Hierarchical Top Down Enhancement
of Robust PCA

Georg Langs', Horst Bischof?, Walter G. Kropatsch!

D Pattern Recognition and Image Processing Group 183 /2
Institute for Computer Aided Automation
Vienna University of Technology
Favoritenstr. 9, A-1040 Vienna, Austria
{langs,krw}@prip.tuwien.ac.at *
2) Institute for Computer Graphics and Vision
TU Graz
Inffeldgasse 16 2.0G, A-8010 Graz, Austria

bischof@icg.tu-graz.ac.at

Abstract. In this paper we deal with performance improvement of ro-
bust PCA algorithms by replacing regular subsampling of images by an
irregular image pyramid adapted to the expected image content. The
irregular pyramid is a structure built based on knowledge gained from
the training set of images. It represents different regions of the image
with different level of detail, depending on their importance for recon-
struction. This strategy enables us to improve reconstruction results and
therefore the recognition significantly. The training algorithm works on
the data necessary to perform robust PCA and therefore requires no
additional input.

1 Introduction

The human visual system takes advantage of the ability to distinguish between
interesting regions and less relevant regions in the field of view. By using this
knowledge it is able to improve its performance considerably. [1] and [2] describe
two strategies to obtain and apply information about the importance of differ-
ent regions of an image when simulating the human visual system. Bottom-up
methods retrieve their features only from the present input image [3]. Top-down
methods are driven by knowledge which is available before getting the input. Ex-
periments [1] have shown that human vision and particularly the scan paths of
the eyes, called saccades, are not only dependent on the input image, but largely
on previous knowledge i.e. top-down expectations. In this paper we propose a
method to incorporate a top-down strategy in a robust PCA algorithm [4] for
object recognition. In our approach, instead of performing sequential saccades,
we change the initial representation of the images with respect to the relevance
of different regions. We demonstrate that by using this top-down knowledge we
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Fig. 1. The basic concept of our algorithm. It is divided into a training- (left) and a
recognition phase (right).

are able to significantly improve the recognition results.

The paper is organized as follows: In section 2 an overview of the algorithm is
presented. The pyramid structure constructed by the algorithm is presented in
section 3. The training phase is explained in section 4. Section 5 describes the
application of the pyramid during the reconstruction phase. Finally we present
experimental results in section 6 and give a conclusion in section 7.

2 Our approach

The approach presented in this paper aims to enhance robust recognition based
on eigenimages ([4] ). We deal with an input, which can be an image or any other
signal, that is represented as a vector of pixel values. Instead of performing se-
quential saccades we change the initial representation in order to stay abreast of
the regions of interest. Each region is represented to an extend that corresponds
to its importance for the reconstruction. The modified representation is used as
input for robust PCA. Robust PCA represents training images in the eigenspace.
To recognize an input image the coefficients of the eigenvectors are determined
by solving an overdetermined system of linear equations in a robust manner.
Further robustness is achieved by randomly selecting subsets of pixels.

The new representation has the following advantages over the unprocessed im-
age, where all regions are represented to the same extend: Regions with small
importance for the reconstruction or recognition are usually similar on different
images of the training set, therefore if used for robust recognition they support
almost all hypotheses. A large set of irrelevant pixels that are consistent with
almost all hypotheses strongly interferes with the method in three ways: (1) It
causes huge equation systems in the fitting step, which are numerically unstable
(2) it wastes time because useless hypotheses are built and (3) the difference
between good and bad hypotheses is likely to become smaller.

Our approach is divided into 2 main phases (Figure 1): During a training phase
the computer is taught the importance of each pixel position as well as the
dependencies between neighbouring pixels i.e. how much their values correlate
in the training data. The algorithm builds an irregular pyramid structure that



represents a given input image with different levels of detail. This pyramid struc-
ture is build by contracting the initial regular image template. Irregular image
pyramids represent images as a set of graphs with decreasing number of nodes.
During contraction consecutive levels are built by choosing a set of surviving
vertices, and assigning them a set of sons, the receptive field. [5] gives detailed
explanations of the concept of irregular image pyramids.

