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Abstract Inthiscontribution, we show how to encodein a
convenient and compact way information from images with
so called functional graphical models. Those models per-
mit to represent in a coherent mathematical framework fea-
tures such as interest points, simply connected curves such
as line and conic segments, connected regions of homoge-
neous properties, and compound features such as lines and
line pencils. We show also the relevance of functional mod-
els for feature extraction, which isrealized by minimizing a
global model selection function. We apply the framework for
encoding/extracting geometrical features thanks to two fast
sub-optimal algorithms.

1 Introduction

A feature is usually defined as some object that can be ob-
served and/or measured, used as a model of certain aspect
of reality. The operation of feature extraction consists in
retrieving the parameters of features from a data source de-
scribing some sought aspect of the data. Feature extraction
is an issue of image analysis, as structured features are of-
ten needed by complex image analysis tasks, such as image
registration and matching, document analysis, camera cali-
bration, and model reconstruction.

The structure of an image may be viewed as a composi-
tion of three different kinds of elements, describing the do-
main of the underlying continuous image. Regions are open
sets where the image is continuous (in some adapted space),
curve segments are open sets describing the shape of the lin-
ear discontinuities of the image in a continuous manner, and
vertices must be given in complement for describing points
adjacent to continuous curves (junctions, intersections, etc).
Those elements “explain” local measurement variation onto
an image, such as coordinates (for curves segment and their
extremities) and intensity or color (regions). Such elements
can also be grouped relating them according to some global
constraints. Example of such features are lines (collinear
connected line segments), line pencils (vanishing points),
circles (composed of circular arcs), concentric circles, etc.

Authors usually propose specialized algorithms for the
extraction of one feature type. For example, some authors
proposed techniques of interest point detection, such as cor-
ners and multiple junctions [6]. Other authors proposed lin-
ear feature extraction techniques [4][10], resulting in fea-
tures, without connection information. Vanishing point de-
tection has also been under consideration [12]. Segmenta-
tion algorithms, which partition an image into regions of

homogeneous properties, are numerous [9].

Relations such as perceptual and topological relation-
ships are usually established afterward, with a lot of con-
sistency problems. The perceptual grouping paradigm can
solve this problem [15][10]. In another context, Fuchs and
al. [5] proposed a multi-primitive extraction system where
conflicts between features extracted independently are de-
tected. A line drawing vectorization technique [8] consists
in extracting line segments from a skeleton, which guaran-
tees the consistency of the adjacency relations between the
extracted line segments.

Our approach for feature extraction is based on the no-
tion of functional graphical model that permits to represent
functional dependencies between different types of features.
Thus, this approach, opposed to the other, is global, as all
information is related into a unique model. In section 2, we
show how functional models can code measurements from
images, and how their construction can be stated as a com-
binatorial optimization problem. In section 3, we propose
two new fast and sub-optimal algorithms that permit the con-
struction of a functional graphical model describing the ge-
ometry of contours of an image. In the last section (section
4), we demonstrate the proposed algorithm on an applica-
tion.

2 Functional Graphical Models (FGM)

In this section, we firstly introduce the notion of functional
models (section 2.1). We discuss the construction of mod-
els coding images (section 2.2), thanks to topological and
functional models, and the construction of complex models
enabling to take account of global information on an image
(section 2.3). We then define the combinatorial optimization
problem involved in its automatic construction from a model
selection criterion (section 2.4).

2.1 FGM : definitions

A functional model is an implicit equation system relating
measurements and parameters. \We have introduced the no-
tion of functional graphical models [14] (FGM for short),
which may be used to design and analyze functional models
via the functional relations between the involved variables.

Definition 1. A functional graphical model is a couple
M = (V,F) with V a set of variables V; € V, and
F a set of implicit equations F; € F of the form F; =
[fi(Viis s Vi, ) = 0], where V;, € V and f; is a function
of dimension d; (therelations).
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A variable of the model is a vector describing parame-
ters associated to some abstract object. Variables are thus
referred as features of the model.

The domain set of the relation F; = [f;(Vj,, ..., V}, ) =
0] is the set Dom(F;) = {V},,...,Vj,. }. AFGM has an
hypergraph structure, where vertices of the deduced hyper-
graph are the features, and hyperedges are the domain sets
of the relations of the model.

The two following definitions define properly a set of
models and a compound models. We will use these defi-
nitions later in the text.

Definition 2. The partial FGM of a FGM M = (V,F)
generated by a family E C F isa FGM (Vg, E) where
VE = UFleE‘DOm(F’z)

A partial FGM is directly related to the induced partial
hypergraph of its graphical structure.

