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Abstract

In this report we deal with the possibilities to improve the performance of robust PCA
algorithms by replacing uniform subsampling of images by an irregular image pyramid.
The image pyramid is built based on knowledge gained from the training set of images. It
represents different regions of the image with different level of detail, depending on their
importance for the reconstruction process. As this is a technical report, not only the final
and optimal results will be presented, but also some of the previous steps will be explained,
even if they were abandoned later. The main reason is to support future work on the topic.

1This research has been supported by the Austrian Science Fund (FWF) under grants P14445-
MAT and P14662-INF.



1 Introduction

1.1 Motivation

Humans, when looking at each other’s face, don’t see every part at once, neither they
try to cover the face with equaly distributed glimpses, but they concentrate on several
special parts, like the eyes, the mouth or the ears. [14] and [15] propose two strategies to
optain and apply information about the importance of different regions of an image when
simulating the human visual system. Experiments during which an observer was asked
to look at different modifications of the same image over different viewing sessions have
shown that the scan paths of the eyes, called saccades, are not only dependent on a present
picture, but also on previous knowledge.

Figure 1: Tracks of the eye movements while looking at a face

In terms of top-down respectively bottom-up which describe abstract descriptions or in-
ternal cognitive-spatial models ([14]) respectively concrete (pixel values) information about
an image, we can describe these strategies as follows:

1. Bottom-up methods retrieve their parameters only from the input image. Example:
the input data is filtered by a gradient filter and only regions where the gradient
value is above a certain threshold are used for recognition. Other features typically
used are edges per unit area, entropy or local symmetry. ([16])

2. Top-down methods are driven by knowledge which is available before getting the
input. In our case this will be the importance of pixels for recognition resp. recon-
struction and the relations between pixels considering a training set of images. These
parameters are used to design a process which will be applied onto an input image

This work deals with an application of the top-down strategy.
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1.2 Robust Principal Components Analysis

Appearance-based methods consist of two stages: a training phase, during which a set of
training images is obtained. An object usually is represented by images acquired under
different viewing angles or illumination situations. These images are highly correlated.
Thus a compression by principal component analysis (PCA) is highly efficient. [5, 1]
Each image is a point in a vector space. The coordinates are the pixel values. By changing
the base of the vector space in order to adjust it to variance of the data, we can describe the
data points sufficiently by a small part of the new base vectors which are the eigenvectors
of the covariance matrix. The space spanned by the eigenvectors e1, ..., en is called the
eigenspace.
In the eigenspace an object seen under different orientations forms a manifold (Figure 2
shows images of a rotating duck projected into the eigenspace, which is spanned by the first
3 eigenvectors. Because we can parameterize the rotation by one parameter (horizontal
angle), the data points form a curve. If we would use two degrees of freedom (horizontal
and vertical angle) the images would be projected on a surface in the eigenspace.) During
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Figure 2: Projection into the eigenspace spanned by the first 3 eigenvectors.

the recognition phase the input image is projected into the eigenspace of the training set
and the closest point on the manifold is considered a valid match if the distance does not
exceed a certain threshold.
Instead of projecting the whole input image into the eigenspace, robust PCA coefficients of
the projection are determined by a robust hypothesize-and-test paradigm. We approximate
an image only by a linear combination of a subset of eigenimages i.e. we use a subspace of
the eigenspace, which is spanned by a certain number of eigenimages e1, ..., ep with p < n.
Based on randomly chosen subsets of pixels in the input image, a set of hypotheses is built.
The subsets have size k > p. Each hypothesis (i.e. set of coefficients) is the solution of an
overconstraint system of equations in the least squares sense based on k datapoints. To
cope with outliers, the solutions are calculated in a robust way: again subsets of the k data
points are selected and iteratively reduced according to the error distribution.
Competing hypotheses i.e. sets of eigenvector coefficients, are selected according to the
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Minimum Description Length principle.[1, 5]
Outliers, noise or occlusions are likely to be excluded from coefficient reconstruction, be-
cause they are either eliminated during robust solution of the equation system or excluded
with bad hypotheses.

1.3 Irregular Pyramids

(a) (b)

Figure 3: Father-son relations in regular (a) and irregular (b) pyramids.

While regular image pyramids are usually a stack of versions of one image that differ by
their gradually reduced spatial resolution, irregular pyramids operate on a general graph
structure and are therefore capable of much more complex tasks. For detailed introduction
to the subject see [6, 7, 8], for further information about some algorithmic and theoretical
concepts see [9, 12, 17, 13].
The structure of a pyramid is determined by 1. neighbour relations within one level and
2. father-son relations between adjacent levels (For a detailed description see [8]). Except
in the base level, every node (father) is assigned a set of nodes (sons) in the level directly
below that provide its input. Figure 3 depicts such father-son relations in the case of
regular (a) and irregular pyramids (b).
Each node is assigned a set of attributes. In case of multiresolution images they are grey
values, whereas other pyramids may use multiple and more abstract attributes, for example
the shape of the receptive field etc.
For the construction of irregular eigenimage pyramids the attributes of the nodes were the
mean weight of the receptive field and the value profile as described below.

