closest-
father rule.

Global method same as local method except that | O(logn) good
sons take the father’s value they link
to.

Updated method after each level k has been labeled, | O(log?n) very good

the father’s values/level is recom-
puted up to the seed level and then
again down to level k.

Iterated global method | proceeds in two passes: O(logn) very good

1. Top-down labeling and pass-
ing best father’s value to the
son;

2. bottom-up recomputing.

In the delineation stage, the outline of the detected blob is determined. Earlier versions
of the boundary localization are [BR85], [BR86]. Four top-down methods are tested in Gross’
work: the local method, the global method, the updated method, and the iterated global
method. Table 5 summarizes the methods, their time complexity, and their segmentation
quality.
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7.6 Hierarchical Hough-transforms

The use of hierarchies for computing the Hough-transform to identify straight lines, circular
arcs, and, in general, arbitrary shapes in digital images did interest several researchers. Since
the hierarchical approaches to compute the Hough-transform show similarities to pyramids
we present some of them in this subsection.

Davis [Dav79] introduced the hierarchical generalized Hough-transform:

The classical Hough transform shape matching algorithms constitute a class of procedures
for extracting analytically defined shapes from planar point sets.

The generalized Hough transform is a fast point pattern matching procedure that can be
used to detect arbitrary specific shapes (rather than analytically defined classes of shapes).
The generalized Hough transform solves the following point pattern matching problem: Given
a set of object points O C R", a set of feature points, P C R™ and a set of functions, F',
with f € F being a mapping f : R" — R™, find the f € F such that v(f) =| P — f(O) | is
minimal.

The generalized Hough transform can be extended to operate on the basis of hierarchi-
cal shape representations. The principal advantage of using hierarchical representation is
increased control over the shape recognition process.

Davis’ paper [Dav79] makes three points:

1. That Hough transform shape matching algorithms are instances of a general point pat-
tern matching algorithm;

2. That the point pattern matching algorithms can be usefully extended to match hierar-
chical point patterns, and

3. That the generalized Hough transform can be further generalized to match patterns of
geometric objects other than points , e.g., line segments.

O’Rourke [O’R81] used the K-d-tree for Hough space representation.

Li [LLL86] computed Hough-transforms for hyperplanes using K-tree, quadtree, or octree.

Tanimoto [Tan88] computes the pyramidal Hough-transform. Compared with the tradi-
tional Hough transform, the pyramidal version fails only in finding lines having global but
not local support. But it is more than an order of magnitude faster than the classical Hough
transform. Similarities between the hierarchical election scheme and neural networks are
pointed out.

Sher and Rosenfeld [SR89] recently describe an implementation of a pyramid Hough trans-
form on the connection machine.

7.7 Bibliographical notes

[Den86] and [DMS86] (in German) describe the use of the dynamic pyramid to estimate
the local motion in a series of images.

Werman and Peleg show an additional possibility to compress an image in [WP86] and
the revised version [WP88]: by reducing the gray level resolution (i.e. the number of gray
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levels) of the image. For this purpose a new image metric is used: unfolding. Gray levels
are quantized in parallel with the reduction of resolution.

8 Laplacian Pyramids

Gaussian pyramid Laplacian pyramid
REDUCE EXPAND

G2)/

& — [/

EXPAND

REDUCE
ol L — [/
XPAND
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G(0) o G(0) L(0)
INPUT

Figure 7: Building the RE Laplacian pyramid L(0), L(1), L(2), G(3).

Burt [BA83a] describes a method for compressing, storing and transmitting images in a
computationally efficient way.

Let G(k) denote a 5x5/4 Gaussian pyramid, where k denotes the different levels and G(0)
is the base. The bottom-up building process is based on the reduction function REDUCE :

G(k):= REDUCE(G(k—-1)), k:=1,2,... (19)
which has two tasks:

e Filtering with a 5 x 5 kernel which depends on one parameter -
Here the important notion ’equivalent weighting function’ is introduced.

e Sampling

It is stated that the whole process is 'faster than the Fourier transformation’ (see also
O’Gorman’s evaluations below).

42



Laplacian pyramid
G(3)

s

EXPAND

0] e

ouTPUT

Figure 8: Reconstruction from the RE Laplacian pyramid.

After the Gaussian pyramid is built in this way, following steps are performed:

1. Define the interpolation function EXPAND using the Gaussian filter which is the
reverse function of REDUCE.

2. The ’reduce - expand’ RE Laplacian pyramid is built by:
L(l) := G(I) = EXPAND(G(I + 1)) for 1:=0,1,...,t—1 (20)
t is the top level. See Fig. 7.
3. Reconstruction of G (k) is exact (Fig. 8):
G(k) := L(k) + EXPAND(G(k +1)) for k:=t—1,t—2,...,0. (21)
4. Hence storing G(t), L(t — 1), L(t — 2),..., L(0) is sufficient for exact reconstruction of
the original image G(0).

5. Quantisation of L(l) shows only small and visually not recognizable errors, but large
reduction rates: < 1 Bit/Pixel.

An alternate way of constructing Laplacian pyramids is also defined in terms of Burt’s
operations [BASv86] : the ’filter - subtract - decimate’ FSD Laplacian by

L(l) := G(l) — F(G(l)) for 1:=0,1,... (22)
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8.1 Image compression by 5 x 5/4 and 3 x 3/2 Laplacian pyramids

In [MK89b], [May89], [MK89a] Burt’s image coding scheme has been compared for two differ-
ent pyramid structures: 5 x 5/4 (Burt) and 3 x 3/2 (Mayer, Kropatsch). By using an efficient
scheme for representing the odd levels of the 3 x 3/2 pyramid which would occupy 100% more
storage if stored uncompressed because of the 45° rotation,we could achieve compression rates
of 1:10 up to 1:20. Very similar results in quality and time complexity are reported by Burt
and were also verified by simulating the 5 x 5/4 structure.

This result was estonishing because the reduction factor of 2 causes the 3 x 3/2 pyramid
to have double as many levels as the 5 x 5/4 pyramid. More resolution levels have two
advantages: they allow a much finer discrimination of object sizes and image reconstruction
gives a much smoother impression.

If the receiving station of an image transmission expands the early transmitted low res-
olution images with the same kernel that has been used to achieve best compression then
both pyramids show artefacts. In the 5 x 5/4 pyramid edges along the horizontal and vertical
axes may be exagerated, in the 3 x 3/2 pyramid bright and dark spots at certain positions
are introduced. These artefacts can be avoided by using a different expansion kernel without
negative values.

8.2 Filtering in the space domain versus the frequency domain

In [OS87], filtering in the pyramid (space) is compared with filtering in the frequency domain.
Besides the fact that 'processing in the Fourier domain is often inappropriate for images’, be-
cause the data of a picture image as opposed to a 2-dimensional signal is usually not periodic
on the global scale, the computational cost in the number of multiplies is compared:

a multiple low-pass transform can be computed either in the frequency domain by fast Fourier
transform (FFT) which takes CE . ~ N2 (% + 13—6 logy N ) multiplications; or in the pyramid

2702
(space) domain involving convolution with a p x p kernel: C%; ’f ’%, which can be further
~ PNZ

reduced for symmetric and separable filters down to: C§4 ~ B

Similar results are obtained for the multiple band-pass (Laplacian) transform: In the
frequency domain: C’EFT ~ N? (% + % logy N ); and in the space domain using a p X p

kernel: Cgl ~ 23N 2, which can be further reduced for symmetric and separable filters down

. (B ~ 2pN?
to: g, = T

8.3 Further applications

In [BA83b] Burt and Adelson used their Laplacian pyramid scheme to compute multireso-
lution splines of images that are useful for building image mosaics with smooth transitions.
Let A, B be the two images and M a binary mask indicating where values from A should be
taken (e.g.0) and where from B (e.g.1):

1. Laplacian pyramid LA of image A is built.

2. Laplacian pyramid LB of image B is built.
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3. Gaussian pyramid GM of binary mask M is built.
4. LS:=LA+GM - (LB — LA).

5. Image S is a reconstruction of LS.

In [ABv85], the Laplacian pyramid is used to indicate a significant change in a time-
series of images. Let I(¢) denote the image taken at time ¢, let I; denote the level at which
the change shall occur. Following procedure is able to initiate an alarm when an unusual
situation occures in the field of view:

L. D(t):=1I(t)—I(t—1);

2. build Laplacian pyramid L(l,t),l := 1,2,...,l; with L(0,t) := D(t) ;

3. square level I1: L(l1,t)? ;

4. build Gaussian pyramid G (k,t),k :=1,2,..., kip with G(0,t) := L(l1,t)? ;
5. threshold G(k,t),k:=1,2,..., kip: alarm.

9 The Wavelet Representation

The Wavelet Representation is a new method for image representation [Mal89]. It can be
seen as an extension of Burt and Adelson’s Laplacian pyramid concept [BA83a).

