
Minimizing the Topological Structure

of Line Images?

Walter G. Kropatsch1 and Mark Burge2

1 Vienna University of Technology, Institute of Automation 183/2, Pattern
Recognition and Image Processing Group, Treitlstr.3, A-1040 Wien, Austria.
2 Johannes Kepler University, Institute of Systems Science, Computer Vision

Laboratory, A-4040 Linz, Austria. burge@cast.uni-linz.ac.at

Abstract. We present a new algorithm based on Dual Graph Contrac-
tion (DGC) to transform the Run Graph into its Minimum Line Property
Preserving (MLPP) form which, when implemented in parallel, requires
O(log(longestcurve)) steps. A MLPP graph of a line image compliments
the structural information in geometric graph representations like the
run graph. Using such a graph and its dual, line image analysis systems
can e�ciently detect topological features like loops and holes and make
use of relations like containment.

1 Introduction

The goal of line image analysis is to convert paper or micro�lm based line images
into an electronic form for easier manipulation, processing, and searching. The
high scanning resolutions used during conversion result in very large images for
which e�cient processing methods and storage are necessary. If algorithms to
manipulate and process the line images are to be e�cient and have low time and
space complexities they can not work directly on the O(n2) iconic representation
of the image. Instead a base representation of the line image that losslessly
compress its geometric structure and topology so that algorithms can e�ciently
access it is needed. We propose and give an e�cient method of computing a new
combined representation which meets these requirements.

2 Line Image Representations

A natural representation for an image is an array where each element repre-
sents the intensity or color in a spatially corresponding area of the image. This
representation maps itself very simply and elegantly into most programming lan-
guages and enables a natural raster style of processing. A disadvantage is that
the representation does not re
ect the structure of the image because regardless
of whether the image contains a few scattered on pixels or a complex scene the

? This work was supported by the Austrian Science Foundation grant S7002-MAT

amount of memory allocated is constant and dependent only on the dimensions
of the image (i.e., w � h � s where w and h are the width and height of the image
and s is the storage size of a pixel).

When processing line images we need to use high scanning resolutions to
ensure that details are not merged (e.g., the touching character problem) and
that they contain enough information to distinguish among them (e.g., the thick-
ness of di�erent lines). The memory requirements for the array representation
is O(n2) in terms of the number of pixels, leading to O(n2) time algorithms, to
avoid this we will not use an iconic representation but instead a symbolic one in
which the primitives are groups of pixels.

2.1 Skeleton and Contour Based

Many skeleton based representations of images have been derived from the Me-
dial Axis Transform (MAT) [1]. The MAT consists of the set of points in which
each point is equidistant from its two closest boundary points. Skeletons are
often computed using local operators making them sensitive to noise and caus-
ing many artifacts including unwanted short segments, called spurs, which jut
o� of a skeleton edge. Many algorithms [2] and heuristics have been proposed
to rectify the above problems, but in addition skeletons are an inherently lossy
or non-information preserving representation. Skeletons are often computed us-
ing local operators making them sensitive to noise and causing many artifacts
including unwanted short segments, called spurs, which jut o� of a skeleton edge.

While the skeleton representation does encode the local topology of each
image element (i.e., connected component consisting of four connected on pixels)
topological relations for the entire image like containment are not preserved.
Skeletons are not ideal for encoding the spatial extent of an image element since
most algorithms perform heuristics to remove artifacts from the skeleton, after
which it is no longer possible to recreate the original contours of the image
element using the radius function. Contour based representations on the other
hand are especially suited for encoding this type of information.

Contour based representations consider only the border pixels of an object
(e.g., the symbol \8" contains three contours: the outside double loop and the
two inner loops). In order to extract some of the structure of the contour and
to compress the representation, contours are often encoded. The most common
encoding is Freeman [3] or chain coding in which the contour is followed from
a given starting point by encoding each pixel's location in terms of the relative
direction (e.g., up, down, left, right) from its neighbor. The Freeman code is
compact because the absolute value for each pixel is not stored but instead for
each contour a single absolute value and the shorter relative values are stored.

