
Video Object Segmentation Using Graphs

Abstract. This paper presents an approach for video object segmen-
tation. The main idea of our approach is to generate a planar, trian-
gulated, and labeled graph that describes the scene, foreground objects
and background. With the help of the KLT Tracker, corner points are
tracked within a video sequence. Then the movement of the points adap-
tively generates a planar triangulation. The triangles are labeled as rigid,
articulated, and separating depending on the variation of the length of
their edges.
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1 Introduction

Video object segmentation (VOS) is an important task in computer vision to sep-
arate foreground from background and initialize tracking systems. VOS methods
can be divided up like in [1] into (1) two-frame motion/object segmentation and
(2) multi-frame spatio-temporal segmentation/tracking.

Former methods are [2–5]. Alatan et al. present in [2] the activities of the
COST 211ter group dedicated toward image and video sequence analysis and seg-
mentation, which is an important technological aspect for the success of emerging
object-based MPEG-4 and MPEG-7 multimedia applications. In [3], Altunbasak
et al. describe a combination of pixel-based and region-based methods to obtain
the best possible segmentation results on a variety of image sequences. Castagno
et al. present in [4] a scheme for interactive video segmentation. A key feature of
the system is the distinction between two levels of segmentation, namely, regions
and object segmentation. Chen et al. describe in [5] a method to segment highly
articulated video objects with weak-prior random forests. The random forests
are used to derive the prior probabilities of the objects’s configuration for an
input frame. The prior is used to guide the grouping of over-segmented regions.

Latter methods are [1, 6–8]. Celasun et al. write in [6] and [1] about 2-D mesh-
based VOS. In [8], Tekalp et al. also present a 2-D mesh-based approach. They
describe 2-D mesh-based modeling of video objects as a compact representation
of motion and shape for interactive, synthetic/natural video manipulation, com-
pression, and indexing. The affine motion model is often used in VOS, because
it is simple and locally a good approximation of smooth motion. With only six
parameters it is able to describe complex motions like for example rotation, scal-
ing and shearing. Li et al. present in [7] an approach where they use the affine
motion model to estimate the motion of homogeneous regions.

Artner et al. present in [9] a kernel-based tracking method using a spatial
structure. They showed with their experiments that structure (graph-based rep-
resentation of the target object) can enhance the results of tracking. In [9], the
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target objects were rigid and the initialization for the tracking process was done
manually by selecting the target object.

This paper presents a new approach of VOS, where the result is a triangu-
lated, labeled graph of the scene, which describes foreground objects and back-
ground. Each triangle of the graph is labeled either as rigid, articulated or sepa-
rating, depending on its behavior during a video sequence. We plan to combine
the approach in this paper with the method described in [9] to automatically
initialize the tracking process and allow to track articulated objects.

The paper is organized as follows: Section 2 recalls the approach in [9]. Sec-
tion 3 describes our approach. Section 4 shows results with different video se-
quences. In Section 5 conclusions and future work are given.

2 Tracking Using Spatial Structure

Artner et al. propose in [9] an initial concept for combining deterministic track-
ing of object parts with graph representation encoding structural dependencies
between the parts. In general, image graphs can be used to represent structure
and topology. The Maximally Stable Extremal Regions (MSER) detector [10] is
used in [9] to generate regions which represent the vertices of the graph. The
MSER computation is used only once to initialize the graph structure (Delau-
nay triangulation) and the Mean Shift trackers at each vertex. On the vertices,
color histograms are computed to obtain an attributed graph (AG). The edges
between the vertices define the region adjacencies.

The objective of Artner et al. is to link the processes of (1) structural energy
minimization of the graph and (2) color histogram similarity maximization at the
vertices by Mean Shift tracking. The algorithmic combination of Mean Shift and
graph relaxation represents a joint iterative mode seeking process on the color
similarity and on the structural energy surfaces. As the tracked objects in [9]
are rigid, the objective of the relaxation is to maintain the tracked structure as
similar as possible to the initial structure.

3 Extracting Structure

Our approach can be divided into 3 steps: track interest points in video with
any tracker, build a planar, triangulated graph and analyse the movement of the
points (vertices) of the graph over time and label its triangles.

The Kanade-Lucas-Tomasi tracker is used to track corner points. We use the
implementation of [11]. At the beginning the algorithm selects good features to
track and then keeps track of this features. The main idea of the KLT tracker
is that feature extraction should not be separated from tracking. If a feature is
lost during the tracking process, it is not considered in the following steps of our
approach, because it is not dependable.
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3.1 Adaptive Triangulation

Let l(p1,p2) denote the likelihood that two image points p1, p2 belong together
i.e. are part of the same (rigid) structure. l(p1,p2) = l(p2,p1), and l(p1,p2) <
l(p2,p3) means that p1, p2 are more likely to be part of the same rigid structure
than p2, p3. l is understood as a nonnegative continuous measure. Note that in
the ideal case l should also depend on the type of object considered.