During the recognition phase different levels of the pyramid structure are applied
on the input image as well as on the eigenimages of the database. The resulting
vectors are used as input for robust PCA.

3 The pyramid structure

The result of our algorithm is a pyramid structure that can be applied to any
input image of a given size. In 3.1 we describe the structure and give its exact
definition, in 3.2 we explain an example.

3.1 Definition of the pyramid structure and its application

The pixels of the input image can be indexed by i = 1,..., Ny where Nj is the
number of pixels in the image. To convert a rectangular grid (the image) to a
vector we use the transformation

lyec = (iarr - ].)TL + jarr (1)

where iy indicates the index in the vector and (igrr,Jerr) the vertical and
horizontal coordinates of a pixel in an m x n image. Each pyramid level Py
consists of a vector of nodes, each of them representing a set of pixels, its receptive
field.

Py =ik, -nnk) Vi kingg € B{L,...,N1}) (2)

The receptive fields are not overlapping and the union of the receptive fields
together with a set r covers the whole image. r is the set of pixels, that have
weight = 0. They are irrelevant or interfering with the reconstruction and are
therefore ignored.

In the first level each node represents one pixel i.e. n;; = 4. During contraction
a node in the level k£ + 1 takes over the indices from its sons in level k:

N k1 = U n;j (3)

j:nj,;cson of i, k41

The final pyramid structure with L levels consists of L vectors of nodes Py, k =
1,..., L. Each node represents a receptive field in the base level.

We define the procedure how to apply a pyramid structure P on an image
The structure can be applied to an input image independently for each level, i.e.
one can construct a certain level of the pyramid directly from the input image
without constructing the levels in between.

1.

! Note that an extension to other data representable in vector form is straightforward
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Fig. 2. An example of (a) the base-level and (b) a pyramid level P;, with 4 nodes.

Definition 1. Let By be an image with pizel values (b 1)i=1,...,n, (in our exper-
iments we used an image size of N1 = 128 x 128 = 16384 pizels). To calculate
the k-th level By, = (b1 k,...,bn,,k) of the pyramid, for each node the mean value
of the pixel values in the receptive field is calculated:

Eje"i,k bj*l

Vi:bi7k= |n.k|
(2]

(4)
Note that P is an ’empty’ structure, in the sense that the nodes don’t have
attributes like gray values assigned to them. Only when calculating By of an
input-image, gray values are assigned to the nodes of By according to P.

3.2 Example of a pyramid structure

To illustrate the pyramid structure we give an example of 2 levels P; and P.
Figure 2(a)shows the base-level: The size of the images in the training set is
4 x 4 = 16 and for all nodes in the base-level n;; = i (calculated according to
equation 1) holds. (b) shows a level with 4 nodes, each of them representing a
set of pixels in the base-level. The set r is empty in this example.

4 Training phase

We assume that we are given a set of n images that represent one or more objects
with different pose, and are of the same size. All these images are represented in
a single eigenspace. From this set of training images we can retrieve the following
information:

1. The eigenimages, eigenvalues and the coordinates of the training images in
the eigenspace.

2. The variance of the value in each pixel over the training set.

3. The dependencies between pixels or receptive fields over the training set: For
a given pixel or node i the pixel values in each training image {v1,...,v,}
form a vector of values (v;1,...,vin), the value profile. In figure 3(b) value
profiles of two neighbouring nodes in 3 images are depicted. Each node rep-
resents a receptive field. Two value profiles can be compared by calculating



@
9
S
g
g
E
=]
2
H

Fig. 3. (a)Weight map based on variance for a training set, consisting of 36 images of
a rotating duck. (b) Value profiles of neighbouring nodes in the training set

their correlation corr(v;,v;). By contracting two nodes with highly corre-
lated value profiles the loss of information is expected to be smaller than the
loss caused by contracting two pixels with more independent behavior.

