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Abstract

Structural properties of objects are robustly mapped into images due to their in-
sensitivity to minor geometrical distortions. This becomes particularly important
if the imaging/scene geometry changes from frame to frame in a motion sequence.
Based on our experience with hierarchically organized graph representations, several
issues of motion analysis are addressed from the structural point of view in contrast
to the usual geometry based methods like differential motion analysis, optical flow,
tracking interest points. The goal of the examples in this contribution is to stimu-
late discussion on the use of ’structure in motion’ analysis as opposed to ’structure
from motion’.

1 Introduction

Classical image analysis aims at finding regions in the image that correspond to objects
or object parts as well as their mutual relations. Representations (see Fig. 1) that de-
scribe the resulting relationships (e.g. adjacent, close, inside) are, among others, the
region-adjacency-graph (RAG) [7] or the area Voronoi diagram [2]. Subsequent grouping
strategies fit well into the above representation by graphs. Such graphs embedded in
the image plane can be computed from pixel neighborhoods by dual graph contraction
(DGC) [5].

Visual motion analysis searches the location and shape of 3D objects and their motion
trajectories from a dynamic image sequence. Most of the frequently used methods try to
estimate (x,y, z,1) coordinates for all points in the image sequence. The methods can be
categorized [7] as:

e optical flow computed by spatio-temporal derivatives;
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Figure 1: Structure in Image and Motion

e detection of appearance change (e.g. of human faces [1]);
e normal flow [4];
e tracking points of interest.

These approaches face several problems: the resulting motion is based on the given time
resolution (e.g. frame rate), high-frequency noise has dramatical consequences: a general
lack of robustness; regularization to overcome this situation uses very general smoothness
constraints; optical flow is often expressed in image-centered coordinates; sensitivity to
unavoidable geometrical inaccuracies and to camera callibration; the high computational
complexity; although interpretations of real scenes are highly constrained by physical and
functional conditions they cannot be integrated in the above aproaches.

In this paper we would like to stress the question whether the solution to a motion
problem really needs highly accurate coordinates as it is the declared goal of most current
approaches. Would it not be sufficient to know whether one approaches an obstacle or
not? Or to determine whether one moves in the same direction as the people in the direct
neighborhood? Such questions can be efficiently answered by structural descriptions of a
dynamic scene! as the basis for comparison rather than metric spaces.

Two different motion situations can be distinguished:

!By structure we mean here the spatio-temporal relations between moving and stationary objects
(in-front-of, in-between, etc.) and not the objects’ (z,y, z,t)-coordinates in space!



e when the observer moves (egomotion problem); or
e when a moving object is seen from a static camera.

In both cases occlusion may occure and cause changes in the arrangement of objects in
the observed image. We will start with the idealistic scenario of viewing two lines of trees.
Then we let the very simple object move in front of a structured background. In both
cases we study the operations that transform the object arrangments from frame to frame
in the motion sequence.

2 Moving along an avenue

Let us consider following arrangments of objects in reality: a row of trees (along an
avenue); the windows of a building; houses along a street; picture frames in a gallery
etc. These arrangements have in common that they have a given structure and that this
structure maps always into the same structure in the image as long as the observer “is
on the same side of the objects”. In the following we study an exemplary case. Imagine
you walk along an avenue bounded by two rows of trees. The (far) background row (Py)
consists of five trees (A, C, E, G, I). We assume that the individual trees are thin and can
be identified, e.g. either by a characteristic feature or by its geometrical configuration (i.e.
cross ratio of distances). The order (e.g. from left to right, denoted by <) in which the
trees appear on line Py is preserved in the image P;: A < C < E < G < I (Fig. 2). This
order does not change while you walk along the avenue parallel to Py, only the geometrical
distances are affected by your motion. The geometrical similarity between the different
views has been modeled by Chakravarty’s characteristic views [3], and is effectively used
by Peleg [6] in his manifold projection method.

The order is preserved also for the (close) forground row P. of trees B < D < F' < H.
A simultaneous projection of both lines into the image plane P; merges the two ordered
sequences, e.g. A< B< (U <D< E<F<G<H<I,see Fig. 2.

The merged order changes when you reach position Oy: A< B<C <D< FE=F<
G < H < I, see Fig. 3. In this position tree I is aligned with tree F' and changes its
place with F' when you continue your walk to the right (in the image).

This is apparent when you reach position Oz (Fig. 4). In addition A and B are aligned
and H and G have changed their order: A=B<(C<D<F<FE<H<G<I.

The above considerations can be generalized to any arbitrary trajectory of the observer
in a way similar to the aspect graph or the characteristic view [3]. These approaches de-
scribe all possible views of a compact (and mostly convex) 3D object, often approximated
by polyhedrons. In contrast to this set-up we consider arbitrary arrangements of objects
idealized by points in two and, later on, also in three dimensions, and their maps in an
image taken from different locations of the observation space. In our method any location
(outside of the objects) is considered and not only rays perpendicular to the Gaussian
sphere. The observation space can be partitioned into regions where the projected order
does not change. To find this partitioning we note that any change in the order has to
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Figure 2: Observer sees 9 trees from first position 0.
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Figure 3: Observer sees 8 trees from second position O.
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Figure 4: Observer sees 8 trees from third position Os.
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Figure 5: The 9 trees partition the observation space.

occure after two trees are aligned. Traversing such a line corresponds to permuting the
order of the two trees in the view. Hence the lines connecting a tree in row Py with a
tree in row P. identify the partition lines. Fig. 5 shows some partition lines for the above

example.
The operation that transforms the order of trees when crossing such a partition line

is a permutation of the two aligned trees.