Definition 3. The union of two FGMs M; = (V;, F}) and
My = (Va, Fy) isthe FGM M = (V; U Va, Fy U Fy).

The union of two FGMSs produce a FGM. A FGM may be
defined thanks to the union of an arbitrary number of FGMs.

FGMs can represent some information of the original im-
age, such as the geometry of the discontinuities, or the vari-
ation of intensity on connected domains, and more generally
the variation of some measure associated to each point of an
image, leading to the definition of different specialized mod-
els that can be put together to explain interesting measures
deduced from an image.

2.2 FGM of an image

In this section, we will give general hints for coding images
with FGMs, and we give a concrete example for encoding
the geometry of contours of an image.

A generic topological model in 2D is a topological map[2]
defined as the decomposition of an orientable surface into
three different disconnected sets :

e A finite set .S of points.

o A finite set A of Jordan curves which extremities are ele-
ments of S.

e A finite set F' of simply connected domains (the faces),
which boundaries are unions of elements of S and A.

A coherent topological map embedded in the digital plane
(called a contour map in the following text), can be obtained
from well-composed gray value images[13]. Jordan arcs are
then 4-connected digital curves, and faces are 4-connected
components.

The measurements associated to each connected topolog-
ical element can be described thanks to a model of vertex,
a model of curve, or a model of region, and the topological
map is attributed with those models. Fig. 1 shows the hyper-
graph structure of those three partial models. Each big disk
represents a feature of the depicted model, and the relational
equations are depicted as small disks, connected to the fea-
tures involved in the relation by lines. The dashed arrows
represent topological constraints that are discussed below.
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Figure 1. The three connected partial models

In our example, for simplicity, we only code the points
belonging to the digital curves of a contour map computed
from the modulus of the gradient of the original image. We
choose the basic measurements to be coded, which are three
dimensional vectors of the form I(z,y) = (z y 0)*, where =
and y are integers and @ is the computed edge orientation at
the considered pixel. This direction is supposed to be close
to the normal vector of an object contour, and discriminates
the real contours from the spurious ones, i.e. edges that do
not compose the contours of smooth regions. Each pixel
I(z,y) of a measurement image is a feature of the FGM
used for coding the geometry, related to some other features
by functional relations.

A model of vertex (Fig. 1a) is composed of a feature
I(z,y) which is the measurement associated to an image
point, a feature S that codes the information associated to a
vertex, and features C1, ..., C,, which are the parameters of
the curve segments adjacent to the vertex. Two types of re-
lations are involved in the model. A relation Fs as enables
to deduce from the feature S the associated measurement
I(z,y). Other relations Fs ¢, link a junction S to the ad-
jacent curves C;, and do not need to be stored explicitly,
as they are redundant with the relations of the topological
model. For our application (coding the geometry of con-
tours), we use a vertex feature S = (xzs ys 0s), and the
following relations.

Fsur =[S —1(i,j) = 0] 1)

Fsc, = [distance(zs,ys,zc,yc) = 0] 2

where C'is the feature associated to a curve adjacent to the
vertex, z¢ and y¢o are the coordinates of the point on the
curve C; the closest to the point (zs,ys). Note that three
equations are involved in the relation 1.

A curve model (Fig. 1b) is composed of a feature C
which encodes the parameters of the continuous curve, and
a digital set of points that form a digital curve in the mea-
surement image. Each measurement from the set is linked
to the curve with a relation. Ambiguities in the coding may
occur when the continuous curve does not describe in a co-
herent manner an underlying digital curve, i.e. when the
order of the points of the digital curve is not the same that
the order of their closest points on the associated continuous
curve. This constraint is illustrated on Fig. 2, where black
figures represent the numbering of the points on the digital
curve, whereas gray figures represent the numbering of their
closest point on the continuous curve in correspondence.
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Figure 2: Order constraint on curves

Figure 3: Animage FGM example

For our application, the following relation is used :

Fo = | (B v i) —o] @

where ¢ and yo are the closest points on the curve C' to
the point (z,y), and 8¢ is the normal to the curve at point
(ze,yc). For example, a line segment may be represented
by a feature C' = (8¢ d¢), where 8¢ is the angle between
the normal of the line and the x axis of the coordinate sys-
tem, and d¢ is the distance of the origin of the coordinate
system to the line.