An image is approximated at a spectrum of resolutions in a wavelet orthonormal basis. It
is shown in [Mal89] that a multiresolution approximation can be characterized by a unique
scaling function ¢(x). ¢(x) is used to derive a discrete linear filter H and its mirror filter
H, the reduction function of the 2 x 2 /4 pyramid transform.

Given a sequence of increasing resolutions (rj);cz, the details of an image at resolution
rj are defined as the difference of information between its approximation at the resolution r;
and its approximation at the lower resolution 7;_;. These image details must be uncorrelated.
They are computed by decomposing the image function in a wavelet orthonormal basis which
is uniquely characterized by the orthogonal wavelet (z). Similarly to ¢(x), 1 (x) gives rise to
discrete linear filter G' and its mirror filter G. G is used to compute the detail image levels of
the orthogonal wavelet representation (see Fig. 9). For example, this algorithm decomposes
a 512 x 512 image into the three detail images D%,l 1 Dg,lf, D;’,lf all of size 256 x 256,
three images D;_Zf, D%_gf, D;’_zf all of size 128 x 128..., and the top level image Agjf of
size 2977 x 2917 -9 < j < 0. The detail images D', D?, D3 can be interpreted as spatially
oriented frequency channels, e.g. D' shows the vertical high frequencies (horizontal edges),
D? shows the horizontal high frequencies (vertical edges), and D3 shows the high frequencies
in both directions (the corners).

The wavelet basis provides a representation of the image that is midway between the
frequency (Fourier) domain and the space domain [Mal89].

Given the wavelet representation of an image, the original image can be reconstructed
using filters H and G similarly than from a Laplacian pyramid (see algorithm in Fig. 10).

The following assumptions are made for the wavelet representation:
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Figure 9: Mallat’s wavelet decomposition of an image
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Figure 10: Image reconstruction from Mallat’s wavelet decomposition
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1. The continuation of the original image outside of the field of view is symmetric with
respect to horizontal and vertical borders.

2. The 2D scaling function ®(x,y) = ¢(x)p(y) gives extra importance to the horizontal
and the vertical directions in the image.

Notice the difference to the Laplacian pyramid:

e The difference levels D’ are generated by the separate filter G and not by the difference
between two resolutions as in the Laplacian pyramid.

e The highest resolution difference levels of a 512 x 512 image are of size 256 x 256. The
highest level of the corresponding Laplacian pyramid has 512 x 512 pixels.

e The 2D wavelet representation needs the same amount of space as the original image
whereas the Laplacian pyramid needs 1/3 more than the original image.

10 Curves

A curve in an image may describe two different types of features:

e a boundary of a region or

e the skeleton of an elongated thin region (e.g. rivers or roads on satellite images; see
section 10.3.2).

The recognition of curves often involves two steps: First, local instances of the curves are
detected (section 10.1), e.g. edges, short curve segments. The primal sketch compiles the
results of this first stage (section 10.2). Second, these elementary segments are connected to
form sequences that may be matched with higher level curve models.

The shape of a region can be described by a curve. Different criteria judge the quality
of a shape representation (section 10.3). Representations often depend on a special global
parameter: the scale. Varying this parameter continuously modifies the representation and
creates the scale-space (section 10.4). Different basic shape elements can be used in order to
classify shapes locally. More global properties are then derived from the specific configurations
of shape elements (section 10.5). One property of digital curves has been studied extensively:
the straightness (section 10.6). Corners can be detected locally as non-straight curve segments
(section 10.7).

10.1 Curve detection
There are numerous methods for detecting edges in digital images. Here we want to concen-

trate on methods that are somehow related to the goal of detecting curve segments and that
allow the integration into a multiresolution approach.
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10.1.1 In two dimensions

Julesz performed extensive experiments and found a subset of visual features that can be
recognized by humans extremly fast [JB83]. The preattentive visual system can detect dif-
ferences in a few local features almost instantaneously, regardless of where they occur. These
features, called TEXTONs, are

e elongated blobs,
e ends-of-lines, and

e crossings of line segments.

Julesz conclusions give indications what the primitive elements of a vision systems could
be and what the characteristic of the processes is:
"Preattentive texture perception is essentially a local process.’
"The preattentive system utilizes globally only the textons in the simplest possible way by
counting their numbers(densities).’
"It does not perform Fourier analysis.’

Some of these characteristics are directly built into recognition algorithms. For example:
Edelman’s interesting pyramid algorithms MAC-1 and MAC-2 [Ede87] try to realize the
author’s hypothesis: "The computational basis of human perception of connectivity in thin
figures is some kind of terminator counting’.

The early work of Ramer [Ram75] shows some interesting analogies to pyramidal struc-
tures: Line structures are extracted from gray level images in two phases:

1. A nonlinear transformation produces a 2D stroke array. The structure of this trans-
formation is an (8 x 8 — 12)/16 overlapping reduction. The octagonal stroke domain,
which corresponds to the reduction window in pyramids, is embedded in an 8 x 8 window
from which three cells are excluded at each corner.

2. The strokes are assembled into streaks using graph searching techniques. A streak
is an ordered set more than two strokes such that every two strokes adjacent in the
ordered set are 8-neighbors in the stroke array. The cellular representation uses the
3-bit Freeman chain code to point to the next stroke of the streak.

Streaks are classified into prime (nonblurred and nonparasitic), parasitic (streaks par-
allel to longer streaks), and blurred streaks. Prime streaks are used to form junctions.

Burns [BHR86] extends the observation window for detecting a line on both sides of the
line: ’line support regions’. He tested his approach with four natural examples: a building on
dark background, a person in front of a house, a house that is partly covered by a tree, and
an areal photograph.

Rosenfeld and Sher [RS87] fit a straight line to sets of edge pixels. Since the first fit Lg
depends on variations in direction (wiggles), a second fit includes both the magnitude m(P)
and the deviation in direction #(P) of the edge pixels from the line Lg:

1. The standard SOBEL edge detector ([RK82, Section 10.2]) gives edges P with (m(P),0(P));
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2. fit line Lo := min Y. m(P)d?*(P, Lg), where d(P, Ly) is the perpendicular distance of
P

pixel P from line Ly; set ¢ := 0;
3. 6; := slope(Ly) ;

4. fit Liyq := min Y m(P)cos(0(P) — 0;) - d*(P, Li11);
P

5. i:=1+ 1 and iterate (3., 4.).

For a non-noisy edge, the result is insensitive to wiggles.

Sher [She87] reports on advanced likelihood generators that evaluate the presence of a
boundary curve. The basic operation involves counting mistakes:

e false positives: wrong boundary reported;

o false negatives: real boundary missed.

The operator is tuned (o = 12) to the expected noise.

Wojcik’s [Woj87] concept for detecting and representing curve segments shows similari-
ties to the previously introduced concept of the observation window and to the principle of
representing curves in pyramids as used in chapter 11.

A circular (observation) window is shifted along an image contour. Then adaptive thresh-
olding delivers binary values, from which the Euler number is calculated: I, denotes the
number of objects, Iy the number of background regions, and I, the number of intersections
with the window. Equivalence classes are built and form the primitive entities for describing
the curves:

tip ifl,=1NIp=1VI,=1
segment ifl,=1NIp=2VI,=2
fork ifl,=1NIp=3VI,=3
junction ifl,=1NIlp=4VI,=4
two segments | if I, =1 A Iy =3
discontinuity | if [, =2 A Iy =3

Wojcik makes four assumptions:

e 2 line is compact;
e the width is smaller than (a given) radius;
e the length is greater than the diameter;

e the line crosses the center of the window.

As a result following line attributes are calculated: mass, position, length, slope, index.
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10.1.2 In three dimensions

Since most images are taken from the real three dimensional (3D) world one of the major
problems in vision is the estimation of the 3D positions of the objects in the 2D image (e.g.
[Har86a]). This problem is ill-posed and needs more information or assumptions to be solved
based on single objects (e.g. a second stereo image, knowledge about the 3D shapes of the
observed objects, etc.). Naito and Rosenfeld [NR88] are able to estimate 3D positions from
orthoprojected line drawings.

Two assumptions:

1. many identical objects;

2. arranged in random orientations.

Four features: longest line; special positions; angle between two branching line segments;
most frequent angle.

Four specific models:

base line and height (example house plant);

Length and angle (example pine branch);

triangle (example flowers);

angle (example tree).

10.2 Primal sketch

This section shortly summarizes approaches related with David Marr’s Primal Sketch.

Marr’s [Mar76] Primal Sketch is a symbolic, two-dimensional description of the significant
gray-level changes in an image. It includes the type, the position, the orientation, and the
fuzziness of the edge for each area of gray level change.

How good a description is can be determined from the quality of an image reconstructed
only using this description. [Mar80] illustrates the possibility to reconstruct the image from
the Primal Sketch to a reasonable degree.