1.4 Our approach

The approach presented in this report aims to support robust recognition based on eigen-
images ([1]). We deal with an input, which can be a picture or any other signal, that
is represented as a vector of pixel values. Instead of performing saccades we change this
representation in order to stay abreast of the regions of interest and build image pyramids.

The algorithm will proceed with the following major steps:
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Figure 4: The basic concept of our algorithm. It is divided into a training- (left) and a
recognition phase (right).

• teach the computer the importance of certain parts of images as well as the depen-
dencies of different parts, given a set of objects to recognize or reconstruct resp.

• enable the computer to apply this knowledge during the recognition and segmentation
process, by building image pyramids and applying them on input images.

• put as much computational expensive steps as possible in the offline phase.

Applying the pyramid structure on the images supports the robust appearance based recog-
nition in the following way:
Regions with small importance for the reconstruction or recognition are usually similar on
different images of the training set, therefore if used for robust recognition they support
almost all hypotheses. Robust recognition seeks for pixels, that are consistent with a given
hypothesis, a large set of irrelevant pixels that are consistent with almost all hypotheses
strongly interferes with the method in three ways:

1. It causes huge equation systems in the fitting step,

2. it wastes time because useless hypotheses are built.

3. difference between good and bad hypotheses is likely to become smaller.

Our approach is divided into 2 main phases: (Figure 4)

1. training phase: building of the pyramid structure depending on knowledge based on
the training set of pictures or vectors, one has to recognize.
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2. recognition phase: different levels of the pyramid structure are applied on the input
picture as well as on the eigenimages of the database. It starts with higher levels,
that contain less information, and continues to lower levels only if results are not
’secure’ enough.

1.5 Overview of this report

The technical report is organized as follows: section 2 describes how the pyramid structure
is built. Section 2.2 gives a definition of the pyramid structure, in section 2.3 two methods
of contraction are introduced and analysed. The application of the pyramid structure
during the reconstruction phase is explained in section 3. In section 4 experiments on the
construction of the pyramid (4.1) and reconstruction (4.2) are presented and discussed. In
the conclusion (5) we give a a short summary of our results and present an outlook and
suggestions for future work on the topic.

2 Training Phase

2.1 Using available knowledge

We assume that we are given a set of images that represent one or more objects respectively
their orientations. Furthermore we assume that we are going to use only one eigenspace
to recognize this set of images later on. All images are of the same size. This gives us the
possibility to retrieve the following data:

1. the variance matrix, which represents the variance in each pixel over the training set
of images

2. eigenimages of the training set

3. dependencies between pixels i.e. correlation between the values of two neighbouring
pixels over the training set: For a given pixel i the pixel values in each image of the
training set form a vector of values (vi,1, ..., vi,n). We call this vector the value profile
of a pixel position. Two such vectors can be compared by calculating their correlation
corr(vi, vj). In levels where we deal with graphs instead of images the value profiles
are defined on the nodes of the graph. The value of a node is calculated by to a
reduction function wich still has to be defined. During this work we calculated the
values of a nodes by building the mean value of their receptive fields in the base level
of the pyramid. Figure 5 visualizes value profiles for levels with regular (a) (i.e. the
image) and irregular (b) graph structures.
By contracting two nodes with highly correlated value profiles the loss of information
is expected to be smaller than the loss caused by contracting two pixels with more
independent behavior.
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two pixels and the values they are assigned 
in the trainingset of images

(b)

Figure 5: Value profiles of neighbouring nodes in the training set

Based on the eigenimages and the variance matrix we retrieve a weight map := (ωi)i=1,...,m

where 0 ≤ ωi ≤ 1. Figure 6 shows a weight map based only on the normalized values
of the variance matrix. It is based on 36 images of a duck that was rotated around its
vertical axis. The x- and y-values represent the coordinates of the pixels in the image, the
z-value represents the variance. Note the high variance values in the region where the head
is located at the area with y-value 0 ≤ y ≤ 55. To make orientation easier, one image of
the data set is depicted below the graph of the weight map.

The construction of the weight map has strong influence on the resulting pyramid and
the performance during recognition. It will be discussed in detail later. Based on the value
profiles of the training set a distance matrix dij is calculated. It represents a distance
function between two nodes or pixels. The closer two nodes are, the less information is
lost if their receptive fields are merged i.e. if they are contracted. In section 4 pyramids
resulting from different functions di,j are shown. We will use the correlation coefficient
of the value profiles (vi,k and vj,k (where k is the index of the image in the training set
(x)k with k = 1, ..., n and i, j are the indices of two pixels) of two nodes, and let d(i, j) =
2 − corr(vi,k, vj,k). Because only distances between neighbouring nodes are used for the
contraction, it is computed during construction of the pyramid. The complexity of the
step is reduced from O(n2) to O(n).
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Figure 6: weight map based on variance for a training set, consisting of 36 images of a
rotating duck.
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2.2 Pyramid structure

The result of our algorithm is a pyramid structure that can be applied to any input image
of a given size. In 2.2.1 we describe the structure and give its exact definition, in 2.2.2 we
explain an example.