4.1 Weight target contraction

During the contraction process we represent a given image with decreasing pre-
cision. In levels 2, 3, ... we deal no longer with individual pixels, but with nodes
that represent a set of pixels in the original image. A node n;; in level [ is
assigned the weight

Wn; =2~ Z f(wi) (5)

z; € receptive field of n; ;

We initiate 2z with z, = 1 and define a weight target 1 — 7. Py is the base level
of the pyramid and its neighborhoog relation N; C P; x P; is defined according
to the input data. If level P; and N; C P; x P; have been built then we build
level P;;1 according to the following rules:

1. Perform stochastic decimation [6] on P; thus every node is assigned a status
survivor or non-survivor. All nodes with w; ; > (1 — 7) become survivors.

2. A non-survivor n; j, chooses a father from all neighbouring survivors {n; j, , ..., n; j, }-
i jaine. DECOmes father if its value profile is most correlated with the value
profile of the non-survivor n; j, i.e. if the distance (d;)j,,j;asn., 1S Minimal.
d; is the distance map of level i;

3. If the weight of the non-survivor wy, ; and the weight of the chosen father
Wn: j ine, SUM UD tO & value

Wny o1 = Wnigo +Wnis, > (147) (6)

then do not merge and change status n; j, to survivor;



4. Define the neighborhood relation of the new level according to stochastic
decimation [6].
5. If contraction terminates set zpew = 2/2.

The algorithm proceeds with the following major steps: Step 1 decides which
receptive fields are merged with other receptive fields when constructing the
successor of the level. After performing stochastic decimation algorithm [6] we
modify the initial partition according to the weight map (This is an opposite
strategy to [7]). Step 2 chooses a neighbouring receptive field to merge with. All
sons (or grandchildren resp.) in the base level P, of one father in an arbitrary
level build its receptive field. If the resulting receptive field does not meet cer-
tain requirements defined in step (3) then steps (2) and (3) are canceled. The
contraction process proceeds until no further merging is possible (Equation 6).
The contraction stops, z is decreased and again contraction is performed until
convergence.

While the 1°¢ priority is to merge receptive fields with high correlation (search for
father) the 27 is to merge them only until they reach a certain weight according
to (6). This strategy leads to a more balanced distribution of weights compared
to a Gaussian pyramid or a pyramid built by plain stochastic decimation.
Experiments (Section 6) show that with f(w;) = w] in (5) there is no exponent s
that performs best on all resolutions resp. levels. A function defined in equation 8
resulted in the smallest reconstruction error.

Theorem 1. Let (w;)i=1,..n be a weight map with 0 < w; < 1 for all i =
1,...,N. Let P; denote the set of nodes and Ni € P; x P; be the neighborhood
relation in level i. Let d; be distance maps i.e. functions from N; in [—1,1] .
Then method 2 converges to a single node.

A proof of Theorem 1 is given in [8].

In addition it is possible to estimate the size of a receptive field, if we are given
an interval for the weights of the pixels lying in the receptive field. This is helpful
during search of a monotonously ascending function f(w;) : [0,1] — [0,1]. Let
ny; be a node with a receptive field p;,¢ = 1,..., N and let 7 denote the target
tolerance, then

N
Wny ; = sz(wi) <(1+7) (7)

holds. We assume that Vi =1,...,N : w; € [0 — §,@ + J] and get the estimation

N-f(@—6) < YN, fw) < N - f(@+06) and finally N < 2047
Figure 4(b) gives an impression of the expected influence of f(w;) on the size
of the receptive fields. The function logsig is a modified log-sigmoid transfer

function. It is defined by modifying the function ls(w) in order to get
a function logsig : [0, 1] — [0, 1]

_ 1
= e

) sl (w—t) = Is(—1- 1)
logsig\w) = ZT A=) — (=l D) ®)




Fig. 4. Some functions (a)
fl(wi) = w, fQ(wi) = wi2a
fsi) = wi, falw) =
N2 logsig(w;); (b): a compar-
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l and t are parameters. [ controls the steepness of the curve, while ¢ shifts the
steepest part of the curve along the x-direction.

