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Abstract:

A classical problem in tmage analysis is the extraction of primitives such as junction points
or line segments, which are used in pretreatment for many computer vision tasks. In this
contribution, we propose a new method for extracting primitives from raster graphs, which
are graphs of digital points typically obtained from skeletonization algorithms. The problem
1 posed as a combinatorial optimization problem. This problem is solved using a simple and
efficient algorithm that builds a continuous description of a raster graph, which relies on the
stmultaneous use of different kind of features : junctions, and curve segments. The proposed
method can be opposed to existing ones which relies generally on ad hoc criteria, and are

specialized for the extraction of one type of primitive.
1 Introduction

A structural primitive is usually defined as some object part that can be observed and/or
measured as a unit, used as a model of certain aspect of reality. The extraction of structural
primitive (feature) consists in retrieving the parameters of primitives from a data source
describing some sought aspect of the data. Primitive extraction is an issue of image analysis,
as structural primitives are often needed by complex image analysis tasks, such as image

registration and matching, document analysis, camera calibration, and model construction.

Authors usually propose specialized algorithms for the extraction of one primitive type. For
example, some authors proposed techniques of interest point detection, such as corners and
multiple junctions using a measure on each point of the image [6][3]. Other authors proposed
curve segments extraction techniques. Line segments are generally considered. Existing tech-
niques range from statistical testing approaches [2], the well-known Hough transform [7], or

ad hoc methods, based for example on perceptual grouping [9]. Other methods are adapted to
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other kind of primitives, such as ellipses [10]. Existing methods usually result in disconnected
curve segments. Moreover, they are usually ad hoc, in the sense that there is no optimized

criterion, as they use some statistics which modes indicate the presence of the sought feature.

Adjacency relations between primitives as curve segments or junctions are usually established
after the specialized extraction processes, with a lot of consistency problems. The perceptual
grouping paradigm can solve this problem [9]. In another context, Fuchs and al. [4] proposed a
multi-primitive extraction system where conflicts between primitives extracted independently
are detected. There again, the used criterion is either ad hoc, or statistically based, which
results in topological information which is not reliable, and which is hard to use. A line
drawing vectorization technique [8] consists in extracting line segments from a skeleton, which
guarantees the consistency of the adjacency relations between the extracted line segments.
Another interesting approach was presented in [1], where edges of a run graph are contracted
until stability, the vertices of the resulting minimal graph are the junctions and the line ends
connected by edges corresponding to connections in the image.

Our approach for primitive extraction is based on the notion of functional graphical model,
which can be viewed as systems of constraints representing functional dependencies between
different types of primitives. Thus, this approach, opposed to the other, is global, as all
information is related to a unique model. Moreover, our technique can manage to extract
simultaneously junctions, lines, ellipses and other implicit curves of higher order. In section 2,
we show how functional models can code attributed raster graph describing geometric infor-
mation, and how their construction can be stated as a combinatorial optimization problem.
In section 3, we propose a new fast and sub-optimal algorithm that permits the construction
of a continuous geometric model from an attributed raster graph. In the last section (section

4), we demonstrate the relevance of the proposed approach on examples.
2 Functional Models of Raster Graphs

A functional model is a system of implicit equations relating measurements and parameters.
We have introduced the notion of functional graphical models [12] (FGM for short), which
are constraint systems that may be used to design and analyze functional models via the
functional relations between the involved variables.

A wariable V represents some primitive. It is a symbol describing a real-valued multi-
dimensional vector coding parameters of the underlying primitive. An instance v of a variable

V' is a constant real-valued vector specifying a particular set of parameters.

A functional constraint is a n + l-uple (f,V4,...,V,), where V1,...,V,, are variables, and f

is a function which domain is V; x ... x V,,, and which takes values in RY. A functional



constraint F' = (f,V1,...,V,) is satisfied for instances vy, ..., v, of the variables Vi, ..., V}, iff
f(v1, ...y vn) = 0.

A functional graphical model (FGM) is a couple M = (V, F) with V a set of variables and F
a set of functional constraints F; € F involving variables from V. The union of two FGMs
My, = Vi, F1) and My = (V,, Fp) is the FGM M = (V; U V,, F1 U F,). The union of two
FGMs produce a FGM. A FGM may be defined thanks to the union of an arbitrary number
of FGMs.

FGMs can represent some information of the original image, such as the geometry of the
discontinuities, or the variation of intensity on connected domains, and more generally the

variation of some measure associated to each point of an image.