2.2.1 Definition of the pyramid structure and its application

The pixels of the input image can be indexed by i = 1, ..., N1 where N1 is the number of
pixels in the image.
To convert a rectangular grid (the image) to a vector we used the following transformation
where ivector indicates the index in the vector and (iarray, jarray) the vertical and horizontal
coordinates of a pixel in an m× n image.

ivector = (iarray − 1)n + jarray (1)

Each pyramid level Pk consists of a vector of nodes, each of them representing a set of
pixels, its receptive field.

Pk = 〈n1,k, ..., nNk,k〉 (2)

∀i, k : ni,k ∈ P({1, ..., N1}) (3)

where

ni,k ∩ nj,k = ∅, i 6= j and
⋃

i=1,...,Nk

ni,k ∪ r = {1, ..., N1} (4)

r = {i : ωi = 0} (5)

i.e. the receptive fields are not overlapping each other and the union of the receptive fields
together with r covers the whole image. r is the set of pixels, that have weightmapvalue =
0. They are irrelevant or interfering with recognition and therefore are ignored.
In the first pyramid level each node represents one pixel:

ni,1 = i (6)

During contraction a node in the level k + 1 takes over the indices from its sons in level k:

ni,k+1 =
⋃

j:nj,kson of ni,k+1

nj,k (7)

The final pyramid structure with L levels consists of L vectors of nodes Pk, k = 1, ..., L,
each representing a receptive field in the base level.
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Now we will define the procedure how to apply an empty pyramid structure P on input-
data: To ease reading, from now on we assume the data to be an image, still the concept
can be applied in a straight forward way to any input representable in vector form. The
structure can be applied to an input image independently for each level, i.e. one can
construct a certain level of the pyramid directly from the input image without constructing
the levels in between.

Definition 2.1 Let B1 be an image with pixel values 〈bi,1〉i=1,...,N1 (in our experiments we
used an image size of N1 = 128 × 128 = 16384 pixels). To calculate the k-th level Bk

of the pyramid, for each node the mean value of the pixel values in the receptive field is
built:

Bk = 〈b1,k, ..., bNk,k〉 (8)

∀i : bi,k =

∑
j∈ni,k

bj,1

|ni,k|
(9)

Note that P is an ’empty’ structure, the nodes don’t have attributes assigned to them.
Only when calculating Bk of an input-image, attributes like gray values are assigned to the
nodes of Bk according to Pk.

2.2.2 Example of a pyramid structure

To illustrate the pyramid structure we give an example of a level Pk and the calculation
of the according level Bk: Figure 7 shows two examples of levels of the pyramid structure
introduced above. (a): A base-level is depicted. The size of the images in the training set is

r = {}
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(b)(a)

Figure 7: An example of (a) the base-level and (b) a pyramid level Pk with 4 nodes.

4× 4 = 16 and for all nodes in the base-level ni,1 = i (calculated according to equation 1)
holds. (b) shows a level with 4 nodes, each of them representing a set of pixels in the
base-level. The set r is empty in this example.

Figure 8 shows an example of an 4 × 4 input-image. Given level k from figure 7 we
calculate Bk according to definition 2.1:

B1 = 〈1, 4, 2, 3, 3, 8, 3, 6, 8, 9, 9, 4, 7, 5, 3, 5〉 (10)
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Figure 8: An example of an input-image

Every node ni,k defines a value bi,k:

b1,k =
1 + 4 + 3

3
= 2.6667 (11)

b2,k =
2 + 8 + 3 + 8 + 9 + 7

6
= 6.1667 (12)

b3,k =
3 + 6 + 9 + 5

4
= 5.75 (13)

b4,k =
4 + 3 + 5

3
= 4 (14)

and the image is represented by the vector

Bk = 〈2.6667, 6.1667, 5.75, 4〉 (15)

2.3 Contraction

During the contraction process we represent a given image with decreasing precision. Basi-
cally this is achieved by decreasing the resolution of the image. The traditional subsampling
process works with a gaussian pyramid [6]. All regions of an image are treated the same
way.
Our pyramid is generated in a similar way, but based on previous knowledge we vary the
loss of information resp. the resolution in parts of the image in contrary to the traditional
algorithm. This strategy leads to an irregular pyramid, where we no longer deal with reg-
ular grids, but with connected regions, that can have arbitrary shape. The subsampling
process is realized by merging the regions.
To minimize the loss of information, we enforce the merging of regions with high correla-
tion, and try to avoid merging of regions with directly opposed value profiles throughout
the training set.

Our algorithm deals with the following questions:

1. Divide the nodes in a given level into survivors and non survivors i.e. decide whether
a certain receptive field is merged with another receptive field when constructing the
successor of the level
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2. if a node does not survive, decide which neighbouring survivor shall become its father.
The receptive fields are merged.

3. If the resulting receptive field does not meet certain requirements, change the status
of the non survivor to survivor.