A connected region model (Fig. 1c) links each measure-
ment of a region to the feature R that are parameters cod-
ing the function that enables to calculate the variation of the
measurements on the region. Usually we are interested in
coding intensity or color variations. In our application, we
want to be able to detect/code spurious contours present in
the contour map. We do not use a region model, and we need
an independent point model that consists of all the measure-
ments of spurious contours, without associated relation.

As demonstrated on Fig. 3, those models can be gath-
ered into a FGM coding relevant information for the appli-
cation. The complementary topological description can be
used to describe implicitly domains where a model can be
applied, reducing the amount of information necessary for
its description.

2.3 Perceptual grouping and hierarchical FGMs

Perceptual grouping can be formalized with FGMs describ-
ing some global information, such as alignments of line seg-
ments and pencils of lines for geometry encoding. Clearly,
parameters of collinear segments can be deduced from pa-
rameters of their supporting line. One of the two parameters
coding a line can be deduced from the parameters of a line
pencil it is participating. The two preceding examples leads
to a FGM that has a tree structure (Fig. 4).

The alignment model is composed of relations involving
the parameters of the line associated to each segment C', and
the parameter of the line L = (6, dr.) describing the align-
ment.

Fe, =[C—L =0 4)

The pencil model involves alignment features and the
pencil feature of form P = (0p ip)t, where 6p and dp =
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Figure 4: Model of a pencil of aligned line segments
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Figure5: Reduced alignment FGM

i are the polar coordinates of the vertex common to each
line. This form is well adapted for parallel lines but fails
to represent a pencil of lines crossing near the origin of the
coordinate system. Then, the relation involved in the pencil
model is :

Fpr = [cosOp cosfr +sinfp sinfy, —dp dr = 0] (5)

When the relations are treated as constraints, the preced-
ing models (alignment and pencil) can be simplified into
compact models that are derived by parameter substitution,
replacing simple implicit equations by complex ones, This
is done by giving an explicit form of some other equation re-
lated by a model variable [14], which has as a consequence
to suppressing the variable and the relation used. Substi-
tuted models can then be optimized in place of the overall
hierarchical model, leading to more reliable parameters.

The reduced alignment model relates the feature L and
each measure I(z,y) thanks to the relation (3) :

| (distance(z,y,zc,yc)\
FL,M - |:( Sin(oc _ 0) =0 (6)

Note that this model can be generalized to any implicit
curve.

The reduced pencil model is composed of relations of
form:

cosOr(dpx — cosbp)
—I—SinHL(dpy—SinHP) =0| (M
sin(fr — 6)

Fprm=

Some structural constraints can be added in order to
achieve a coherent digital/continuous mapping. An example
of such a constraint is the order constraint of curve segment

Ixy)

Figure 6: Reduced pencil FGM
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models (section 2.2) generalized to curve models. Other
generalizations can be achieved. For example, 3 pencils can
be generalized by self-polar triangles [3] if they describe
groups of orthogonal lines in space. Another example of
hierarchical model can be given by the model constituted of
circular arcs of concentric circles.

2.4 FGM selection : problem statement

The problem of constructing a model composed of all the
previous models that explain an image can be put in a model
selection framework by defining a cost function that evalu-
ates the appropriateness of a model instance. Such a cost
function may be, for example, the MDL which is widely
used in computer vision [9][11]. Assuming that the structure
of a FGM is known by both the coder and the decoder, and
that all the relations are independent, the description length
of a two part code of a standard FGM M = (V, F) has the
form:

k(M) =— Z logs (p (F})) + g sizeof (Real)  (8)
FieF

where sizeof returns the size (in bits) of the given type,
p (F;) is the likelihood of F; given the instances v of the
variables, and g is the minimum number of reals that enable
the calculation of all the variables of the model (the size of
its generating set [14]). We will assume for simplicity that
the residual of each equation involved in the model follow
a normal law of given standard deviation, which enables to
handle noise properly. Then the probability p may be com-
puted for each equation from the quantiles of the normal
law.

The code of a FGM M embedded on a topological struc-
ture contains the codes of all the partial models involves, and
the code of the topological model. Its description length, for
the previously defined partial model set, takes the following
form:

kr(M) =" k(Mp)+Y_ k(Mp)+»  k(My)+K+K;
Mp My My ©

k(My) is the minimum sized code of the vertex model My, .
In order to code a vertex model, we need to know the angle
associated to the feature S. Moreover, if only one curve is
adjacent to the vertex model, then we need to know another
parameter, and g = 2. If the vertex is adjacent to more than
one curve segment, its coordinates can be retrieved from the
functional model and g = 1. k(M) is the minimum sized
code of the reduced curve model M, such that Ay, is not a
partial model of a pencil model. Two real valued parameters
define a line (g = 2). k(M p) is the minimum sized code of
the reduced pencil model Mp, and g = 2 + n, where n is
the number of lines involved in the pencil model. K7 is the
amount of memory needed to store each independent mea-
surement, for which three real numbers are needed. k(K) is
the size of the topological model, which is considered fixed
here. This size can nevertheless be computed when the topo-
logical structure is an attributed combinatorial map.