10.2.1 Terrain related primitives

Based on Marr’s Primal Sketch [Mar76], [Mar80] further primitive categories are added to
the vocabulary. Various primitives are derived from an interpretation of the gray level image
as a gray tone intensity surface comparable to a digital elevation model.

The facet model [Har84a] is used in [WLHS85] to derive the following topographic cat-
egories from a digital image: peak, pit, ridge, ravine, saddle, flat, hillside. The facet
model needs to interpolate a continuous surface from the discrete grid data. A generalized
spline approach and the discrete cosine transform perform this task.
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Very similar categories of terrain classes are used in [BF87]: peak, pit, pass, ridge,
ravine, slope, break, flat. The process constructs a general hierarchical network of drain
and ridge lines.

A further grouping and terrain related semantics are introduced in [FP87] for modelling
'real” digital terrains:

critical regions: hill, dale, catchment area, water shed, drainage basin, lake, patch;
critical lines: ridge, channel, cliff, break;

critical points: peak, pit, pass, ridge junction, channel junction.

Earlier, Crowley [CP84] represented the peaks and ridges of the DOLP transform of a
gray value image in the 2 x 2/2 pyramid.

10.2.2 Shape related primitives

Asada’s [AB86] Curvature Primal Sketch describes curves in scale space (see section 10.4).
His multiscale approach segments the curve in three categories: corner, end, smooth join.

Watt’s [Wat87] algorithm MIRAGE extends Marr’s concept of the Primal Sketch [Mar76].
Let I(r,6) denote an image in polar coordinates.

1. Filter with Laplacian of Gaussians with parameter o;:
2
2

)e 20].

T

R;(r,0) := I(r,0) (1 — =

T 202
J

2. Split R; into 2 images:
Rt — Rj for Rj > 0, R — —Rj for Rj <0,
J 0  otherwise, J 0 otherwise.

3. Build sums of the positive and negative signals separately:
TH(r,0) = %:R;’, T (r,0) = ZJ:RJ_

4. Comparing the two signals T+ and T~ there are three possibilities:

() T+ =T =0.
(ii) T+ =0 or T~ =0but T+ £T".
(iii) 77 #0 and T~ #0.

Based on these classes, edges and lines (bars) are detected.

5. Statistics on 7" and T~ are used to calculate the edge’s and bar’s attributes of blur,
location , and contrast.

As a model for earliest stages of human low-level vision, MIRAGE contributes the following
types of functions:

1. The gray level range is mapped so that its mean is zero and its dispersion is restricted.
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2. Important features are emphasized and then detected. Their attributes are preserved
and may be measured.

3. Features are grouped intelligently according to spatial scale.

4. The data rate into slow geometrical processes is controlled.

10.3 Shape representations

The paper of Fischler and Bolles [FB86] addresses the problem of partitioning (perceptual
organization). Most of the techniques can be characterized by one of the four paradigms for
partitioning a curve :

1. Local discontinuity detection;
2. best global description;
3. confirming evidence;

4. recursive simplification (producing a hierarchy of data sets).
Following two general principles must be satisfied by an effective technique:

1. Stability (see below) and

2. complete, concise, and complexity limited explanation.

Figure 11: Describe shape by five points!
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They illustrate the concepts by the example of five points on a line drawing (Fig. 11).
Sometimes, the complex configurations that may appear in an image have to be described by
a limited vocabulary (only five points). Depending on the task that a human was given, the
five points have been placed differently. The three tasks were:

1. Reconstruction (placement in Fig. 11);
2. Recognition;

3. Segmentation.
Two key points summarize the basic ideas:

Key point 1: The partition problem does not have a unique definition, but it is parameter-
ized: purpose, data representation, trade off between different error types (false alarms
versus misses), etc.

Key point 2: Psychologically acceptable partitions imply an explanation. This explanation
must satisfy criteria for accuracy, complexity, and believability. These criteria are formu-
lated by a set of principles which can guide the construction of an effective partitioning
algorithm.

Woodham [Wo087] defines the notions ’representation’, 'description’, ’stable’. A rep-
resentation identifies a formalism, or language, for encoding a general class of shapes. A
description means a specific expression in the formalism that identifies an instance of a
particular shape, or a class of shapes, in the representation. A computation is stable if small
changes in the input produce correspondigly small changes in the output.

Woodham’s criteria for shape representation are: local support, stable, rich, multiple
scales (!), object based semantics, human performance. A prototype bin-picking system is
based on the concepts of photometric stereo, the 'Extended Gaussian image’ and mixed
volumes.

Mackworth [Mac87] refined Woodham’s criteria and gave 12 criteria for shape represen-
tation:

[a——y

. computable efficiently;

2. local;

3. stable;

4. unique: e.g. F : object — representation is a function;

5. complete: F' is total, every object has a representation;

6. invertible (rich, information preserving), F' is one-to-one;

7. invariant under (shift, rotation, magnification) transformations;

8. scale sensitive (coarse-to-fine);
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9. composite, explicite part-whole composition structure;

10. matchable, comparing two shape descriptions should return a description of their dif-
ference;

11. generic (through parameters or instantiation rules);

12. refinable, generic — specific.

Four domains for explicite shape representation are differentiated:

o flx)
scale space (see chapter 10.4): F(z,0) := G(z,0) * f(z)
Steepest slope F,, =0 and F,,;, # 0= "edge’.
Note that Fyy(z,0) = Gge(z,0) * f(2).

Monotonic property: filtering in scale space does not create generic zero crossings
([BWBDS86] and [YP86]). This key property allows to define the interval tree in scale
space. The scale space image uniquely characterizes the curve, hence it is invertible.

o z(1),y(?)
This includes the MAT (medial axis transformation of Blum), the Brady ribbon (cf.
smoothed local symmetries) and CODONS. See below for more detail.

Curvature scale space: k(t) * G(t,0), where ¢ is the arc length and x denotes the
curvature.

Generalized scale space image: X(t,0) = z(t) * G(t,0) and Y (t,0) = y(t) * G(t,0).
Extended circular image [HW86].

e z(z,y)
Haralick’s facet model [Har84al;
Shape-from-shading;
Fractal modelling (compare with [BS88]);
Shape-from-contour (block’s world), Huffman-Clowes (-Waltz) labelling.

e 2(p,q),y(p,q), 2(p,q)
Generalized cylinder

Extended Gaussian image
Superquadrics.

Leu and Chen present an approach for polygonal approximation of 2D shapes through
boundary merging [LC88]. They differentiated between two types of shape representations:

a) region based: quad-tree, MAT, moment invariants, subregion decomposition.

b) boundary based: chain coding, polygonal/B-spline approximation, Fourier descriptors,
Hough transformation.

Shape representations should
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preserve the shape information (to allow reconstruction, "invertible’);

allow fast conversion with moderate memory requirements (’computable’);
e be insensitive to distortions (’stable’); and

not be too sensitive to local noise.

Critical comments to their approach show general problems of shape representation methods:

1. It may encounter problems, when large smooth curves are approximated. Imagine a
long circular arc (big radius). A fine (regular) approximation will have lots of runs
with the same length and the same angle inbetween too neighboring runs. Hence the
LMDAs* are all the same! (Or nearly the same.) It depends essentially on the scanning
direction and on the curve before and after the circular arc. Symmetry is lost!

2. Another important feature of closed shapes is their size measured by the area. Since
all points of the approximated polygon are on the original boundary, the area of the
shape can shrink considerably, especially for convex shapes.

3. Intersections are also an important visual feature (cf. Julesz” TEXTONS). Since the
approximated boundary moves spatially, a non-self-intersecting curve can become self-
intersecting in the image plane.

10.3.1 CODONS

Richards and Hoffman [RH85] describe closed 2D shapes by a complete set of primitive shapes
(CODONS) based on the differential properties of 2D curves. Their CODONSs segment curves
at concave cusps (minima of negative curvature) and describe them syntactically by six prim-
itive elements by means of the configurations of curvature zero crossings and the sign of
curvature:

oo: straight line;

0": positive curvature;

07: negative curvature;

17: one curvature zero crossing before reaching the curvature maximum;
17: one curvature zero crossing after reaching the curvature maximum;

2: two curvature zero crossings.

The notation is based on the observation that all curve segments lying between minima
of curvature must have zero, one, or two points of zero curvature (points of inflection). The
superscript in CODONs 0 and 1 indicate the sign of curvature at the CODON entry.