The answer to point 1 is based on the stochastic decimation algorithm by Peter Meer.
[17] A threshold on an attribute (weight) of a node could decide whether a node survives
or not, too. This criterium would have the following drawbacks:

1. It does not build receptive fields

2. Relations between neighbouring pixel positions don’t influence the contraction.

The reason why we use stochastic decimation is the following: for a proper pyramid struc-
ture (see definition in [8] ) we need a set of receptive fields, that cover the whole image.
Furthermore every pixel has to have a father, i.e. a node, representing this pixel in higher
levels although the pixel itself is a nonsurvivor. Stochastic decimation solves this task by
building a maximum indepedent set of surviving nodes or pixels:

1. Each non-survivor has at least a surviving neighbour.

2. No survivor has a surviving neighbour.

Our modification ensures condition 1, while condition 2 is not required in order to adjust
the pyramid to the given weight map. (in [10] an opposite approach is described. To
increase the speed of convergence the 1st condition is omitted. Time is not crucial for
our application because the construction of the pyramid takes place in the offline phase,
furthermore we make use of a large number of levels which yields a higher variety of different
resolutions ).
In the first step this algorithm assigns every pixel i.e. node a random value. Local maxima
become survivors, their neighbours loose the possibility to survive. Iteratively survivors
and candidates, which are nodes which have not been chosen to be survivors nor non-
survivors yet are assigned a new random value. Again local maxima are chosen to survive
while their neighbours ’die’. This procedure is repeated until a maximum independent set
of surviving nodes is reached, that is a set of nodes, where no survivor has a surviving
neighbour, but every non-survivor has at least one surviving neighbour. We modify this
algorithm in a way, that gives nodes which are stochastic non-survivors the chance to
survive depending on a weight 0 ≤ ωi ≤ 1 that is assigned to pixel i by the weightmap.
We can do that in different ways, that we will present and compare in the following:

Dependent distribution contracion:
After performing stochastic decimation every non - survivor survives if a random
number 0 ≤ r ≤ 1 is less than f(ωi). We define f by a parameter survexp:
f(ωi) = ωsurvexp

i . The higher survexp is, the higher are the chances for a pixel
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to survive despite stochastic decimation. The set of surviving nodes is no longer in-
dependent, but is distributed dependent on the weightmap. Merging of the receptive
fields i.e. the search for a father is controlled by a function d((xi)k, (xj)k, ωi, ωj) (in
the following referred to as d(i, j)) depending on the differences between the weights
of neighbouring pixels and their correlation: a non-survivor vi chooses the surviving
neighbour xj to be its father, if d(i, j) is maximal for
{j : vj neighbour of vi} , xjis survivor.
We are able to control 2 parameters: survexp, a function d(vi,k, vj,k, ωi, ωj) (in the
following referred to as d(i, j)) depending on the differences between the weights of
neighbouring pixels and their correlation and the weightmap. survexp defines the
dependence of the subsampling process on the weightmap. d provides a rule for
merging receptive fields.

Weight target contraction:
After performing stochastic decimation, all non-survivors with weight above a certain
limit become survivors. The limit is 1 − τ . The parameter τ denotes the target
tolerance.
In levels 2, 3, ... we deal no longer with pixels, but with nodes that represent a set
of pixels in the original image or weight map. A node ni,l in level l is assigned the
weight

ωni,l
= z ·

∑
xi∈ receptive field of ni,l

f(ωi) (16)

z is a factor initialized with 1 and decreased during contraction in order to ensure
convergence to one single node. f is the weight contraction function. It will be
discussed in detail later. There is either no decrease or the rate of decrease is 0.5
according to step 5 of the algorithm. After we have chosen a set of surviving nodes,
again we have to assign every non-survivor a father. All sons of one father build its
receptive field. P1 is the base level of the pyramid and its neighbourhood relation
N̂1 ⊆ P1×P1 defined according to the input data. If level Pi with the neighbourhood
relation N̂i ⊆ Pi×Pi has been built then we build level Pi+1 according to the following
rules:

1. perform stochastic decimation on Pi thus every node is assigned a status survivor
or non-survivor.

2. a non-survivor ni,j0 chooses a father from all neighbouring survivors {ni,j1 , ..., ni,jk
}.

ni,jfather
becomes father if its value profile is most correlated with the value pro-

file of the non-survivor ni,j i.e. if the distance (di)j0,jfather
is minimal. di is the

distance map of level i

3. if the weight of the non-survivor ωni,j0
and the weight of the chosen father

ωni,jfather
sum up to a value

ωnj,j0+1
= ωni,j0

+ ωni,jfather
> (1 + τ) (17)

then do not merge and change status ni,j0 to survivor
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4. define the neighbourhood relation of the new level according to stochastic deci-
mation [17].

5. If contraction terminates set znew = z/2.
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Figure 9: Distribution of weightvalues on the nodes of different levels

Weight target contraction deals with the distribution of weights on the set of nodes
on one level (figure 9). While its first priority is still to merge receptive fields with
high correlation it merges them only until they reach a certain weight according to
(17). This weight is initialized with the maximum of the weightmap. The contraction
process proceeds until no further merging of two receptive fields is possible without
generating a receptive field with a weight above a tolerance limit which is for example
10% above the weighttarget. The contraction converges and finally stops completely.
At this point z is decreased and again contraction is performed until it converges.
This strategy leads to a better balanced distribution of weights compared to DD-
contraction. Figure 9 shows the distribution of weights of receptive fields achieved
with the two methods. In Fig.9 (a) the distribution in the original image is depicted.
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Fig.9 (b,c,d) and Fig.9 (e,f,g) show distributions after contraction with DD- and
WT-contraction respectively. For DD-contraction the levels (b) 3, (c) 5 and (d) 8
with a numbers of nodes 3390, 1265 and 538 were analysed. For WT-contraction we
analysed levels (e) 8, (f) 14 and (g) 17 with 4073, 1031 and 666 nodes.