The most appropriate model assembly (i.e. FGM that is
composed of union of partial models from the model set)
given a measurement image is the one minimizing the length
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Figure7: Local configurations of vertices model (up to rotations).
The black lines of the T-vertex combinations correspond to a single
curve model.

of the model code. This cost needs at least a two step op-
timization strategy. The first step consists in constructing a
compound model. The second step is a classical estimation
procedure that enables to determine the parameters maxi-
mizing the likelihoods of the relations.

3 Sub-optimal FGM selection algorithmsfor
feature extraction

In this section, we propose two new sub-optimal algorithms
that retrieve complementary partial FGMs from a contour
map. In the section 3.1, we present an algorithm for simulta-
neous connected curves and vertex model, based on a vertex
relaxation strategy. In the section 3.2, we present a general
strategy that can be used for construction independent par-
tial models from a hierarchy, treating the model hierarchy
level by level. The construction of the line pencil hierarchi-
cal model is illustrated.

3.1 Vertex relaxation for connected model retrieval

An optimization strategy well adapted for connected model
optimization is relaxation. Relaxing a vertex model con-
sists in constructing all possible combinations and models of
curves adjacent to a vertex (i.e. all the possible vertex mod-
els), and calculating for each combination the global cost 9
of section 2.4. The local combination minimizing the global
cost is kept for further processing.

Each vertex from the contour map is adjacent to at most
4 digital Jordan arcs, which are labeled by a curve model.
Note that the digital curve associated to a curve model is
composed by the concatenation of several Jordan arcs from
the map. The following algorithm describes one vertex re-
laxation :

1. If a curve pass threw the considered vertex v, then we
split the associated digital curve in two digital curves
having v as extremity. In all other cases, the digital curves
associated to adjacent Jordan arcs are used. Thus, in fur-
ther processing, we use at most 4 digital curves having v
as extremity.

2. We construct each possible local combination of digital
curves (Fig. 7). For constructing T-vertex models, two
digital curves from step 1 are concatenated. For each of
these combinations :

e For each digital curve of the combination, we con-
struct all possible curve models, estimate their param-
eters, and compute their cost using equation 8 of sec-
tion 2.4. The best local curve model is kept. Higher
level models can be used (e.g. lines and line pencils)
if hypothesis of such models have been generated.
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e The parameters of the vertex are estimated thanks to
the previously selected curve models involved in the
combination.

e The cost of the constructed model is calculated.

The local model (curve+vertex) minimizing the sum of the
cost calculated at the end of the second step is kept for fur-
ther processing. Note that all the estimations and cost calcu-
lations are realized in a local way, although a correct treat-
ment for the minimization would be to optimize the whole
model, which is not feasible because of its size.

The initial solution can be constructed by polygonization
of each Jordan arc of the computer map. The contour map
is then transformed in such a way that its vertices are the
extremities of the line segments constructed by the polygo-
nization step. Another solution can be to consider each point
of the contour map as a vertex. The relaxation step is done
for each vertex of the initial solution, and overall algorithm
is iterated until convergence, or until a maximum of itera-
tions has been reached. The constructed curves are longer as
the number of global iterations increases, leading to partial
results that are already exploitable. Note that the algorithm
does not converge in general.

The algorithm can be turned easily into a simulated an-
nealing algorithm, which would converge slowly.

3.2 General layered model optimization

In this section, we propose a new algorithm for model selec-
tion that constructs from a set of features of known values
D = {Ds,...,D,} aset of models M = {M,...,Mp}
such that each feature from D is involved in at most one
model of M, and all the model of A have the form M; =
(‘/i;FM,-): with V; = {Dj,Dj (S D} @] {Pz} and .F]\/[1 =
{l[f(Dj, P;) = 0], forall D; € V;}.

Examples of such models are the line and pencil model of
section 2.3, which where used for validating the approach.