“The maximum arc-to-chord deviation of a locally minimum deviation arc (LMDA) is smaller than that of
its neighboring arcs.
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10.3.2 Generalized ribbons

"Ribbonlike’ planar shapes can be defined by specifying a planar curve, also called spine or
axis, and a geometric figure such as a disk or a line segment that ’sweeps out’ the shape
by moving along the curve, changing size as it moves. Such shape descriptions have been
considered by Blum, Brooks, Brady, and others. Blum used a disk as generator, his repre-
sentation is also known under the term 'medial (or symmetric) axis tranfsformation’. Brooks’
generalized ribbous originate from a line segment that moves along the curve maintaining a
fixed angle with the tangent of the spine. The resulting shapes are 2D versions of "general-
1zed cylinders’ sometimes called ’generalized cones’. Brady’s representation is based on ’local
symmetry’. The generator is also a line segment, but it is required to make equal angles
with the sides of the shape. Rosenfeld [Ros86a] compares those three representation classes
with respect to generation and recovery. It is shown that the three classes of generalized 2D
ribbons are strictly nested for straight spines if the ends are ignored:

Blum C Brooks C Brady. (23)

10.3.3 Relating the skeleton with the boundary

In general, MAT representations do not satisfy the stability criterium. Ho and Dyer [HD86)]
smooth the shape to make it less sensitive to little perturbations. The points of the medial
axis transform (MAT) are weighted by prominence measurements that are based essentially on
correspondence between the MAT point and the curve segments of the shape that are uniquely
associated with it. In this way 'major’ and 'minor’ axis are identified on the skeleton. The
shape is smoothed by removal of minor axes.

Leyton’s [Ley87] contribution relates symmetric axis with boundary description by CODONs
[RH85]. "The ends of the (Brady-)Ribbon [Ros86a] (symmetric axis) are close to the curvature
extrema of CODONs.” CODONSs are further subdivided into simpler segments called limbs ,
which have the shape of a spiral (= curve of monotonically changing curvature). Symmetry
is identified as a crucial organizing principle of shape.

10.4 Scale-space representations

To generate a description of a continuous signal, the signal is fed into a detector (e.g. a filter)
that produces the features (e.g. edges, peaks, curvature extrema) of the required description.
It is interesting to note that, even in the continuous case, the description does not depend on
the signal alone, but also on the scale of measurement, i.e. the size of the detector. The
scale-space is spanned by the coordinate axes of the input signal (e.g. 1D, or 2D) plus an
additional dimension, the scale o, that is the continuously varying size of the detector. At a
small detector size, many (detail) features are detected. With larger detectors, the degree of
smoothing reduces the number of detected features. The goal of scale-space representations
is to use detectors that obey the monotonicity condition: when moving from fine to coarse
scale, no new features are detected; and when moving from coarse to fine scale, existing
features never disappear.

We shall introduce in the following two papers that show that under certain assump-
tions there exists a unique smoothing kernel. Then we describe papers with two different
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characteristics in two sections:

e A (1D-) detector is applied to every dimension of the signal separately.

e A (2D-) spatial detector is used to derive scale-space representations.

10.4.1 The uniqueness of the Gaussian kernel

Babaud et al [BWBD86]| consider as detector category filters F'(t,0) : R x R — R . The
features are defined as first-order extrema of a twice differentiable (signal) function f : R — R.
They formulate the uniqueness theorem (Table 6).

Table 6: Uniqueness theorem of Babaud et al

Under following assumptions:

1. 0 is a bandwidth parameter for F'

1.t
Jdkernel AVt € R,0 > 0: F(t,0) = —h(—).

o o
2. F is symmetrical in ¢:

Vie R,0 >0: F(—t, o) =F(t, o).

3. F'is normalized:
o

o
Vo >0 / Ft,0)dt = / h(v)dv = 1.

Jp € N (integers) : (%P (0) # 0.

The only filter kernel F' in the convolution

o0

Wt0) = 1)+ Flt,o) = [ F)F(t = u,0)du (24)
that guarantees the monotonicity condition
bore >0 (25)
wherever ¢, = 0 and ¢y # 0, is the Gaussian
1 /t)?
Glto) = — ¢ 2 <5) (26)

Yuille and Poggio [YP86] come to the same conclusion. However, their formulation is
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valid for any dimension (simply take the variable of image I as an n-dimensional vector):

'If L(z) is a differential operator in any dimension that commutes with the diffusion
equation, then the only filter that does not create generic zero crossings as the scale
increases, e.g. solutions of

L(F % I) = const,

is the Gaussian.’

Their five assumptions about the filter ' are imposed as conditions for 'nice scaling behaviour’.
Although they are equivalent to Babaud’s assumptions, they are presented from a different
point of view:

1. Filtering is a convolution:
Pl(@) = [ P - Co)I(Q)dc.
2. The filter has no preferred scale o:
F(z,0) = (1/0%)f(z/0).
3. The filter recovers the whole image at sufficiently small scales:

lim F(z,0) = d(x).

o—0

d(z) denotes the Dirac delta function.
4. The position of the center of the filter is independent of o.

5. The filter goes to zero as |z| — oo and as 0 — oo.
Theorems:

1. In 1D, with the second derivative, the Gaussian is the only filter obeying the five con-
ditions which never creates zero crossings as the scale increases.

2. In 2D, with the Laplacian operator, the Gaussian is the ouly filter obeying the five
conditions which never creates zero crossings as the scale increases.

3. In 2D, with the directional derivative along the gradient, there is no filter obeying the
five conditions which never creates zero crossings as the scale increases.

10.4.2 1D-smoothing of parametrical curves

A parametrical curve

I'={(z(w),y(w)) [w e [0,1)} (27)
with normalized arc length w is evolved by G(u,o0) = ~ \/12? e u*/20" {0 yield the evolved
curve I'y = {(X(u,0),Y (u,0)) | u € [0,1)}. The curvature of I,

[ Xy (u,0)Yuu(u,0) — Xyu(u, 0) Yy (u, 0)]
(Xu(u,0)2 + Y, (u,0)2)3/2

(28)

k(u,0) =
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defines the curvature scale-space image of T' by k(u, o) = 0.

In the above parametrical curve representation, curves in scale-space correspond to cur-
vature zero-crossings. They are used in [MMS86b] for shape matching with an adaptation of
the Uniform Cost Algorithm, a special case of the A* algorithm. The examples include the
shoreline of Africa.

The comment in [Gos86] and the reply [MMS86a] refer to an important difference between
two ways of smoothing: ’Convolving a region boundary with a 1D Gaussian is not the same
as convolving the region as a solid with a 2D Gaussian and extracting the obtained region
boundary’. We shall see the effects of 2D smoothing in Bergholmn’s approach in the next
section.

Although w is the normalized arc length parameter of I' in equation 27, the parameter
u is not normalized with respect to the smoothed curve of I',. The renormalized curvature
scale-space image [MMS88] of I is defined by k(w, o) = 0 where w is the normalized arc length
parameter after reparametrizing I';. The renormalized curvature scale-space enhances the
utility for shape matching of similar curves if they contain radically different scale related
phenomena.

Following scaling properties of the curvature scale-space image are reported in [MMS88]:
The monotonic property of planar curves I' in Co does not hold in general, but if all curves
[y are in (5, then all extrema occuring at regular points on contours in the curvature scale-
space of I' are maxima. Furthermore, invariance under affine transformation, connectivity
and closure preservation, and the interrelationship between cusps of I', and self intersecting
I',_s are proven.

In Asada and Brady’s [AB86] curvature primal sketch (compare section 10.2), scale-
space is sampled at scales 4, 5, 7, 11, 15, and 22, which are approximations of 4(v/2)*, k =
0,1,2,3,4,5. Two primitive features, corner, smooth join, and three compound features,
end, crank, bump/dent, constitute the vocabulary that is produced by interpreting the
significant changes in curvature at various scales.

Reconstruction of a curve from its scale-space representation is possible [Mok88]: A
single point on one curvature zero-crossing contour in the curvature scale-space image of
planar curve I" determines I" uniquely up to constant scaling, rotation and translation (except
on a set of measure zero).

The torsion scale-space description of a space curve I' represents that curve up to a class
represented modulus a scale factor by the function 8(u) = 7(u)x?(u) where 7(u) and x(u) are
the torsion and curvature functions of I' respectively.

The results presented in [Mok88] indicate that

e a polynomially represented planar curve in C) can be reconstructed using four points
of its curvature scale-space image at one scale and

e a polynomially represented space curve in C; can be reconstructed modulus the class
represented by ((u) using seven points of its torsion scale-space image at one scale.

In principle, the scale-space need not be built on top of the original curve, any reversible
transformation of the curve can be used as well. As an example let us mention briefly the
extended circular image [HW86]. There, a simple, convex, closed curve is given by the
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radius of curvature R as a function of normal direction ¢, R(y)) = %, where w is the arc-

length. Horn and Weldon’s approach differs from the others by (1) the use of the radius of
curvature R instead of the curvature, s, and by (2) the use of normal angle v instead of
the arc-length w as independent variable. They show in [HW86] that filtering the ’extended
circular image’ preserves the closure of the curve.

10.4.3 Detecting features in 2D smoothed images

In this section we consider the behaviour of features in a scale-space that is created by 2D-
smoothing of an image I. The features of interest are edges and boundaries.