Contour representations are information preserving and do compress the im-
age but it is di�cult to derive the topology of an image from its contour rep-
resentation. More sophisticated versions of Freeman coding, like the Primitives
Chain Coding (PCC) [4], do encode the complete line structure and topology by
indicating the end points and branching points of lines.

(a) LAG. (b) VSG. (c) (M)RG.

Fig. 1. Line image graph encodings, dark and light runs indicate nodes and edge
respectively.

Contour representations are especially sensitive to noise along object bor-
ders, such noise, in the form of spur pixels, is unfortunately often an artifact
of scanning. These noise pixels result in spurious features when encoded with
chain codes like PCC. Extensive progress [5] in detecting and eliminating such
noise has been made, but unlike standard chain coding which can be done in a
single pass through the image such methods are heuristic based, computationally
expensive and are not information preserving.

One of the drawbacks of contour representations is that they do not encode
the topology of objects, whereas skeleton representations do. In addition a disad-
vantage of skeleton representations is there inability to encode the spatial extent
of objects in contrast to contour representations. A representation combining
contours and there corresponding skeletons [6] provides the local topology of
skeletons and the shape information of contours, this representation is however
computationally expensive to create and requires sophisticated data structures
to use e�ciently.

2.2 Graph Based

In a run length or interval encoding [7] of an image, maximal sequences of black
pixels in a column or row are stored. These 1 � l rectangles form an information
preserving and compressed representation of the image. Both di�erent size rect-
angles and maximal squares have been used to extend this representation, the
later being another representation of the Medial Axis Transform. The advantages
of these representations are that they are inexpensive to compute, information
preserving, and compressed. Unfortunately it is di�cult to extract structural or
topological information from this representation without re-encoding it.

A simple re-encoding of the run length representation is the Line Adjacency

Graph (LAG) [8] in which vertical columns of pixels are encoded into runs,
each run is considered a node, and adjacent runs are connected by edges. This

(a) Curves. (b) Lines.

Fig. 2. Line images encoded as run graphs.

simple graph re-encoding as shown in Figure 1(a) does provide access to the local
topological structure of the image, but the shape of an object is only available
by examining each of its nodes.

In the LAG every vertical run is a node of the graph and graph edges serve
only to connect adjacent runs. The LAG can be reformulated [9] to obtain the
Vertical Simple Graph (VSG) representation of Figure 1(b). As the VSG is built
up entirely of vertical runs, when a line is near vertical it will be encoded in a
non-optimal fashion, instead graphs built of mixed horizontal and vertical runs
can be constructed.

The mixed run graph representation is built from both vertical runs (e.g.,
the VSG and LAG) and horizontal runs. It is conceptually a merging of vertical
and horizontal simple graphs as can be seen in Figure 1(c).

The run graph representation for an image is constructed by �rst �nding
maximal vertical and horizontal runs and then using simple rules (i.e., see [10]
where we extend those of Monagan [11] and [9]) to encode them into node and
edge areas. The run graph is information preserving; the runs underlying the
nodes and edges completely encode the shape of the image. The run graph
provides the local topology of each image element and we can compute its dual
graph to obtain the topology of the entire image.

Often in document image analysis we are interested in the line properties
(i.e., the end and crossing points of lines) of the line image. Since the run graph
is built from simple, local de�nitions [10] it contains many nodes and edges which
are extraneous in a minimum line property preserving representation. We now
present a new general method for transforming run graphs into their minimum
line property preserving (MLPP) graph representations.

3 Dual Graph Contraction (DGC)

Dual graph contraction is the basic process [12] that builds an irregular \graph"
pyramid by successively contracting the dual image graph of one level into the
smaller dual image graph of the next level. Since dual image graphs are typically
de�ned by the neighbor relation of image pixels we present the transformation
in such terms even though the actual implementation starts at the run graph
level.

neighborhood graph

GihVi; Eii

face graph

GihVi; Eii� -

edge contracted

G�hSi; Ei nNi;i+1i G�hVi; Ei nNi;i+1i� -

dually contracted

Gi+1hVi+1; Ei+1i Gi+1hVi+1; Ei+1i� -

dual

?