In contrary to contraction with Hopfield networks [2, 3, 11], in our algorithm selec-
tion is influenced first by the distance function (search for father) and then by the
resulting weight (whether to survive or not). This corresponds to a priority for small
distances between contracted nodes. Hopfield networks perform selection according
to an energy function which has to be minimized. They operate on a neighbourhood
graph where weights ωpq are assigned to edges between neighbouring nodes p and q.
The nodes have states s(p) ∈ {0, 1}. A valid decimation is computed with an update
procedure for node states:

s(p) =
{ 1 if Ip +

∑
(p,q)∈N ωpqs(q) > 0

0 otherwise

Here distance (ωpq) and value of a node enter the algorithm in the same step.

Experiments (2) show that with f(ωi) = ωs
i in (16) there is no exponent s that

performs best on all resolutions resp. levels. Therefore we replace the term ωs
i by a

more general term to gain better control of the development of receptive fields trough
out the pyramid.

Theorem 2.1 Let (ωi)i=1,...,N be a weight map with 0 ≤ ωi ≤ 1 for all i = 1, ..., N .

Let Pi denote the set of nodes and N̂i ⊆ Pi×Pi be the neighbourhood relation in level
i. Let di be distance maps i.e. functions from Ni in [−1, 1] .
Then WT-contraction converges to a single node.

Proof 2.1 If there is more than one node after finishing the iteration i.e. if |Pi| > 1,
there are two cases:

1. No further contraction took place in the last step ( |Pi−1| = |Pi| ), hence the
factor z was decreased to z = zold/2, for all receptive fields ni,l the following
equation holds:

ωni,l
=

 ∑
xi∈ receptive field of ni,l

z · f(ωi)

 ≤ 1 + targettolerance

2
(18)

hence after performing stochastic decimation, during step 3 of our algorithm no
status is changed from non-survivor to survivor, because all surviving neighbours
of an arbitrary non-survivor have a value ωni,l

≤ (1 − targettolerance), hence
the algorithm contracts like stochastic decimation in this step. Convergence of
stochastic decimation is proven in [17].
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2. Contraction took place in the last step, therefore either contraction is possible
or if z 6= zold/2 and case 1 becomes valid in the next step.

�

In addition it is possible to estimate the size of a receptive field, if we are given an
interval, the weights of the pixels lying in the receptive field. This is helpful when
one searches a function f(ωi):

f(ωi) : [0, 1] → [0, 1] , monotonously ascending (19)

Let nl,j be a node with a receptive field {pi, i = 1, ..., N} and let ε denote the
targettolerance, then

ωnl,j
= z

N∑
i=1

f(ωi) ≤ (1 + ε) (20)

holds. If we assume that

∀i = 1, ..., N : ωi ∈ [ω̄ − δ, ω̄ + δ] (21)

and reformulate equation (20), we get the estimations

N · f(ω̄ − δ) ≤
∑N

i=1 f(ωi) ≤ N · f(ω̄ + δ) (22)

N ≤
1
z
(1+ε)

f(ω̄−δ)
(23)
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Figure 10: (a): Some functions f(ωi) (ωs
i , logsig(ωi)), (b): a comparison of the correspond-

ing sizes of the receptive fields.
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Figure 10 gives an impression of the influence of f(ωi) on the size of the receptive
fields. The function logsig is a modified log-sigmoid transfer function. We first define

ls(ω) =
1

(1 + e−ω)
(24)

Now we modify ls in order to define the function logsig : [0, 1] → [0, 1]

logsig(ω) =
ls(l · (ω − t))− ls(−l · t)
ls(l · (1− t))− ls(−l · t)

(25)

l and t are parameters. l ∈ (0,∞) controls the steepness of the curve, while t ∈ [0, 1]
shifts the steepest part of the curve along the x-direction.
If the weights are an equally distributed set, we can give an estimation of the influence
of receptive fields on the final representation. We define this influence by the relative
size of the set of nodes, that represent a region of a certain weight interval in the
vector generated by the pyramid. For an experimental comparison of the methods
see section 4.2, item 2.

3 Reconstruction

The following steps reconstruct or recognize a given image using a given eigenspace with a
base consisting of N eigenimages, a pyramid P and pyramid level i. P is an empty structure
as it is described in section 2.2. In particular we calculate Bi according to definition 2.1:

1. for all eigenimages of the eigenspace: calculate level Bi according to the pyramid P .
This results in N vectors {e1, ..., eN}

2. calculate pyramid level Binputimage
i of the input image

The coefficients of the training images and the input image do not change [5]. The re-
sulting vectors {e1, ..., eN , Binputimage

i } are input to robust PCA. Note that the 1st point is
performed during the training phase. During reconstruction only one level based on the
input image has to be calculated. Computational expensive steps i.e. the contraction of
an image template to a pyramid structure takes place entirely during the training phase.
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4 Experiments

Experiments were performed on a dataset of graylevel images of different objects. The
database (Columbia Object Image Library COIL-20 [18]) contains images of 20 objects,
each object rotated around its vertical axis with images taken in 5o steps. Our training set
consisted of 36 images (i.e. 10o degree steps) of one object taken from the database. The
eigenspace used for reconstruction was spanned by 36 eigenvectors.