Bischof and Caelli [BC88] address the problem of parsing boundaries through scale-space.
They define the spatial stability for boundaries:
(A1) A boundary is a region of steep gradient and high contrast.
(A2) A boundary is well-defined if it has no neighboring boundaries.
Spatial stability has a "noise cleaning” effect. ’'All zero-crossing curves are either closed or
cross the image boundary (see ref. [24] there).’

Bergholm [Ber87] studies deformations of edges and contours that are produced by 2D-
Gaussian smoothing. His ’edge focusing’ method has following characteristics:

1. It smooths the image with a 2D Gaussian.
2. It detects edges as maxima along the gradients.
3. Scale-space reduces resolution continuously.

4. The deformation of four elementary edge structures, step edge, double edge (often called
'line’), corner edge (L-junction), edge box (blob), can be described by combination of
Gaussians.

5. Blurring may transform an edge contour in four ways:
(a
(b
(c
(d

) rounding-off corners,

) expansion of the two edges of a double edge profile,

) isolated closed contours are transformed into a circle, and

) merging of separated closed contours into one contour if they are not isolated.
6. It creates a coarse (edge) image and detect edges there.

7. Tt tracks edges at higher resolution (e.g. until o = 0.7) only in the neighborhood of
coarse edges.

Results are very similar to structural noise cleaning in the 2 x 2/2 curve pyramid (see chap-
ter 11).

In [SB88] this approach is extended for the extraction of diffuse edges. Two categories of
edges are distinguished: ’diffuse’ and 'non-diffuse’ (or ’true’). Non-diffuse edges are ’object
edges’ that correspond to object boundaries. Diffuse edges are mainly due to illumination
patterns such as shadows. The presented method is based on ’edge focusing’ [Ber87]. Two
blurring transformations are introduced in addition to
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(1) rounding-off,
(2) expansion,
(3) transformation into circles,

(4) merging,
by diffuse edges:

(5) attraction of weak elements,
(6) wiggling.

Two observations in scale-space allow the algorithm to distinguish between the two categories
of edges: First, diffuse edges tend to split up from coarse to fine resolutions and the pixels
seem to move in two directions out from the edge. Secondly, true edges move very little and
only in one direction.

The method compares two different levels of resolution (5 and 9, or 4 and 8, in the focusing
numbering):

1. Count edges in the neighborhood of the coarse level (CE).

2. Compare coarse and fine resolution edges: some correspond and some are 'new’ neigh-
bors.

3. Count edges in the fine resolution (FE).

4. For diffuse edges FE >> CE.

5. Map the results into the finer resolution.

6. Track edges to find continuous edge segments.

7. Compare edge segments whether it is part of a shadow or an edge.

Conclusion: ’'In a fine resolution, short segments are almost all shadow-pixels.” The two
examples show good results.

An approach where scale-space continuation enlarges the capture region around features of
interest are SNAKES[KWT87]. A snake is an energy-minimizing spline. Forces control the
continuity: internal energy, snake pit, image forces are the line functional, the edge functional,
scale-space, and the termination functional.

10.5 Discrete representations

When a curve is to be represented by discrete elements there are many variations from rep-
resentations closely related with the underlying raster up to representations that capture the
major properties of the curve.

Chain codes have been introduced by Freeman [Fre61], [Fre74] and are widely used as
shape representations. They specify relative movements within a connected sequence of pixels.
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In [WR87] chain codes are used to generate lines and circles. Other types of chain codes are
also possible. We shall introduce the RULI-chain code in chapter 11. RULI chains have
the advantage that they can be generalized into a lower resolution by applying syntactical
substitutions.

A step further away from the raster are polygonal representations. These are sequences of
straight line segments such that the next segment starts at the end point of its predecessor.
So-called vectorizers perform (e.g. [Pav84], [Pav86]) the raster-to-vector conversion.

Polygons are widely used in computer graphics. Dunham and Glanz [DG86] present op-
timal approximations of planar shapes by polygons. Samet [SW84] stores polygouns efficiently
in quadtrees. Ayache and Faugeras [AF86] have built a system HYPER in which shapes are
matched using polygonal approximations.

The objective in [KPK87] is to segment a shape which is given by a closed polygon. The
presented algorithm segments the shape based on collinear segments. It defines two types of
cojoins: type I (concave) and type T (convex).

1. Extract three kinds of collinear line segments: forward collinear, backward collinear,
anti-collinear. The result is a set of MCCS (minimal cojoined convex subpolygons).

2. Resolve conflict cojoins: a) inter-conflict (crossing), b) share-conflict.

10.5.1 Splines

The two approaches in this section allow to describe smooth curves.

The authors of [BPD88] propose a method for coding a binary image contour using Bézier
approximation. Bézier curves have the advantage of being simple and independent of the
coordinate axes.

A set of key pixels is detected on the contour. It decomposes the contour into arcs and
straight line segments. Key pixels are close to the points of maxima and minima of curvature.
The segments between every two key pixels can then be classified as either an arc or a straight
line L. An arc may again be of two types, with or without an inflection point (cf. CODONs
of [RH85]). An arc with inflection point is splitted into two arcs CC without inflection point
at the inflection point. The coding stores the key points and an additional point for arcs CC
to allow quadratic Bézier approximation at the reconstruction.

Straight lines L are reconstructed using Bresenham’s algorithm [Bre65]. Arcs CC are
reconstructed using a forward difference scheme.

Reported compression rates are significantly less than in the CRLC (contour run length
coding) and in the DLSC (discrete line segment coding) methods.

Pham [Pha89] introduces a general form of conic B-splines which allows representation
of circular, elliptic, and hyperbolic arcs in addition to parabolic arcs.

A conic B-spline is defined by a sequence of control vertices {V;} and knots {K;}:
(Vo, Ko, Vi, K1, Va,...)

Since the curve goes through the knots K;, and its tangent at the knot is determined by the
line segment (V;, V;y1), it must be located on this line segment.
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Conventional B-splines interpolate square Bézier curves through points (K;_1, V;, K;) by

Ci(t) = BL1(t)Ki1 + Bo(t)V; + Bi(t) K; (29)
where Bézier’s basis functions By (t) are defined as follows:
Bat) = (1-1) (30)
By(t) = 2t(1—1) (31)
Bi(t) = t* (32)

Pham uses different basis functions B_; = B_1/2, By = B_1/2 + By + B1/2,B1 = By /2.
They allow him to express the same curve Cj(t) in terms of control vertices (V;_1,V;, Viy1):

Ci(t) = B_1(t)Vie1 + Bo(t)V; + Bi(t) Vi (33)
Note that K; = (V;—1 + V;)/2 relate the two representations.

Using coordinates V" in homogeneous space, a circular arc CcM(t) = (1 —12,2t,1 +
t?) in the 2D plane can be represented by a conic B-spline with homogeneous vertices
v = (1,-1,1), V") = (1,1,1), ;™ = (=1,3,3). The corresponding knots are K" =
(1,0,1), K\ = (0,2,2). In the 2D plane the sequence Vi, Ko, V1, K1, Vo becomes (1, —1),
(1,0), (1,1), (0,1), (—3%,1). Note that the reconstructed knot Ky # (Vi + V2)/2. Therefore
the circular arc cannot be reconstructed from Vj, V1, Vo alone.

The curve fitting process counsists of following steps:
1. Specify the control sequence (Vy, Ko, V1, K1, Va,...).
2. Compute the homogeneity factors h; recursively by:

h,o = 1 (34)

- Vi- K
hivr = hl|Ki_Vi+1|

3. V" = (Vohs, ha)

2
, . . . ) h =
4. Use De Boor’s algorithm to calculate polynomial B-spline points Pj( ) = (Pj, hj).
5. Pj:= Pj/h;j

10.5.2 Moments

Sluzek [Slu88| addresses the problem of contour matching by means of partial moments of

curves. It can handle also the problem of partially occluded contours. No results with ’real’
data are reported.

10.6 Digital straight lines

As we have seen already, straight lines play an important role as an intermediate shape
representation. Many researchers have been interested in methods for detection of straightness
from chain codes [Ros74], [Ron85], [Pha86], [LL88] and for efficient generation of straight lines
in a raster [Bre65], [Pit82], [Bre85], [CP85] .
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10.6.1 A sufficient condition for digital straightness

A necessary and sufficient condition for chain coded curves to be straight is derived in [KT89]
and [Toc87]. An algorithm is given that checks the straightness of both a Freeman chain
coded (FCC) and a RULI chain coded sequence.

Two classes of codes are defined by comparing neighboring codes: repetition and sin-
gle codes. A code is called a repetition code if one of its neighbors in the sequence is the
same, if both are different, it is called single. Repetition and single code of a chain coded
straight line must be uniquely defined. Freeman [Fre74] found further that the two different
codes must have neighboring orientations, e.g. FCC differ by one.