?

dual

dual

dual edge contraction -

dual face contraction� eliminates deg(v) < 3

??

??

Fig. 3. Dual Graph Contraction (Gi+1; Gi+1) = C[(Gi; Gi); hSi; Ni;i+1i].

Figure 3 summarizes dual graph contraction, It proceeds in two major steps:
dual edge contraction and dual face contraction. The �rst step contracts all edges
of graph Gi = hVi; Eii that are selected by the contraction kernel Ni;i+1 � Ei

into the surviving vertices Si. The decimation is controlled by the subgraph
hSi; Ni;i+1i which must be a spanning forest of Gi. Duality of the pair of input
graphsGi andGi is preserved by simply removing all those dual edgesNi;i+1 that
correspond to a contracted edge in Ni;i+1. The second step removes unnecessary
multi-edges and self-loops by dually contracting faces of degree less than 3.

Decimation parameters can be selected in a number of di�erent ways (e.g.,
data dependent selection criteria or by interactive selection). In this paper it is
controlled by the selection criteria derived from the topological relations between
the lines in the image. The criteria are formulated as a set of formal rules. They
allow to de�ne those important entities of the represented data that should sur-
vive the contraction process. Independent of the chosen parameters, the process
preserves several properties of the surviving parts: their connectivity, planarity,
and topology.

Label Examples Explanation

0-cell
�
�
�
�0 contains no curve, an empty cell

2-cell �
�
�
�
�2 a single curve enters and exits the cell at two

particular boundary segments

1-cell p
�
�
�
�1 a curve ends in this cell it enters the cell at a

particular boundary segment

*-cell
�
�
�
�* a cell where curves meet

1-edge
�
�
�
�2
1
�
�
�
�2 curve segment intersects edge

0-edge ��
�
�
�
�2
0
�
�
�
�2 no curve segment intersects edge

Fig. 4. Curve labels for vertices and edges.

3.1 Curve Labeling Rules

In general the lines of a line drawing represent curves connecting end points and
junctions. The discrete sampling resulting from digitizing the image splits these
curves into small curve segments which must be correctly reconnected during
contraction. Curves and cells are related by several cell classes (Fig. 4) and to
simplify comparison with previous methods [13] we use a grid graph base where
each pixel cell is a node with edges between each of its 4-adjacent pixel cells.

We assume that the pixel grid overlays a set of curves where the cell classes
are consistent (i.e., if a curve crosses a boundary segment then both cells adjacent
to this segment are in the correct class) and that all curves are distinguishable
in the base (i.e., there is no more than one curve in each cell of the base except
in *-cells). We initialize the algorithm by assigning all cells in the base one of
the four cell-classes using the following simple algorithm. If a curve crosses an
edge, then the edge receives an attribute 1 otherwise 0 and all pixel cells sum
the attributes of their incident edges. Sums of 0, 1, and 2 correspond to 0-cell,
1-cell, and 2-cells respectively, while cells with a sum greater than 2 are *-cells.
In the dual irregular pyramids the cells where the curves are represented are
contracted and not the dual graph as was done in [14].

3.2 Selecting the Contraction Kernels

The rules in Table 1(a) di�er slightly from those in [15] in that we now allow
*-cells to merge with 0-cells and 2-cells since the geometrical position of the
junction is inherited from the base graph. Due to this change faces in the dual
graph surrounded by either one (i.e., a self-loop) or two parallel marked edges
may appear and must be excluded from dual face contraction so that no line
segments are lost in the �nal graph. 1-cells and *-cells must always survive and
the bridges of connecting paths inherit their attributes to the new edge. Random
selection, as in adaptive pyramids [16], applies whenever the given rules do not

determine the contraction kernels completely. The rules of Table 1(a) are selected
in the order presented below:

1. A 1-cell can merge with an adjacent 2-cell (R12) or 0-cell (R10).
2. A *-cell can merge with an adjacent (connected by a 1-edge) 2-cell (R*2) or

with any adjacent 0-cell (R*0).
3. A 2-cell can merge with two adjacent (connected by 1-edges) 2-cells (R22)

or with any adjacent 0-cell (R20).
4. A 0-cell can merge with any adjacent 0-cell and remains a 0-cell (R00).