Pairs of points and their properties can be used to decide whether they
belong to the same rigid structure or not, but cannot be applied directly to
find articulation points. More global information or local information of higher
dimensional cells (e.g. triangles) has to be considered. The latter one is used.

A triangulation of a set of points P ∈ R
2 is a subdivision of the convex hull

of the points into triangles. A frequently used triangulation [12] is the Delau-
nay triangulation [13]. The Delaunay triangulation DT (P) of a set of points P
ensures that no point p ∈ P lies within the circumcircle of any triangle. It max-
imizes the minimum angle of all the angles of the triangles in the triangulation;
it tends to avoid “sliver” triangles. DT (P) is not always unique (e.g. for 4 points
on the same circle) and can be computed in O(n log n) in the number of points.
The disadvantage of using DT (P) is that the presence of edges is decided solely
on the position of the points in R

2, and additional hints like the likelihood l are
hard to integrate. One could imagine finding a new set of points for which the
euclidean distance is proportional to l and then computing the triangulation,
but such a set does not always exist. The constrained Delaunay triangulation
requires a priory knowledge of the edges that are necessarily part of it.

In the ideal case, the used triangulation mainly contains edges with high l,
increasing the chance that vertices of the same rigid part are connected, and
articulation points are correctly detected. The following formulation is used:
given a fully connected graph G = (V,E), where all v ∈ V correspond to a
unique point p ∈ P (bijection), and all e = (v1,v2) ∈ E are weighted with
l(p1,p2), where p1, p2 are the points associated to v1, respectively v2, find the
connected subgraph T = (V,ET) s.t. T is a triangulation, trying to keep edges
with higher likelihoods. Algorithm 1 computes T , for a given fully connected
graph G with |V| > 2. Note that Algorithm 1 converges after maximum |E|
steps, as in each iteration at least one edge is removed from S (Line 7).

Property 1. If G is a fully connected graph, Algorithm 1 returns a triangulation.

Proof. Assume T contains one face F with k > 3 vertices. As G is a fully con-
nected graph, all k vertices of the face F are pairwise connected. Any “internal”
edge i is removed only if it intersects a “surviving” edge e (Line 6 in Algorithm 1).
For F , the surviving edge e could connect:

– two vertices not part of F : would not produce F as a face, as it would remove
also at least 2 other edges of F and disconnect it;

– one vertex of F with one vertex not part of F : would not produce F as a
face, as it would remove also at least 1 other edge of F and disconnect it;
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Algorithm 1 ComputeT riangulation(G)
Input: Weighted Graph G = (V,E)

1: ET ← E
2: S← sort edges E in decreasing order of their likelihood
3: while S �= ∅ do
4: e← first edge in S
5: I← edges in E “intersecting” edge e /*common end points not included*/
6: ET ← ET − I /*remove cutting edges from result*/
7: S← S− ({e} ∪ I) /*processed edges will not be considered again*/
8: end while

Output: Triangulation T = (V,ET).

(a) KLT corners (b) Delaunay (c) Adaptive

Fig. 1. Triangulation of corner points selected by the KLT Tracker.

– two vertices of F , not defining a boundary edge: edge e would divide F in
two parts being either triangles or fully connected subgraphs. ��

Property 2. If G(V,E) is a supergraph of a triangulation s.t. ∀e ∈ E, with
I ⊂ E all edges intersecting e, G′(V,E − I) is triangulation or a supergraph
of a triangulation with the same property, Algorithm 1 returns a triangulation.
(proof similar to Property 1)

Starting with a fully connected graph is computationally expensive (|E|2 =
|V |4 intersection), thus a faster approximation solution is proposed. We propose
G to be a “non optimal” triangulation Ti to which all end vertices of paths
of length two are added. Algorithm 1 is applied to select the triangulation T
considering l. Note that Property 2 is not satisfied for any triangulation Ti,
and to make sure, additional conditions are necessary (e.g. adding only edges
connecting the non common vertices of two adjacent triangles).

We have set G to be DT (P) to which edges connecting all end vertices of
paths of length two were added. l(p1,p2) was set inversely proportional to the
standard deviation of the distance between p1,p2. For DT (P), the points that
have been tracked successfully over the whole sequence and their position in the
first frame was used.

For the previous, Algorithm 1 always produced a triangulation. Figure 1 (c)
shows an example of the produced triangulation.

An alternative approach to the one in Algorithm 1 would have been to weight
the edges with the inverese of the likelihood l, build the Minimum Spanning Tree
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of G and add edges with high l to produce a triangulation. Planarity would still
have to be ensured, requiring the edge intersections to be done.