2.1 Moving Object vs. Moving Observer
Y
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Figure 6: Moving Object vs. Moving Observer

So far we described the situation where the trees are observed by a moving observer. Now
consider a stationary observer seeing a row of moving cars in front of a row of parked cars.
The situation is very similar. Two objects X, Y seen from observer O appear X < Y as
long as the triangle OXY is clockwise oriented (Fig. 6). Hence we conclude:



A moving object in foreground seen from static observer is structurally equivalent to
a moving observer.

2.2 Occlusion
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Figure 7: Object width: occlusion.

Our second assumption concerns the width of the trees. By assuming width 0 we avoided
problems with occlusion. The situation with nonzero width trees is depicted in Fig. 7. In
this case the transition first enters a partial occlusion of the far tree A, then, possibly, it
is hidden behind B, before it re-appears on the other side of B. Outside the area of partial
or total occlusion the orders are again permutations of A and B.

3 Box crossing a Boundary

In order to study the structural changes that occur if an object moves in front of a
stationary background we consider another very simple example (Fig. 8). We study the

D

Figure 8: The initial configuration

structural effects of occlusion that the moving object creates on the (simply) structured
background. Let our moving object be a small square denoted (' and let €' move from left



to right. The stationary background consists of two regions, A, B, which are imbedded in
another (infinite) region D.
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Figure 9: The dual graphs: BCG and RAG

The structure of this configuration is described by a pair of dual graphs, the boundary
connection graph (BCG) G(V, E) and the region adjacency graph (RAG) G(F, F) (Fig. 9).
Regions (also called faces) F' = {A, B,C, D} having a common boundary are related by
an edge in the RAG: £ = {(D, A), (D, B),(A, B),(C, A),(A, A)}. The role of the self-loop
(A, A) will be explained after studying the BCG.

The vertices of the BCG (e.g. 1,2,3) correspond to points where boundaries meet,
the edges represent connected boundary segments. Vertices 1 and 2 are connected by
three different boundary segments requiring multi-edges (1,2)y, (1,2)2,(1,2)3. Since C' is
completely contained in A the boundary of C' is a closed curve. The placement of the
end point (3) of the corresponding edge is therefore arbitrary. Duality between BCG and
RAG implies that there is a 1 — 1 correspondence between the edges, e.g. edges crossing
each other in the drawing and appearing on the same line of the table (Fig. 10). The
fact that A contains C' is expressed in the RAG by the self-loop (A, A) which intersects
its counter part edge in BCG, (2,3). Note also that (2,3) is not a real boundary since it
separates A from A. We maintain such pseudoedges to keep the graphs connected.

As long as ' moves within A the structure of the RAG does not change until the right
boundary of €' touches the boundary between A and B. The coincidence of (s right
boundary with edge (1,2) has the following structural consequences:

o the right upper corner of ' becomes a new vertex 4;
e (1,2) is split into three parts, (1,4),(3,4)2, and (2, 3);
e (' becomes a adjacent to B as expressed by edge (C, B);

e the self-loop around C' becomes a double edge (3,4).

In the next stage €' occludes a part of the boundary between A and B. Fig. 11 shows
the changed configuration. Finally C'is completely surrounded by B (Fig. 12). Now C' is
completely contained in B, the corresponding self-loop (B, B) (re-)appears, pseudo-edge
(2,3) connects the boundary of C' with the ’outer’ boundary of B, and the three parts of
(1,2) are merged again.
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Figure 10: Overlaid graphs and formal specification

Figure 11:_C partially occludes the boundary between A and B
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Figure 12: The final configuration
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Figure 13: Common contracted graph of Gy and G



4 Greatest common contracted graph
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Figure 14: Greatest Common Contracted Graph

Consider the structural changes from Fig. 10 to Fig. 11. It is not difficult to verify that
neither of them can be transformed into the other using edge-removal or edge-contraction
operations only. However they can be both transformed into isomorphic graphs (Fig. 14):
Fig. 13 is the result of merging all background regions (e.g. A and B) partially occluded by

the moving object. Formally this corresponds to dually contracting edge (A, B) from G,
which also removes face B and edge (1,2)s. The resulting double edge between A and D
is simplified by dually contracting (1,2), into vertex 2. From Fig 11 following operations
produce the same graph: dually contract edge (A, B) which deletes B and (1,4); dually
contract edges (1,2)s,(3,4)s which deletes 1,4 and multi-edges (D, A), (C, A).

Obviously common contracted graphs do exist (e.g. a single vertex) but are smaller
than the original graphs. To preserve the maximum structural information we may search
for the largest such graphs.

5 Conclusion

We presented a few ideas to approach motion analysis differently: instead of recovering
complete spatio-temporal measurements we considered the effect of motion on the struc-
ture of the observed image. In our examples structure is represented by graphs, and we
have shown that

e a view change caused by crossing the alignment of two points can be modeled by a
permutation;

e occlusion-caused structural changes can be derived by dual graph contraction and
yields common generalized subgraphs:;

There are still a lot of open questions. However, our approach can overcome several
of the problems mentionned before: Although our results are incremental in terms of
a structural change between frames we could use a generalization hierarchy of graphs



to describe motion at a higher degree of generalization. The resulting graphs describe
the relations of the moving objects and their changes caused by the motion. The units
are the structural entities. Noise has only very little influence on the structure if the
image resolution allows a robust identification of the structural entities. In few situations
can an accidental error cause a structural error, but this accident can be corrected since
the temporal resolution may allow to check consistency and to eliminate the incorrect
structural event. The observation that objects change place in the image after being
aligned with the observer further constrains the solution space and could be used to
identify misinterpretations caused by errors. The computational complexity of dual graph
contraction has been shown to be on the order of log(diameter) of the data.
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