Rule (S ,N) Becomes

R12 1
1

�! 2 1

R10 1 �! 0 1

R22 2
1

�! 2 2

R20 2 �! 0 2

R00 0 �! 0 0

R*2 *
1

�! 2 *

R*0 * �! 0 *

(a) Selection rules.

0 1 2 *

0 R00 R10 R20 R*0
1 R10 C2 R12 C1
2 R20 R12 R22 R*2
* R*0 C1 R*2 C3

(b) Application.

Table 1. Selecting the contraction kernel for hS;Ni.

We apply these rules recursively, as shown in Table 1(b), to dually contract
the graphs until no further contraction is possible. The resulting graph has the
following properties: there are no 0-cells and no 2-cells present, the number of
1-cells is the same as in the base graph.

Our method constructs a topologically correct and minimal description for
all possible planar con�gurations of curves regardless of how complicated their
layout is. All curves have been contracted to minimal length and those which
were separate in the base remain distinct. The connectivity information of the
base is preserved and all empty space has been removed. Any further deletions
would remove either a line end point or crossing point and hence destroy the
line topology.

3.3 Computational Complexity

One iteration of dual graph contraction reduces the length of the curves in terms
of edges by at least a factor of two since surviving vertices of the curves are not

allowed to be neighbors. After n iterations the curve has been reduced by a
factor of 2n. No further contraction is possible when all curves between curve
ends and junctions have become a single edge. Hence the number of iterations
needed until convergence is O(log(max-curve-length)).

4 Implementation and Conclusions

In presenting the theory of the graph transformation we used a pixel based grid
graph as the base and made the assumption that curves were always only a
single pixel wide. In developing real world line image understanding methods we
can not use a pixel based grid graph as the base since it would require roughly
four times more storage then the already too large n2 iconic representation and
would lead to O(n2) algorithms. By using the run graph representation directly
as the base for the transformation we reduce our memory requirements and
allow arbitrarily thick curves and objects while still ensuring the properties of
the transform.

When using the run graph as the base only the 0-cells need to be labeled and
all other cell values can be computed from their degree as follows:

cell value =

�
d(v) if d(v) < 3
� otherwise

d(v) = degree(v)� jadjacent 0-cellsj

0-cells encoded the space between curves in the grid graph and were necessary
to ensure that the topology of the dual graph was correct. When using the
run graph as base far fewer are necessary, a single 0-cell is inserted for each
face of the run graph and an edge between it and each vertex of the face is
created. By using the run graph as a base we eliminate the need for preprocessing
the graph to set node labels and can immediately apply the rules of Tables 1
to select the contraction kernel and dually contract the graph until no more
contractions are possible. The run graph and dual graph contraction have both
been implemented in C++ see [17] for details of the implementation. The MLPP
graph, Figure 5(d), of a staircase section of a cadastral map is computed from
its run graph representation, Figure 5(a), which exhibits many topologically
extraneous nodes and edges. In the contraction kernel, �gure 5(c), edges arising
from rule R12 are shown as dotted lines, rule R22 as dashed lines, and rule R*2
as thick solid lines.

Using this implementation, computation of the MLPP graph from a the 6251
x 4416 pixel line image of an engine on a Sparc 20 with 64 Megabytes of mem-
ory took 28.88 seconds for the run graph and 12.35 seconds for the selection
and dual graph contraction, results are summarized in Table 2. The run graph
provides a compact, structural representation for line image understanding but
because of its geometric nature it does not succinctly describe the topology of
a line drawing. Our new algorithm based on DGC transforms the run graph

(a) RG. (b) Input. (c) Kernel. (d) MLPP.

Fig. 5. DGC starting from a run graph base.

into its MLPP topological form, and when implemented in parallel, requires
O(log(longestcurve)) steps.