4.1 Building of the pyramid

In this section we present some results of our pyramid building algorithm, based on a
training set consisting of 36 images of a duck[18]. Figures 11, 12, 13 and 14 compare
different possibilities for d(i, j) and survexp. In each figure the images (a) and (c) show
randomly colored receptive fields of a low (a) and a high (c) level. Images (b) and (d)
show the result of calculating Bi of an input-image and backprojecting the attributes of
the nodes onto their receptive fields. (b) and (d) correspond to (a) and (c) respectively:
In figure 11 the distance function, used by DD-contraction, was defined by the difference

(a) (b) (c) (d)

Figure 11: DD-contraction, (a,b) level 6 and (c,d) level 15, survexp = .5 , d(i, j) =
−abs(ωi − ωj)

of the weights of two neighbouring nodes. This strategy was motivated by the observation,
that large receptive fields in unimportant regions ’swallow’ smaller receptive fields in more
important neighbouring regions. Merging two receptive fields with significantly different
sizes almost completely overwrites the information in the smaller field by information in
the larger field when the pyramid is applied to an image (See definition 2.1). Of course
this interferes with our goal to represent regions according to their importance. Choosing
d(i, j) = −abs(ωi−ωj) avoids this development, but results in receptive fields, that spread
over regions with independent pixel values i.e. poorly correlated value profiles, too. This
causes a loss of information.
We combined correlation and difference of weights in the distance function to avoid this loss.
The results are depicted in figure 12 with d(i, j) = corr(i, j)2 − (ωi − ωj)

2 and figure 13
with d(i, j) = corr(i, j)/abs(ωi − ωj). Note that receptive fields in are as ’compact’ as
in figure 11 but are divided in smaller subfields. Particularly large horizontal fields are
avoided. The duck in our training set was rotated around a vertical axis, therefore the
correlation between horizontal neighbours is usually less than with vertical neighbours.
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(a) (b) (c) (d)

Figure 12: (a,b) level 4 (c,d) level 6, survexp = 2.5; d(i, j) = corr(i, j)2 − (ωi − ωj)
2

(a) (b) (c) (d)

Figure 13: (a,b) survexp = 3 and (c,d) survexp = 1; d(i, j) = corr(i, j)/abs(ωi − ωj)

Figure 14 shows results of a distance function defined entirely by correlation of value
profiles. This definition seemed to be the most natural choice, and resulted in the best
recognition rate. Figure 14 (a) and (b) show receptive fields with survexp = 3, (c)and
(d) with survexp = 1. Generally smaller exponents survexp result in more significant
differences in the size of receptive fields, due to the algorithm described in section 2.3,
Dependent distribution contraction.

(a) (b) (c) (d)

Figure 14: (a,b) survexp = 3 and (c,d) survexp = 1; d(i, j) = corr(i, j)

Figure 15 shows receptive fields of a pyramid constructed with WT-contraction. Levels
with (a) 117, (b) 1031 and (c) 2015 are depicted, For our experiments we used targettolerance =
0.1, i.e. all pixels resp. nodes whose weight is above 0.9 survive.
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(a) (b) (c)

Figure 15: Weight target contraction, f(ωi) = ωi, d(i, j) = corr(i, j)

4.2 Reconstruction

In the experiments the algorithm had to deal with images (which were taken from Columbia
Object Image Library COIL-20 [18]) each of which was 50 percent occluded. The images
were centered i.e. the mean image of the training set was subtracted. Therefore the image
values are between −255 and 255 (The interval results from a dataset of 8 bit input images,
that was centered around the origin of the image space by subtracting the mean image,
further calculations were carried out with double precision). The images of one object
differ only by the vertical rotation angle, therefore a weight map based on the variance
of the pixel values is symmetric. This property ensures that by setting the right half of
each image to 0, approximately 50% of the nodes are occluded for all levels . Regions with
different weights are occluded to the same extend (with slight variations caused by the
pyramid, that is not exactly symmetric) (Figure 16). For all levels of the pyramid each
input image was reconstructed after preprocessing by one of the three methods:

• Downsampling using a Gaussian pyramid

• DD-contraction, with different values for parameter survexp

• WT-contraction, with different weight contraction functions f(ωi)

To compare the results we calculated the mean squared reconstruction error of the
resulting 36 images for each level. To understand the results better, we studied the con-
nection between pixel weights and the size of receptive fields on different levels. When
studying levels of different pyramids, we compared levels with most similar number of
nodes.
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255 

0 

−255 

Figure 16: The test set consists of centered images that were 50 percent occluded

1. Reconstruction with lower pyramid levels
With lower pyramid levels WT-contraction generally outperforms DD-contraction.
Figure 17 shows a comparison of the reconstruction results for regular and irregular
downsampling pyramids constructed with WT-contraction. For reference (a) shows
an image reconstructed with full resolution (128 × 128 = 16384 pixels) and no oc-
clusion, (b) shows the reconstruction result based on the 6th level of the irregular
pyramid. The level had 543 nodes ∼ 3.3% of the original size of the image, (c) shows
the reconstruction result from a regular pyramid with 23× 23 = 529 pixels.