2.1 Geometric FGM of an Attributed Raster Graph

A raster graph is a graph of digital points that can be obtained from a skeleton or a homotopic
kernel of gray value images [13, 11]. A raster graph can be built from the modulus of the
gradient of a graytone multilevel image, describing contours of the original image. We define
an ((n = 4, 8)-connected) attributed raster graph as a 3-tuple G = (P, A, w), where P C Z* is
a set of digital points, A is defined as V(Pi, P5) € A, P, € [',,(P,) with [',,(P,) the (n = 4, 8)-
neighborhood of P, and w(P;) is a function associating to a point P; € P a real-valued
measurement, vector relevant for encoding underlying geometry of G. In the following text,
we use measurements of the form w(P;) = (z; y; 6;), where x; and y; are cartesian coordinates
associated to P;, and 6; is the direction of the gradient of the original image, which is supposed

to be perpendicular to the direction of the contour.

FGMs can encode in a convenient computational way the geometric primitives approximating
the measurements from an attributed raster graph. This representation may be decomposed
by three kind of FGMs : models of curve, models of junction, and a model of outliers, taking

into account points not classified in other models. The curves encoded here are implicit curves.

A curve model is an FGM ({C,w(P,), ..., w(P,)}, {Fc,1, .., Fon}) with C being a variable
which encodes the parameters of the continuous curve, (P, ..., P,) an ordered sequence of

vertices of G, and F,; the functional constraints :

= 1\ sin (arctan (%(zi,yi,C’) %(xiayiac)) - 9) -

where f is an implicit function describing the geometry of the curve. An example is a line
segment model. A line would be encoded by the vector L = (6 d)* where 0 is the angle between

the normal of the line and the z-axis of the coordinate system, and d is the distance of the
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Figure 1: Order constraint on curves

line to the origin. The constraint involves the function f(x;,y;, L) = x; cos€ + y; sinf — d.

A model of junction ({S, w(P),Ch, ..., Co}, {Fswp), Fs,ci» - Fsc, }) With S = (25 ys 0s) that
encodes information associated to a junction point (fs being the edge direction associated to
S), w(P) a measurement affected to the model, Cy, ..., C,, the parameters of the curve segments

ending at or passing threw P. The two types of relations involved in the model are :

Fswipy =[S —w(P) = 0]
Fsc, = [f(zs,ys,Ci) = 0]

where f is the implicit function associated to the model of C;. For an endpoint (involving a
unique curve), either zg or ys need to be stored. For the other junction models (two or more

adjacent curves), neither zg nor ys need to be stored.

A curve segment C is encoded by a path (P],Py,..., P, P, P, ..., Py, P)) of G, where
(P, ..., P,) is the ordered sequence associated to the curve model of C, the vertices P] are
associated to junctions models involving C' (with P and P), the extremities of C, and the
points P/ are associated to T junction models). For avoiding certain pitfalls of this mapping,
we impose also that Vi < n,t; < t;,1, where ¢; is the parametric coordinate of the point closest
point to P; (the standard euclidean distance where used) on the path associated to C. This
constraint is illustrated on Fig. 1, where black figures represent the numbering of the points
on the digital curve, whereas gray figures represent the numbering of their closest point on

the continuous curve in correspondence.

The outlier model is the FGM ({w(F,), ..., w(P,)}, ), where w(P;) are the measurements not

associated to a curve or a vertex model. Py, ...P, are isolated vertices.

2.2 Description length of geometric FGM

A description composed of the three models encoding an attributed raster graph can be built
by defining a cost function that evaluates the appropriateness of a model to instances of its
variables. Such a cost function may be, for example, the MDL ([5]) which is widely used in
computer vision (eg. [10]). Assuming that the structure of a FGM is known bythe coder
and the decoder, and that all the relations are independent, an approximation of the optimal
description length of a two part code of a standard FGM M = (V, F) has the form :



B(M) = = Y e logs (b (F)) + g sizeof (Real)

where sizeof returns the size (in bits) of the given type, p (F;) is the likelihood of F; given the
instances v of the variables, and g is the minimum number of reals that enable the calculation of
all the variables of the model [12]. We assume for simplicity that the residual of each equation
involved in the model follow a normal distribution of given standard deviation, which enables
to handle noise properly. Then the probability p may be computed for each equation from

the quantiles of the normal distribution.

The code of an FGM M describing the geometry of a contour graph can be constructed by
tabulating the codes of junction, curve and noise FGM, and the code of an attributed graph
describing the topology of the continuous model (its arcs are labeled by a curve model, and
its vertices are labeled by a junction model ). An approximation of the optimal description
length is then given by the global cost :

k(M) =Y k(M) + ) k(My) + K, + k(My) (1)

Mc My

k(My) is the minimum sized code of the junction model My. k(M¢) is the minimum sized
code of the curve segment model M¢. k(My) is the amount of memory needed to store each
outlier. k(Kj,) is the size of the labeled graph, which is considered fixed here.