5 Reconstruction

The following steps reconstruct or recognize a given image using a given eigenspace
with a base consisting of N eigenimages, a pyramid P and level . P is an empty
structure as it is described in section 3. We calculate B; according to definition 1:

1. For all eigenimages of the eigenspace: calculate level B; according to the
pyramid P. This results in N vectors {ej,...,en}
2. Calculate pyramid level B"P*/™9¢ of the input image

The coefficients of the training images and the input image do not change [4].
The resulting vectors {e1, ...,eN,B;”p“t’mage} are input to robust PCA. Note
that the 1°¢ point is performed during the training phase. During reconstruction
only one level based on the input image has to be calculated. Computational
expensive steps i.e. the contraction of an image template to a pyramid structure
takes place entirely during the training phase.

6 Experiments

Experiments were performed on a dataset of gray level images of different ob-
jects. The database (COIL-20 [9]) contains images of 20 objects, each object
rotated around its vertical axis with images taken in 5° steps. Our training set
consists of 36 images (i.e. 10° steps) of one object taken from the database.
The size is 128 x 128 = 16384 pixels. The test set consists of the same 36 im-
ages, each 50% occluded. Target tolerance is 7 = 0.1. After calculation of B;
the test input images are reconstructed by unconstraint robust PCA [4]. Figure
5(c) shows a comparison of the mean squared reconstruction error. The hor-
izontal line in figure 5(c) represents the error gained with full resolution i.e.
without processing before PCA. The modified logsig function (I = 9,t = 0.8)
performs best on almost all levels. Note that in figure 4 f(w;) = logsig(w;) pro-
vides smallest receptive fields for important regions and the steepest increase
of receptive field size for decreasing weight. For f(w;) = w] at high resolutions
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Fig. 5. (a) image of a cat, reconstructed after irregular downsampling and (b) after
regular downsampling (c) Mean squared reconstruction error for pyramids constructed
using different contraction algorithms.

lower values outperform higher values for s. This also corresponds to smaller
receptive field sizes at higher weights. In figure 6 each dot represents a pixel.
The x-coordinate represents its weight, the y-coordinate the size of the recep-
tive field it lies in. (a) shows the diagram for s = 2 (1842 nodes) and (b) for
s = 3 (1559 nodes). Figure 6(c) shows randomly colored receptive fields con-
structed by WT-contraction on training images of a rotating duck (weight map
in Figure.3). Note the small receptive field size in regions where the head gives
most information about the pose. For extremely low resolutions higher s-values
slightly outperform lower ones. The reason is the possibility to build larger fields
for pixels with low weight. This leaves more nodes for more important regions.
f(wi) =logsig(w;) attempts to combine both advantageous features.

Extensive experiments on all images of the COIL-20 database show that WT-
contraction is able to significantly improve for 55% of the objects the recon-
struction error (on average by 81%). Compared to a Gaussian pyramid the re-
construction error was improved by 61%. Experiments showed that contracting
an input image by our algorithm to a number of ~ 3000 nodes (~ 18% of full
resolution) can decrease the mean squared reconstruction error down to ~ 53%
of the error achieved with full resolution (~ 16384 pixels). For extremely low
numbers of nodes few remaining small receptive fields allow stabilization: with
less than ~ 3% of initial 16384 nodes the error is ~ 2% of the error achieved
when the image is contracted with a regular Gaussian pyramid.
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Fig. 6. (a,b) Plot of pixel weights vs. size of receptive fields; (c) randomly colored
receptive fields, level of a pyramid based on the weightmap shown in Figure 3

7 Conclusion

We present an approach to enhance robust PCA for object recognition and re-
construction. The algorithm simulates human vision, in particular: top-down
processing and saccades by building irregular pyramid structures during a train-
ing phase. This structures are applied to an input image before robust PCA
is performed. During our experiments we decreased the reconstruction error of
robust PCA significantly. To represent regions of an image according to their
relevance turns out to be crucial, not only to save computation time but also to
improve and stabilize reconstruction and recognition results. The presented algo-
rithm is able to meet this goal without a need for additional input. Future work
will include optimization of f(w;) to specific tasks and a study of connection
between the distance- and the weight map.
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