(a) (b) (c)

Figure 17: Reconstruction results with (a) full resolution, (b) irregular (543 nodes) and (c)
regular pyramid (529 nodes)

For qualitative evaluation figure 18 shows the absolute differences between the recon-
struction results and the ideal reconstruction with full resolution and no occlusion:
figure 18(a) for an irregular pyramid, (b) for a regular pyramid. Figure 18 (c) and
(d) show the corresponding pixel error histograms. The data used was the same as
for figure 17.

For WT-contraction experiments with different exponent s in f(ωi) = ωs
i (reconstruc-

tion errors are depicted in figure 19) indicate the following behaviour: For f(ωi) = ωs
i

at lower levels (i.e. smaller receptive fields) lower values for s outperform higher val-
ues. This corresponds to smaller receptive field sizes at higher weights as predicted
in figure 10(b). Figures 21(c) and (d) show the relation between the weight (ω ≥ 0.7)
of a pixel and the size of the receptive field within it lies. The respective data was
derived pyramids constructed during our experiments: (c) from the 4th level of a
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Figure 18: Reconstruction error for (a) irregular and (b) regular pyramid. Histograms of
the error images (c) irregular and (d) regular pyramid
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(1) 
(4) 
(3) 
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(5) 

Figure 19: With a number of nodes above ≈ 400 a modified logsig function results in the
smallest reconstruction error. The horizontal line indicates the error achieved with full
resolution.

WT-pyramid with f(ωi) = ω2
i and (d) from the 3th level of a WT-pyramid with

f(ωi) = ω3
i .

Best results (Figure 19) on almost all levels were achieved with WT-contraction, if
f(ωi) was a modified logsig function 25 (l = 9,t = 0.8). Note that in figure 10(b)
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Figure 20: Left part: Receptive fields for WT contraction with s = 2 (upper row) and
s = 3 (lower row). Right part: diagrams, where each point represents a pixel in the
original image. The x-axis represents the weight, the y-axis the size of the receptive field
in which it is contained.
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Figure 21: Phase diagrams: s = 2 with (a) 271 and (c) 1842 nodes; s = 3 with 283 (b) and
1559 (d) nodes.

f(ωi) = logsig(ωi) provides smallest receptive fields for important regions and the
steepest increase of receptive field size for decreasing weight. Figure 19 compares
the performance of different functions f(ωi) in WT-contraction. Another important
observation is that optimal reconstruction results are not reached with highest reso-
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lution but with a number of nodes ∼ 3000 or ∼ 18% of the original resolution.

2. Reconstruction with high pyramid levels and the performance swap
When the number of nodes is very low i.e. smaller than ∼ 250 (∼ 1.5% of full resolu-
tion) DD-contraction outperforms WT-contraction independent of its parameter set
or the used function f(ωi) (in Figure 23 an arrow indicates the crossing of the per-
formance curves. Note that in Fig. 19 and Fig. 23 the lines connecting the points do
not reflect actual data, butconnect points of the same curve on the plot. Figure 22
helps to analyse the reasons. It represents the 9th level of a pyramid constructed
by DD-contraction. Note, that 5 extremly large receptive fields (i.e. > 700 nodes)
cover almost the whole image. Regions with high weight are covered by these fields
to a great extend. This is in contrary to WT-pyramids, where regions with wide
differences in weight remain seperated. We explain this behaviour in the discussion
section
Pyramids built by WT-contraction with f(ωi) = ωs

i show the following behavior,
when the number of nodes is decreased. Pyramids built with higher exponents s
successively outperform or at least perform equally to pyramids built with lower ex-
ponents s.

Figure 24 shows a comparison of reconstruction errors achieved with different pyra-
mids. The pyramids were built with WT-contraction and we set s = 2, 3, 4. We
compared the MSE for reconstruction results of WT-contraction (errorWT ) and re-
sults of a regular pyramid i.e. traditional downsampling (errorreg). In figure 24(a)
one can see that the latter becomes unstable at resolutions below 500 pixels which
is approximately 3% of the full resolution, whereas all irregular pyramids remain
stable (i.e. errorreg increases to values which are orders of magnitudes higher than
errorWT ). The plots show 3 different results of the regular pyramid to give an im-
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Figure 22: Level 9 of a pyramid constructed by DD-contraction: (a) randomly colored re-
ceptive fields; (b) gray values according to the size of the receptive fields;(c) phase diagram,
vertical axis: size of the receptive field, horizontal axis: weight.
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Figure 23: DD-contraction outperforms WT contraction when the number of nodes falls
below ∼ 250. The arrow in the plot indicates this point.

pression of their variations. Figure 24(b) shows a magnified part of 24(a). The arrows
indicate the points where the performances of different s values cross.
On a close look we can observe the following property of pyramids built by DD-
contraction: The method tends to enlarge receptive fields into regions despite their
high weight but still some very small receptive fields remain in these areas. The phase
diagram in figure 22(c) visualizes this behaviour. The x-axis indicates the weights
of the pixels in the image, the y-axis indicates the size of the receptive field they
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Figure 24: Comparison of the mean squared error of the reconstruction results after WT-
contraction and regular pyramids, resp.
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are part of. One can observe that a significant part of pixels with high weight lies
in large receptive fields. Figure 22(a) shows randomly colored receptive fields while
22(b) indicates the size of the receptive fields by the gray value.