We consider that the union of models respecting the constraints most appropriate to a set of
measurements is the one minimizing the length of the model code. This cost needs at least
a two step optimization strategy. The first step consists in constructing a compound model.
The second step is a classical estimation procedure that enables to determine the parameters

maximizing the likelihoods of the relations.
3 Relaxation for curve segments/junctions extractions

An optimization strategy well adapted for connected model optimization is relaxation. Re-
laxing a vertex model consists in constructing all possible combinations and models of curves
adjacent to a vertex (i.e. all the possible junction models), and calculating for each com-
bination the global cost 1. The local combination minimizing the global cost is kept for
further processing. As each vertex from a 4-connected raster graph is adjacent to at most 4
curve models, the number of combinations is small (6 for a 4-connected raster graph) and the

algorithm is computationally efficient.

For each vertex of the graph, we apply the following sub-iteration. We start from the model
computed so far (eg. Fig. 2.a).We construct each possible local combination of digital curves
(Fig. 2.b). For each of these combinations :
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Figure 2: Sub-iteration of the relaxation algorithm.

1. For each digital curve of the combination, we construct all possible curve models, esti-
mate their parameters, and compute their cost using equation 2.2. The best local curve
model is kept. Higher level models can be used (e.g. lines and line pencils) if hypothesis

of such models have been generated.

2. The parameters of the vertex are estimated thanks to the previously selected curve

models involved in the combination.
3. The cost of the vertex model is calculated.

The local model (curve+vertex) minimizing the sum of the cost calculated at the end of the
second step is kept for further processing. All the estimations and cost calculations are realized
in a local way, although a correct treatment for the minimization would be to optimize the
whole model, which is not feasible because of its size. The relaxation step is done for each
vertex of the initial solution, and the overall algorithm is iterated until convergence, or until
a maximum of iterations has been reached. The constructed curves are longer as the number
of global iterations increases, leading to partial results that are already exploitable. Note that

the algorithm does not converge in general.

The initial solution can be constructed by polygonization of each Jordan arc of the raster
graph. For efficiency reasons, we used the extremities of the graph obtained by polygonization

as the vertices being relaxed.

Alternatively, the algorithm can be turned into a simulated annealing algorithm.
4 Application

Several curve primitives (and associated implicit functions) may be used for curve models.
Results given here demonstrate the use of line and ellipse segments. The parameters of
each model are computed thanks to a coarse estimator optimizing only, for convenience and
efficiency, the geometrical part of the models. The equations involving the gradient of the

measurements are taken into account for cost computation.

Fig. 3 illustrates the extraction of junctions, line segments, and ellipse segments on a synthetic



Figure 3: Simultaneous extraction of junctions, line and ellipse segments

a) labeled raster graph b) reconstructed junctions and line segments

Figure 4: Junctions/Line segments extraction on an architectural image

image. The five curves are correctly retrieved using the MDL criterion, as shown on the right
hand side of the figure. Our experiments where realized using a linear ellipse estimator, which
is not suited due to the inclusion of bias at points of high curvature. On more complex graphs,
the ellipse model involving orthogonal distances from points to the ellipse was found to be

very to slow.

Fig. 4 illustrates the result of the feature extraction framework on a real image particularly
well-suited to demonstrate the use of structural features such as lines. The original raster
graph is diplayed on Fig. 4.a. Its continuous approximation computed is displayed on Fig.
4.b. We can find number of correct topological relations. The noisy graph and the non
preservation of topology by digitalization explains partly some of the remaining problems.
For the whole image, the number of real-valued parameters needed to encode the geometry
with lines is about ten times smaller than the number of parameters required to encode each

measurement.

The algorithm was also evaluated on other images leading to comparable results. The method
enables to extract junctions and line segments in a reliable manner. These results are explained
by the fact that it uses the figural continuity of contours.The algorithm is efficient as the time
order of the computation is of 1-2 minutes without special optimization (for 10 iterations of
relaxation, with images of 700x500 pixels, on a pentium IIT at 900 MHz). We have tried also a
second order relaxation scheme, for which two extremities of a curve are being simultaneously

relaxed. The results obtained were comparable, but the computing performances decreased.



5 Conclusion

In this contribution, we presented a new multi-feature extraction algorithm based on the
optimization of a distance length function of a constraint system based on implicit equations.
The algorithm constructs a coherent model by simultaneously optimizing both curve models
and junction models. Results including junctions, line segments and ellipses models have been
presented. The remarkable fact is that good results have been obtained by compressing the
measurements with well-chosen functional models. The algorithm can be extended to include
also region models, which offer the advantage of taking account in the same algorithm all kind
of features, as opposed to existing approaches. Models of other features are under study, as
well as other combinatorial algorithms. The framework can also be used for modeling images

of higher dimensions.
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