The proposed algorithm is a 4 steps sub-optimal algo-
rithm minimizing the sum of the costs of the constructed
models M; (see section 2.4 for examples of cost functions) :

1. The fuzzy clustering step. This is realized by accumu-
lating each datum from D in the parameter space of the
function f by techniques such as the Hough transform
[7]. The modes resulting of the accumulation are consid-
ered as the approximated parameters of potential models.
Then, each datum is associated to models that are close
enough to it (if any), and thus, overlapping partial models
are build.

2. The robust estimation step. During that step, the parame-
ters of each model constructed previously are determined
with a robust estimation technique, such as RANSAC [1],
which enable to determine more precise parameters for
each model, excluding from the calculation outliers that
were previously affected to the model.

3. The relaxation step. Each datum is being relaxed, in or-
der to associate it to the more interesting model (if any),
which is the one optimizing the model selection criterion.
When the first datum is associated to a model, the param-
eters of the model are being taken into account for the
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Figure8: Line pencil extraction

cost calculation. Such a strategy enables to merge “close”
models built with the same data. Structural constraints,
such as the order constraint on curves can be validated in
this step.

4. The global adjustment step. The parameters of each
non overlapping model previously generated may be es-
timated with a standard procedure involving all the data
affected to each model. Eventually, the procedure may
loop to step 3 for refinement, until the composed models
are stable, or a minimum of the global cost is reached.

This method calculates a sub-optimal model. It takes ad-
vantages of two robust estimation paradigms, which are the
Hough transform and the consensus estimation. It is com-
putationally efficient thanks to the clustering step, which
enable to construct quickly coarse groups of data, and en-
able also to obtain an approximation of the parameters of the
model associated to each group. The parameters are refined
thanks to the robust estimation step, and then can be used
for approximating the selection cost for each partial model
in the relaxation step.

4 Application

The parameters of each model is computed thanks to coarse
estimator optimizing only, for convenience and efficiency,
the geometrical parts of the models. Fig. 8 illustrates the
result of the feature extraction framework on a real image.
Line segments belonging to the same alignment have the
same graylevel, and dashed lines are the lines participating
to a pencil model. The algorithm was also evaluated on other
images leading to comparable results.

For line models selection, the order constraint is main-
tained thanks to an interval tree structure. This algorithm
enables the correct retrieval of very close lines almost par-
allel. \ertices extracted are adjacent to lines, lines to re-
gion which intensity is varying smoothly. Because we avoid
to extract features independently from each other, they are
more reliable, their parameters are known with a great pre-
cision, and the topological relations between the features are
reliable, and can be used when we try to match to structures
from two different images for example. Such a result is ob-
tained by a single fast algorithm, as opposition with other
methods which would use several step for building a less
reliable equivalent structure.
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For line pencils extraction, the clustering step has been
ignored and we only seek the vanishing points correspond-
ing to the vertical and horizontal lines. The robust esti-
mation step is done thanks to the reduced model, with an
adapted sampling technique. n lines are chosen, and p mea-
sures on each lines, with n > 2 and p > 2. The buckets of
lines used are calculated with the moving center algorithm
applied directly on the parameters of each line. This one
constructs buckets of lines that are well spread on the image.
The use of global features such as lines and line pencils re-
strict even more the space matches of simpler features as line
segments and interest points, and give better approximations
of the parameters of line segments and their extremities.

5 Conclusion

In this contribution, we have presented an image model
based on a generic mathematical framework that can de-
scribe simple as well as complicated features and relations.
We showed how this framework could be used for extract-
ing features, defining the problem as a combinatorial opti-
mization problem. In opposition to other approaches, our
approach is global, involving different types of features and
relations in a unique model, which construction involves
the optimization of a unique and well established objective
function.

We have shown how to apply the framework for geomet-
ric feature representation and extraction. Two sub optimal
algorithms were proposed to solve different parts of the fea-
ture extraction problem. The first one construct a coherent
model based on the simultaneous optimization of both curve
models and vertex models. It can be easily extended to in-
clude also region models, which offer the advantage of tak-
ing account in the same algorithm all kind of features, as op-
posed to existing approaches. By doing so, we obtain differ-
ent features that are topologically coherent with no further
processing. The second algorithm build high level features,
enriching the model in a coherent way. The result of the two
step construction is a model that is, according to the used
model set, the shortest representation of the data.

The presented framework can be extended in several
ways: we can add other curve models, region models, or
models of complicated features to the used model set; we
can apply the framework for modeling images of higher
dimensions; other problems than feature extraction can be
solved with the framework of functional models such as
complex shape/pattern recognition, or 3D reconstruction.
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