3. Discussion of the results
In this section we take a closer look at the receptive fields of the pyramids, to find
the characteristics, that cause the differences in reconstruction accuracy and the
performance swap.
For WT-contraction Figure 20 visualizes the dependencies between exponent s
and the distribution of sizes of receptive fields. The figure is divided into two parts:
(a,b,e,f) show randomly colored receptive fields, (c,d,g,h) show phase diagrams similar
to figure 22 (c):

• Lower levels with 1842 and 1559 nodes resp., (b,d) and (f,h): the effect is in-
verted. Corresponding to figure 10 the lower exponent allowed faster contraction
in regions with low weight (h). In figure 21(c,d) the receptive fields in regions
with ω ≥ 0.7 are depicted. The effect of the fast contraction in low weight re-
gions is the occurance of smaller receptive field sizes for more important regions.

• Higher levels with 271 and 283 nodes resp., (a,c) and (e,g): Here the higher
exponent s causes a higher difference between the sizes of receptive fields in
regions of higher and lower interest. The behavior is similar to DD-contraction.
Because of extremely large receptive fields in less important regions there are
enough nodes available to properly represent important regions. When compar-
ing plot (c) and (g) one can notice that regions where ω ≥ 0.8 in plot (g) the
sizes of the receptive fields are smaller than in (c). In figure 21 (a,b) this region
is magnified.

Still all irregular pyramids outperform the regular downsampling process. (see also
figures 24 and 23).
With DD-contraction we are not able to control the size of the receptive fields
directly linked to the weights of the pixels. In section 2.3 we explained the effect of
a distance function independent from the weights. It causes the spreading of large
receptive fields into regions with high weight. The side effect of the occurrence of
large receptive fields is that for a given number of nodes, in return there is a consid-
erably larger amount of nodes representing very small regions. Figure 22 illustrates
this behavior.
This seems to be a crucial feature when resolution becomes extremely low. Neverthe-
less we have to consider the experimental setup, where the right half of the picture is
occluded completely and no noise does appear. Little information is lost by covering
a part (approximately 2/3) of the important regions by large receptive fields. Small
scattered receptive fields remain, and because neighbouring regions are highly corre-
lated they contain enough information about the ’lost’ regions with high weight.
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If the number of nodes is above ∼ 250 WT-contraction outperforms DD-contraction.
During contraction the algorithm sets increasing upper bounds to the size of the
receptive fields depending on the weights of the pixels lying within. This direct de-
pendence achieves our goal to represent regions according to their importance best.

In practical application, where noise can appear in addition to occlusion we expect
WT contraction to perform better even in levels with very low resolution. The rea-
son lies in the stabilization against occluded or disturbed pixels in important areas
provided by a ’proportionate’ representation of this regions. The ability to suppress
irrelevant information becomes obvious when comparing the reconstruction errors
from full resolution images and the ones from images contracted by our algorithm.
Figure 19 indicates the reconstruction error using full resolution with a horizontal line.

5 Conclusion

This report explores the possibilities to support appearance-based recognition and recon-
struction by a top down strategy. This strategy was motivated by natural behavior of
humans when they look at scenes, objects or faces. To realize a simulation of such a be-
haviour in the framework of robust PCA methods, irregular pyramids are applied to the
images. Two algorithms to build these pyramids were introduced and discussed. In the
last section experiments showed significant differences between regular downsampling and
our approach regarding reconstruction accuracy.
Standard PCA is unstable against occlusion or outliers. The robust PCA approach [1, 5]
improved and stabilized reconstruction results. In experiments with 50%-occlusion it de-
creased the error to 14%− 28% of its original value.
During our experiments applying irregular pyramids decreased the error of robust PCA to
∼ 53% of the error achieved with regular downsampling at a resolution of ∼ 3000 nodes
( ∼ 18% of full resolution). With less than 500 nodes (∼ 3% of full resolution) regular
downsampling causes instability (Figure 24 and 19). The reconstruction error with irreg-
ular downsampling also increases but the gap grows considerably to errorirregular ∼ 2% of
errorregular.

A very interesting conlusion is that irregularly downsampled images can improve recon-
struction results gained with full resolution images. This indicates a deteriorating influence
on robust PCA if unimportant regions are represented to an improper extent.
At the end of this section we suggest further research on the topic. Future work on this
topic could include:

1. study the connection between correlation and weights in an image region to gain
information about texture and shape of the object.

2. robustify the training phase of robust PCA methods against varying background by
eliminating regions of high variance, but extremely small correlation between pixels
neighbouring each other. Textures with very small ornaments might cause troubles.
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3. study different weight maps according to the task which has to be solved. We expect
the optimal weight maps for recognition, reconstruction and distinction of objects to
be different.

4. adjust weight maps to the number of used eigenvalues

5. compare structure (for example spatial variance) of input images with the pyramid
structure to gain information about occlusion etc.
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