Software for dual graph contraction is available from the IAPR Technical
Committee 15 software page http://www.prip.tuwien.ac.at/TC15/software.html

References

[1] H. Blum and R. N. Nagel. Shape description using weighted symmetric axis
features. Pattern Recognition, 10(3):167{180, 1978.

[2] L. Lam, S. W. Lee, and C. Y. Suen. Thinning methodologies: A comprehensive
survey. IEEE Trans. Pattern Analysis and Machine Intelligence, 14(9):869{885,
September 1992.

[3] H. Freeman. Computer processing of line drawing images. Surveys, 6(1):57{97,
March 1974.

[4] L. O'Gorman. Primitives chain code. In Computer Vision and Image Processing,
pages 167{183, 1992.

[5] P. Zhu and P. M. Chirlian. On critical-point detection of digital shapes. IEEE

Trans. Pattern Analysis and Machine Intelligence, 17(8):737{748, August 1995.
[6] O. Hori and D. S. Doermann. Quantitative measurement of the performance of

raster-to-vector conversion algorithms. GRMA95, pages 57{68, 1996.
[7] A. K. Aggarwal and A. V. Kulkarni. A sequential approach to the extraction of

shape features. Comp. Graph. and Image Proc., 6(6):538{557, December 1977.
[8] T. Pavlidis. A minimum storage boundary tracing algorithm and its application to

automatic inspection. IEEE Trans. Systems, Man, and Cybernetics, 8(1):66{69,
January 1978.

[9] L. Boatto, V. Consorti, M. C. Buono, S. DiZenzo, V. Eramo, A. Melcarne,
M. Meucci, A. Morelli, M. Mosciatti, S. Scarci, and M. Tucci. An interpreta-
tion system for land register maps. Computer, 25(7):25{33, July 1992.

[10] M. Burge and W. Kropatsch. Contracting line images using run graphs. In
22th Workshop of the Austrian Association for Pattern Recognition. �OAGM, R.
Oldenbourg Verlag, 1998.

[11] G. Monagan and M. R�o�osli. Appropriate Base Representation Using a Run
Graph. In Proceedings of the Second International Conf. on Document Analy-

sis and Recognition, pages 623{626, Tsukuba, Japan, October 20-22 1993. IAPR,
IEEE Computer Society Press.

Contr. V R12 R22 R*2 E

Input 1953 2172
1 1953 92 358 329 1391
2 1174 3 10 117 1261
3 1044 0 0 1 1260

Result 1043 0 0 0 1260
Table 2. Statistics of the MLPP graph computed for a the above image.

[12] Dieter Willersinn and Walter G. Kropatsch. Dual graph contraction for irregular
pyramids. In 12th IAPR, volume III, pages 251{256. IEEE, 1994.

[13] P. Meer, C.A. Sher, and A. Rosenfeld. The chain pyramid: Hierarchical contour
processing. PAMI, 12(4):363{376, April 1990.

[14] Walter G. Kropatsch and Dieter Willersinn. Parallel line grouping in irregu-
lar curve pyramids. In Proceedings Computer Vision and Pattern Recognition -

CVPR'93, pages 784{785. IEEE Comp.Soc.Press, 1993.
[15] W. G. Kropatsch. Property Preserving Hierarchical Graph Transformations. In

Carlo Arcelli, Luigi P. Cordella, and Gabriella Sanniti di Baja, editors, Advances
in Visual Form Analysis, pages 340{349. World Scienti�c Publishing Company,
1998.

[16] Jean-Michel Jolion and Annick Montanvert. The adaptive pyramid, a frame-
work for 2D image analysis. Computer Vision, Graphics and Image Processing,
55(3):pp.339{348, May 1992.

[17] W. G. Kropatsch, M. Burge, S. Ben Yacoub, and N. Selmaoui. Dual graph
contraction with leda. Computing, Supplementum: Graph Based Representa-

tions in Pattern Recognition, To Appear, 1998. Online at http://www.cast.uni-
linz.ac.at/Vision/papers/tc15-97/

	Springer ?: Copyright 1998 Springer-Verlag