Sequences of identical codes are collected to 'runs’ separated by single codes. The lengths
of these runs form a new sequence of integer numbers. Neighboring elements of such a sequence
can be compared in the same way as the original chain codes. Hence repetition and single
codes can be determined in this reduced sequence as well. It is shown that uniqueness of
repetition and single codes is also required for the reduced sequence if it represents a straight
line. The difference of the two must not exceed 1.

This process is repeated until the reduced sequence is so simple that the straightness can
be decided immediately, e.g. if all elements are the same. It is proven that this procedure
eliminates all non-straight lines during evaluation.

One single iteration depends only on the number of the sequence’s elements and the
reduced sequence is at most half as long. Therefore the algorithm takes on the order of
n+n/2+n/d4+n/8+--- < 2n steps if n is the number of original chain codes.

Using the repetition and single codes of all iterations the possible slopes of the line can
be computed.

Some correspondences with the different type of reduction in the curve pyramid (chap-
ter 11) are additionally reported in [Toc87]. However, the final goal of a parallel algorithm
for straightness detection in less than O(n) time is not reached.

10.6.2 Other straight line algorithms

In [SBT85] the k-curvature method is used to derive the average period of a chain coded
straight line.

The considerations in [DS86] are based on chain code of straight lines. The authors
estimate the length of the line by measurements on the chain string. The algorithm has 3
steps:

1. digitization — chain string;

2. characterization: (n,p,q,s) ;

3. calculation.

Krishnaswamy and Kim [KK87] define SLOPE, PARALLELISM, and PERPENDICU-
LARITY of digital LINE SEGMENTS. Related notions are also defined: dig. image, dig.
arc. These are embedded in a good overview of discrete geometry, which comes along with
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some useful references to this subject. The presented algorithm for SLOPE has complexity
O(N).

Melter and Rosenfeld [MR89b] address the stability of repeated digitization and recovery
of straight lines. A continuous line of the Euclidean plane is digitized by rounding. It creates
a set of lattice points, also called a scatter diagram. For convenience it is assumed that the
points have distinct abscissas. A least squares line for the scatter diagram is a line which
minimizes the sum of the squares of the vertical distances to the data points.

For a liney = Jﬁ, n € {1,2,...} the least square approximation converges to the original
line as more points are digitized. Furthermore, let «y; be the slope of a least squares line of a
line y = az. Then for every positive integer m, (o + m)x = ag + m.

Conversely, the three points (0,0), (1,a), (2,b) contained in a digital line reoccure if their
least squares line is digitized.

The linearity of a scatter diagram is measured by the correlation coefficient r,,. Let
S be the digitization obtained by rounding the line y = az for abscissas (0,1,2). Then
r2,(S) > %, or the three points lie along a horizontal line. The correlation coefficient for the

zy
line y = n € {1,2,...} approaches 1 for increasing size of the scatter diagram.

2ngi|—1 )
A set of lattice points with k£ consecutive abscissas is defined a noisy line segment if the
correlation coefficient of every three consecutive points is either > v/3/2 or < —/3/2 (sign

fixed for the line), or the three points lie along a horizontal line.
It is shown that noisy lines are a generalization of digital lines.

A new type of digital connectedness is also discussed; it is intermediate between the
usual 4- and 8-connectedness. A class of paths in the digital plane slightly more restrictive
than 8-paths is defined. The length of the shortest such path between two points defines a
metric.

10.7 Corners

Polygons have been introduced as connected sequences of straight line segments. Vectorization
in this concept searches for chains of maximum length that could be the result of digitizing
straight lines. An alternative defintion specifies a sequence of points that are connected by
straight lines. This definition suggests a different vectorization strategy:

1. Find corners as points where the digital curve changes its direction significantly and

2. connect them by straight line segments.

Obviously this approach has problems in detecting and representing smooth curves at high
resolution.

We have shown in [FK89] that curvature extrema can be related to corners in multiple
resolutions. Consider following example: a curve consisting of three elements, Ly, Co, Ls.
Let the circular arc C connect smoothly two straight line segments L1, L3. Four parameters
describe this configuration: the radius r of Cy, the angle 6 between L; and L3, and the lengths
Iy > 2r,l3 > 2r of Ly, L3 respectively. If r is much larger than the side length of a resolution
cell, Cy will be recognizable in the corresponding image. If we reduce the resolution, the
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angle 6 remains the same as long as both L; and L3 are represented. But the other three
parameters, ,11,[3, will decrease with respect to the reduced resolution. A smaller radius
implies a larger curvature. If we continue reducing the resolution until the size of a cell
approaches (2r)2, Cy will disappear, and L; and L3 will form a corner with angle . This
principle relates curvature extrema and corners through different resolutions.

The results of this work have been published in German [FK89], and in a Diploma thesis
[Fer89]. An English article [FK94] has been submitted for publication. The key points of this
work can be summarized as follows:

1. In a reduced resolution, curvature extrema may disappear. This causes symbolic curve
representations like CODONs to change. The modifications are local and have the
effect of shrinking the length of the description. The order in which curvature extrema
disappear is determined by the length of the two adjacent limbs.

2. Corners are locally detected as non-straight configurations of RULI-chains.

3. Corners are linked in adjacent levels of a curve pyramid. In contrast to continuous
scale-space (chapter 10.4), corners need not always have a corresponding corner in the
pyramid level directly below. Artefacts caused by digitization of the continuous scale
space are identified as such.

4. Two sufficient conditions of the corners before digitization determine if the corners
would be recognized in any possible placement and orientation. The corresponding
limits depend on the size of the detector k (k = 3 and k = 5 elements have been used
in the experiments):

e Upper limits ©(k) for the corner’s angles (f < O(k) in the above example);

e Lower limits [,,,;, (k) for the length of the corner’s legs (I1 > lnin(k),l3 > Lnin(k)
in the above example).

5. Curvature extrema become corners in a bottom-up reduction process and remain corners
until they disappear.

6. Efficient top-down matching strategies are described and tested by simple examples
(contour of a plier, a contour from [FB86] and [PR87]).

The following algorithm by Aviad [Avi88] combines local corner detection with confirming
evidence.

10.7.1 Corner detection by imperfect sequences

Aviad [Avi88] addresses the problem of locating right angle corners in unsmooth digital lines,
employing the concept of imperfect sequences. Four local classifiers (see Fig. 12) produce
four sequences of 0 and 1. In a noise-free curve there is at least one classifier that has a
different response on the two sides of the corner.

Next, each of the four sequences is partitioned by delineating imperfect sequences. Let
S0, 81, - - - Sp, denote such a sequence. In a noisy sequence, s; changes many times due to noise.
An Imperfect Sequence Detector (ISD) guesses when the sequence really changes the state.
Following assumptions are made:
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Corners are detected by classifier
[1] 4]
1011
0011 1010

3] 2]

classifier’s

1234
0001 responses 1110

2] E
0101 1100
0100

[4] 1]

Figure 12: Aviad detects corners in 8 directions with 4 binary classifiers

1. Sampling is known faster than the state changes.

2. Two thresholds kg, k1 are known, such that sequences 00...0, 11...1 indicate beyond
SN—— ——

ko k1
reasonable doubt the presence of state 0 and 1, respectively.

The ISD algorithm can be formulated as follows:

THRESHOLD(0):=ko(ko + 1)/2;
THRESHOLD(1):=k; (k1 + 1)/2;
SCORE(0):=SCORE(1):=0;
INC(0):=INC(1):=1,;

k:=1;

BEGIN(k):=1;

ACCEPTED:= none;

for i:=1 until n do

PREV:=SCORE(s;);

SCORE(s;):=SCORE(s;) + INC(s;);

INC(s;):=INC(s;) + 1;

INC(1 — s;):=1;

if SCORE(s;) > THRESHOLD(s;) then
ACCEPTED:=s;;
k:=k + 1;
SCORE(0):=SCORE(1):=0;
INC(0):=INC(1):=1,

if ACCEPTED=s; and SCORE(s;) > SCORE(1 — s;) then
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SCORE(0):=SCORE(1):=0;
INC(0):=INC(1):=1;

if PREV = 0 and ACCEPTED # s; then
BEGIN(k):=i;

The variables SCORE and INC update the support in accordance with confirming or contra-
dicting samples s;. If one hypothesis is accepted (ACCEPTED:=0 or 1), the other is rejected.
If the SCORE of the currently ACCEPTED hypothesis exceeds the SCORE of the competing
(1 — s;) hypothesis, the confidence buildup in the unaccepted hypothesis is overridden. The
beginnings of the sequences are recorded in array BEGIN. A new beginning is set whenever
the current sample s; is different from the current hypothesis and the competing hypothesis
has no support from the PREVious step.

The partition points BEGIN(k) of all four sequences are collected as corner candidates.
Those that form angles of at most 135 are selected as the final break points of the curve.

Experiments with the new corner detector are reported and compared with the results
of Fourier approximations. The new corner detector performs very well in detecting and
localizing significant corners.