3.2 Motion Analysis and Labeling

The labeling of the triangles depends on the movement of their vertices v and so
on the variation of the length of their edges e. Every edge e is weighted depending
on its variation with w(e) = max(et) − min(et), where max(et) and min(et)
are the maximum and the minimum length of edge e during the whole sequence,
respectively. In our experiments, w(e) proved to be robust against repeated small
errors in the tracking. The standard deviation was also considered, but constant
edge length for a longer time reduces the effect of length variation on the weight.

If w(e) > ε, the edge is treated as eventful during the analysis. The threshold
ε is used to compensate small variations in the edge length due to discretization,
noise or tracking errors. The triangles are labeled with the following rules:

– ● rigid : The weights of all three edges of a triangle lie over the threshold ε.
– ■ articulated : The weight of one edge of a triangle is under ε.
– ▲ separating: At least two edges are eventful, which indicates that the tri-

angle is a connection between foreground and background or another object.

In Figure 2, two simple examples of our labeling mechanism are shown. The
sequence in the examples consists only of two frames, because of simplicity. In
our experiments (see Section 4) we used a full sequence of frames. Figure 2
(a) and (b) show the two frames Ea(1) and Ea(2) of example Ea. Due to the
movement of the vertices (points) from frame (a) to (b), the square is detected as
a rigid foreground object, because its vertices did not move and so its triangles
are labeled with ● rigid (blue). The triangles that connect the square to the
background are labeled with ▲ separating (red), which means this edges should
be cut to separate the foreground object from the background.

Eb in Figure 2 (c) and (d) is a labeling example with all three kinds of labels:
● rigid (blue), ■ articulated (green), and ▲ separating (red). One triangle in
Eb is labeled as articulated, because on edge of the triangle changed its length
during the initialization phase over the threshold ε.

(a) Ea(1) (b) Ea(2) (c) Eb(1) (d) Eb(2)

Fig. 2. Labeling triangles: ● rigid (blue), ■ articulated (green), ▲ separating (red).
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(Delaunay) (Adaptive triangulation)

Fig. 3. Comparison of triangulations. Detailed view.

4 Experiments and discussion

The KLT Tracker [14] was used to track corner points and the triangulation is
build as described in Algorithm 1. Then the movement of the tracked points,
grouped in triangles, is analysed and the graph is labeled (see Section 3.2).
Adaptive triangulation vs Delaunay triangulation: For this experiment
we used video sequence 1, which shows a box of candy (rigid object) moving,
while the rest of the objects are static (see Figure 1). The proposed adaptive
triangulation gives higher priority to connections between points keeping the
same relative position (e.g. long horizontal edge in the top-center of Figure 1
(c), and long diagonal edge in Figure 3 (b)). Methods like [9] benefit from edges
inside the same rigid object.
Labeling rigid triangles: In sequence 1 the background and the static objects
(left and right) are detected as a rigid structure (Fig. 4). The moving candy box
(center) is also identified as a rigid object, and the triangles between the candy
box and the background are correctly labeled as separating (are not drawn). No
articulation points are detected, which is correct too.
Labeling articulated triangles: Video sequence 2 (Fig. 5) shows a human
moving his head and arms. Articulation points located in shoulder, elbows and

(a) Adaptive triangulation (b) Labeling without “separating”

Fig. 4. Results for video sequence 1. Triangles labeled as separating are not shown.
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(Frame 1) (Frame 422) (Frame 455) (Frame 663)

Fig. 5. Frames of video sequence 2 that show the movement (articulations) performed.

(a) Adaptive triangulation (b) Labeling without “separating”

Fig. 6. Results for video sequence 2. Triangles labeled as separating are not shown.

neck can be detected. Round stickers were used to provide sufficient corner points
for the KLT tracker in structurally interesting positions.

Problems during the tracking process produced some inconsistent results (i.e.
some separating and articulation triangles inside the right arm). Nevertheless,
the labeling is satisfying as most of the articulation points are located (only the
left elbow is not detected) and the rigid and separating triangles are correctly
labeled (Fig. 6).

5 Conclusion and Future Work

The adaptive triangulation presented in this paper allows a better description of
the structure of a scene than the Delaunay triangulation, because it takes into
account the likelihood l of the points belonging together. The spatio-temporal
analysis of the movement of the points during the video sequence classifies tri-
angles into rigid, articulated and separating. Our labeling allows to separate
foreground and background objects and identifies articulation points.

In future we plan to combine this approach with kernel-based tracking [9]
to track articulated objects. The structural constraints of the graph relaxation
can be deduced from the labeled graph. No structural constraints are applied
on triangles which are labeled as separating, while for rigid parts the objective
is to maintain the tracking consistent with the structure of the object. In the
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articulated parts edge variations up to a defined degree of freedom are allowed
to model articulated motion (e.g. human motion).
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