Note that the parameters kg and k; measure the required minimum length between two
corners (compare [FK89]). Furthermore, the angle constraint is checked also before the final
break points are selected.

10.7.2 Other corner detectors

Freeman [Fre77] detects corners in chain coded curves.
In [HR85], curve segments are linked in a pyramid to detect significant corners.

In [CHS88] corners of curves are detected in digital images by measuring the degree of
bending via an extended (k-step) 3 x 3 mask. The bending values are identified as a measure
of prominence of a corner.

Curvature estimation is the focus of [O’G88b] and [O’G88a]. In [O’G88a] analytical
and empirical comparisons have been made of the difference of slopes (DOS) and Gaussian
smoothing methods for curvature estimation. For the DOS approach, the DOS™' method
with parameter values of (M — +0,M > 0) yields the best SNR® results for lines of small
signal angle and high line noise. The DOS™ method yields similar results to the Gaussian
smoothing method. However for small signal angle and high noise, both analysis and exam-
ples show the DOS™ method to perform better for signal detection. In [O’G88b] the DOS™
method is described in more detail for detecting curve and corner features from the curvature
plot as functions of M and L.

3Signal-to-Noise-Ratio
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11 The Curve Pyramid

Problems are encountered when thin structures such as curves and lines are to be detected in
pyramids. In the intensity pyramid, curves disappear after a few reduction steps because the
reduction averages the intensity over compact regions (receptive fields). Therefore an edge
detector is applied to the intensity pyramid yielding an edge pyramid (e.g. [Shn81], [Har85]).
The problem in an edge pyramid is to combine the edges simultaneously detected at different
resolutions.

Kelly was the first [Kel71] to use a two level (5 x 5/25) multiresolution hierarchy for edge
detection. He finds edges and lines first in the reduced resolution and uses these as a plan to
constrain the search in the higher resolution.

Others extract linear features [Shn82] and contours [TASMS83] using pyramids or quadtrees
[SSWS5].

Hong and Rosenfeld [HSHR83] use good continuation as criterium to integrate local
features. Hartley [HR85] smoothly joins polynomial curve models. The connectivity of curves
was the primary goal in the concept of the curve pyramid which is presented in the sequel.

11.1 The 2 x 2/2 curve pyramid and the RULI-chain code

The concept of representing linear structures of digital images by curve relations is in-
troduced in [Kro85a]. A cell of the underlying square grid is considered as the observation
window through which a curve is observed. A curve under such an observation window con-
nects the two points where the curve crosses the boundary of the cell. Since these two points
are located on two of the four sides of the square, N, E, S, or W, also the two sides are related
by that curve (see example in Fig. 13).

Figure 13: A NE curve relation

The set of curve relations of all observed curves is stored in every cell. It approximates
the observed curves.

The accuracy of the approximation is determined by the resolution of the cell. A lower
resolution representation is derived deterministically by two steps (Fig. 14):

e subdivision of the cell contents by introducing a diagonal and

e merging curve relations of two neighbor cell by transitive closure.
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Figure 14: Reduction in the 2 x 2/2 curve pyramid

Iterative application of this generalization procedure yields the 2 x 2/2 curve pyramid (see
Fig. 20, page 76).

There exists a chain code representation equivalent to the 2D concept of the curve rela-
tions: the RULI chain code. The four elements of this chain code {R,U, L, I} determine
the relative change in moving direction: go right (R), make a U-turn (U), go left (L), continue
in the same direction (I). A RULI-chain is invariant to shifts and rotations by 90°. The gen-
eralization of a curve represented by this RULI chain code is formulated by a 5 step formal
substitution grammar. It is shown that both generalizations are identical for single curves.
The grammar is further used to prove that the number of codes of a non-closed curve always
shrinks after generalization ’length reduction property’ .

In [Kro86e| three types of square grid pyramids are checked whether they are suited for
multiresolution curve representation: the 2 x 2/4 pyramid, the 4 x 4/4 pyramid, and the
2 x 2/2 pyramid. Such a representation must satisfy the following goal: the highest level
up to which a curve is still represented before it disappears must be related to
the area that is traversed by the curve. Non-overlapping pyramid structures do not
satisfy this criterium. The length reduction property of the 2 x 2/2 curve pyramid is extended
to closed curves. The number of code elements of closed chains is shown to shrink at least
every second step.

The articles [Kro86b] and [Kro87a] summarize the motivation and the properties of curve
relations and the RULI chain code. They contain the formal definitions and the formal
proof of the length reduction property.

Noise can have two major effects on curves in digital images: it creates a lot of new
short curve segments and it cuts long curves into smaller pieces. Using the length reduction
property of the 2 x 2/2 curve pyramid, the short noisy curve segments are eliminated in a
top-down process that deletes all curve relations in the lower levels that are not represented
in the level above [Kro87b].

Experiments with the synthetic image from [Kro86c] are reported. The only parameter
of this ’structural noise filtering process’ is the level up to which the pyramid is built
bottom-up and which is also the starting level for the top-down deletion. In the experiments
this parameter varied from 1 to 10. The results are compared to the uncorrupted image and
show that the number of deleted noisy curve segments increase by a factor of two on the
average when one more level is used.
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11.2 Hartmann’s hierarchical structure code

Hartmann’s pyramid is built on a hexagonal grid (see chapter 5). In the early version the
cells contained a hierarchical contour code HCC describing a contour segment that has been
detected by a Laplacian operator [Har84c]. The cells’ contents has been extended to hold also
regions in the HSC (hierarchical structure code [Har86b]).

One HSC element in the actual version [Har87a] is described by
< t;m;plk;n >,

where

t is one of 7 types:

‘e’ edge,

’b’ bright line,

’d’ dark line,

’h’ small bright region,

’h*’ nose-shaped bright region,
I’ small dark region,

’1*? nose-shaped dark region;
m identifies one of 42 detector shapes;
¢ describes one of the 6 possible detector orientations;
k is the detector size; and

n is the reduction level to which the detector was applied.

Hartmann’s pyramid has been used for several years and many applications. To name one
example, [DH86] shows similar strategies for model-based recognition than Burt’s pattern
tree.

11.3 The multiresolution intensity axis of symmetry

Gauch et al [GOP |, [GP88] use the symmetric azis transformation(SAT) according to Blum
(see also [Ros86a]) for figure based shape descriptions.

e Advantages of SAT:

— branching structure of object = branching structure of axis
— bending and flaring of object <+ changes in curvature and radii of axis

— it is unique: it allows reconstruction.

e Drawbacks of SAT: it is sensitive to noise and to small detail;
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The authors’ solution is a multiresolution symmetric axis.

It is based on following ideas: Lower resolution yields simplification. As does also the
branching structure of the SAT. The importance of a branch is determined by its annihilation
resolution (that is the level above which it does not appear any more). This definition of
importance implies a hierarchical ordering of the SAT-branches. Note the analogy to the
approach taken in [FK89], [FK94] (chapter 10.7).

There are two possibilities to reduce resolution with advantages and drawbacks:

‘ Reduce resolution by H advantage ‘ drawback ‘
1D boundary blurring preserves topology does not preserve figural similiarity
2D figure blurring good figural similarity changes topology

The boundary curvature reflects the bending of the object: see CODONs [RH85] , and
the CODON duals [Ley87] (e.g. parts on the SAT corresponding to CODON).

The authors’ strategy ”labels each CODON with a measure of its importance.” The
CODON generalization is achieved by taking the annihilation level of resolution as impor-
tance. That creates a hierarchy of CODONs.

Through Leyton’s duality between SAT <> CODONs, a correspondence between SAT-
and CODON-hierarchies can be established:
‘scale of annihilation of SAT-axis branch = scale of annihilation of CODON‘

A symmetric axis pile is defined as a collection of level curves for every possible (gray-)
level. Adding also the scale creates the multiresolution symmetric axis pile.

At critical points the symmetric axis sheet changes abruptly:

‘ interpretation ‘ Critical points ‘

sheet terminations | local extreme spots

loop terminations | local extreme rings

axis tears saddle

In the experiments, 2D Gaussian intensity blurring was used to generate the pyramid.
Following applications are reported:

e Segmentation of binary images.

e Segmentation of gray scale images into a set of objects R(x,y) such that the image
I(z,y) = [ | R(z,y)dzdy.

11.4 Further approaches

Huertas and Medioni [HM86] have a goal similar to our structural noise filtering:

1. Linear decomposition of Laplacian-of-Gaussians (LoG) — zero crossings;
2. zero crossings — edges + orientation

3. At edges: Facet-Model-Interpolation — refined contours.
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The authors mention a possible resolution reduction for ’global’ or 'macro’ edges.

Kjell and Dyer [KD86] determine ”long straight edge segments” at orientations of 45%;.
A 4 x 4/4 pyramid is used for the hierarchical region growing procedures:
SEGMENT — (LINK (bottom up linking), LABEL (top down label propagation)),
SMOOTH — (BUILD (bottom up weighted average), PROJECT (top down weighted aver-
age)).
They conclude: "Features based on spatial properties of long, straight, extended edge segments
are reliable features for texture description and segmentation.’

Meer, Sher, and Rosenfeld [MSR88] present the chain pyramid as a solution to the
curve representation problem in pyramids. Curves are represented by doubly lined lists in
the cells of a 4 x 4/4 pyramid. A probabilistic allocation algorithm avoids the overload in the
higher levels. Algorithms for preserving the local connectivity during the bottom-up building
process (reduction function), for smoothing of multiscale curves, and for gap bridging between
contour fragments are presented. No consideration is given to the monotonic curve property
e.g. if curvature extrema are preserved during reduction or not.

An alternative to the RULI-chain code is presented in [MS86]. A multiple grid chain code
(MG-code) is defined on 4 grids. It has better coding efficiency than Freeman’s chain code.

12 Dual Pyramids

In [Kro86¢] extensive experiments have been performed with a synthetic image containing a
large bright square, three large characters and several long lines. One version of the image
has been corrupted by strong additive noise. The results of the experiments are compared
with the uncorrupted version.

The gray value pyramid built with a Gaussian reduction function destroys the thin lines
after a few steps, while large homogeneous regions remain visible although their boundaries
are smoothed. Detecting contours at higher levels of the gray value pyramid produces many
parallel contours at the higher levels. However, detecting contours at the high resolution and
building the curve pyramid keeps the contours thin. Noise introduces a lot of short curve
segments. The higher levels of the curve pyramid show much less noise because short curve
segments disappear after a few reduction steps (compare chapter 11).

Hence the idea to combine the capabilities of Gaussian pyramid in detecting homogeneous
compact regions with the advantages of the curve pyramid that can efficiently recognize long
curves. The requirement to allow full information flow between both pyramids, not only
bottom-up and top-down in each pyramid but also between all corresponding levels of both
pyramids, led to the following dual structures.

12.1 Dual grids and pyramid structures

Two dual classes of square grids are related by local (square) operations: a side of the window
may have an odd or an even number of pixels. The center of an odd sided window (e.g. 3 x 3,
Fig. 15) is located at the same position as the center pixel of the window. Hence the same
square grid can be used to store the result.
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Figure 15: Geometric position (”x”) of a 3 x 3 local operation ("+").

The centers of a local square operation with an even sided window (e.g. 2 x 2, Fig. 16)
form a new grid which is the dual of the original.

Figure 16: Geometric position ("e”) of a 2 x 2 local operation (70”).

Spacing and orientation of the new grid is not affected by any local operation that is
applied at every pixel location in the input image.

When an even sided local operation is applied to the dual grid the result is located on the
original grid. As a matter of fact, two successive even sided local operations can be performed
in one step by one equivalent odd sided local operation which, as discussed above, is defined
on the same grid.

That means that two grids are sufficient to position the result of any sequence of local
square operation correctly with respect to the refered image plane. The two derived grids
complete each other in a dual way. Every grid position in one grid is the center of a square
formed by the positions of the corresponding four nearest pixels in the other grid. When the
points in each grid are connected by edges, they form graphs which are dual to each other.
Points correspond to squares and horizontal edges to vertical edges and vice-versa.

Figure 17 shows the projection of a part of the two dual grids into the image plane.

This duality is the basis for our two complementary pyramids. We use both types of
windows for reducing the pyramid levels. The resulting pyramids are called ”odd” and ”even”
according to the type of the reduction window.

Let us define following grid transformations: H transforms a level PO(k) of the odd
pyramid into the corresponding level PE(k) of the even pyramid. S transforms a grid PE(k)
of the even pyramid into the coarser grid PE(k + 1) of level k + 1. R reduces PO(k) to
PO(k + 1) in the odd pyramid similar to S. Figure 18 shows a diagram of the described
situation.

If we require the diagram in Figure 18 to be commutative, the composite transformations
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Figure 17: The dual grids: "+” and 70”.
H
PO(k) PE(k)
R S
H
PO(k+1) PE(k+1)

Figure 18: Grid transformations between two successive levels.

must satisfy

HoS=RoH. (36)

With this constraint the transformation R can be derived from H and S. A combined projec-

Legend: PE(k) o
o PO(k) + +
o PE(k+1) .
o PO(k+1) X
o overlay o + *

Figure 19: Overlaid projection of levels k and &k + 1 of odd (PO) and even (PE) pyramids.

tion of grids PO(k), PE(k), PO(k+1), and PE(k+1) is presented in Figure 19. The structure
dual to the 2 x2/2 pyramid with the smallest reduction window is a 3 x 3/2 pyramid (Fig. 20).
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Figure 20: Dual 2 x 2/2 and 3 x 3/2 pyramids.

This concept of dual pyramids was presented in the paper [Kro86a] for the first time. The
geometric correspondences and the indexing functions are calculated in this paper. Besides the
geometric duality of the two pyramids also the contents of the cells are chosen complementary
to each other: the even 2 x 2/2 pyramid stores curve relations and the odd 3 x 3/2 pyramid
stores gray values. First examples of the information flow in and between the two pyramids
are given in this paper. Further experiments are summarized in the following section.

12.2 Cooperation between dual pyramids

This section summarizes the principle idea and the experiences made with computer simula-
tions. Following four papers and a Diploma thesis describe the experiments and the results:
[Kro86d], [Kro86¢|, [Kro88a|, [PK88], [Paa87] (Diploma thesis, in German).

Thin structures in gray level images must be detected at a high resolution. Local (2 x 2)
contour operators generate the base of the dual curve pyramid. Short curve segments created
by noise can be eliminated in the curve pyramid by the approach described in [Kro87b].
The remaining (long) contour segments partition the 3 x 3 local reduction window of the
dual intensity pyramid into one or more connected regions (Fig. 21). Only pixels that are
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connected with the center pixel are fed into the reduction function. This smooths the noise
in homogeneous regions and preserves at the same time the contrast along the boundaries.

This was the first of two useful applications emphasized in [Kro86d]: contour preserving
gray level reduction. The second application, gray value based contour refinement, is still
under investigation.

Gerhard Paar’s [Paa87] thesis reports on computer simulations of the dual pyramids. The
aim was to study properties of objects in the pyramids while different components for pyramid
building are used. The main goal was to preserve sharp object contours.
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Figure 21: Overlaid dual gray values and curve relations.

Following components of the dual concept are compared:

Digital filters: Gauss, Frost [FSSH82|, Lee [Lee81] (see also chapter 7), Median [RK82,
Vol.1, section 6.4.4], KNN (K Nearest Neighbors)[DR78], and SNN (Symmetric Nearest
Neighbor) [Har87b].

Contour operators: MAX (called B2(4) in [Kro86d]), THR thresholds the magnitude of
the edges, LOK thresholds the gray levels.

Curve reduction and verification: as described in [Kro87b] and chapter 11.

Determination of connected center region: curves of the curve pyramid segment the
local reduction window of the dual intensity pyramid (e.g. Fig. 21). The connected
center region is a subset of the pixels in the reduction window that is not divided by
any curve.

Selective reduction: Only pixels of the connected center region are fed into the digital filter
used for reduction.

26 different combinations of the above components have been applied to both synthetic
and real images. The results are evaluated optically and by objective methods like histograms,
mean and standard deviation of selected regions, and radial histograms (circular projections).
The experiences are summarized in [Kro88c] and [PK88|.

In [PK88] we highlight in addition the theoreticel background of the dual concept. It
combines in the pyramidal framework both numerical and symbolic image representations
and allows transitions between the different representation at different resolutions. The 2x2/2
curve pyramid represents the multiscale symbolic scheme and the 3 x 3/2 intensity pyramid
is used for numerical computations.
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13 Conclusion

Classical pyramids use constant reduction factors of four between the levels of the pyramid.
That means that every lower resolution has only 1/4 of the pixels. But also other multires-
olution structures with lower reduction factors are possible. They have the advantage that
the resolution is reduced gradually. Objects of sizes that fall inbetween two successive levels
of the classical pyramid (e.g. too large for the higher resolution but too small for the lower
resolution) may find the appropriate level in a n x n/2 pyramid.

Dual representations enhance the description capabilities by combining numerical data
and symbolic data in the concept of dual pyramids.The usage of symbolic representations
within a pyramidal framework is relatively new. The symbols used are still very simple image
primitives like curve segments. But since image interpretation has the objective to describe
the image in terms of a high level vocabulary, symbolic pyramid representations are a step
in the direction of high level conceptual hierarchies as proposed by R. Bajcsy [BR80]. The
combination of such rich representations with the robustness of irregular pyramids let us
expect to come closer to our goal of having methods that produce reliable image analysis
results in reasonable time.
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