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Abstract. Functional Graphical Models describe functional dependency between variables
by the mean of implicit equations. They offer a convenient way to represent, code, and
analyze many problems in computer vision. By explicitly modeling dependencies as a hy-
pergraph, we obtain a structure well-adapted to information retrieval and processing.
Thanks to the functional dependencies, we show how all the variables involved in a functional
graphical model can be stored efficiently. We derive from that result a description length of
general FGMs which can be used to achieve model selection for example.

We demonstrate their relevance for capturing regularities in data by giving examples of
functional models coding 1D signals and 2D images. In particular, we demonstrate that
functional graphical models of images can store relevant local and global information. We
derive the description length of those models, which enable the formulation of classical
computer vision tasks (feature extraction, shape recognition) as combinatorial optimization
problems.
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1 Introduction

A primitive is an object approximating a certain aspect of reality. In general, basic primitives can
be seen as points forming a subset of R™ [5]. A structure permitting one to encode and analyze
primitives is often required in many complex image analysis tasks, such as image registration and
matching, document analysis, camera calibration, and model reconstruction.

Sampled data can be encoded by some function with known parameters, which describe a “de-
terministic” behavior of the data and can be viewed as primitives, and some stochastic model which
takes into account variations of the data arround the approximation. This kind of representation
has already been used in [3][6][11] to represent different image objects, as well as complicated
3D models. The parameters of the approximate model may be in turn encoded using the same
principle, reducing even more the description length of the model. This is the basic idea behind
functional model based encoding.

In order to avoid pitfalls of continuous models which fail to take into account discontinuities, a
piecewise continuous function can be used to approximate the samples. In such a case, a model is
required to encode the discontinuities of the function. This model is topological in the sense that
it has to be invariant under geometric bijective transformations (which preserve discontinuities).

In this contribution, we propose to represent functional dependencies between primitives in a
coherent framework by means of functional graphical models (section 2). We first introduce some
needed notions (section 2.1) and derive definitions related to FGMs (section 2.2). We then show
how functional based encoding of real valued variables can be achieved efficiently (section 2.3). We
add a stochastic part adapted to real modeling problems, and propose a cost function based on the
minimum description length principle which enable a quantitative evaluation of the adaptation
of a model to given data (section 2.4). Finally, we show how to encode a 1D time varying signal
(section 2.5). This application demonstrates the need for a multi-part FGM driven by topology.
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Section 3 generalizes the previous results to 2D images. In section 3.1, we show how to encode
topological information of an image. In section 3.2, we propose several functional models that
can be put together in order to efficiently encode an image. Those combined models bridge the
gap between a continuous and a digital representation of an image. In section 3.3, we extend the
preceding functional models to encode global information which leads to even smaller codes. In
section 3.4, we deduce the description length of a functional graphical model based image code.

2 Functional Graphical Models (FGM)

A functional model is an implicit equation system relating measurements and parameters. Func-
tional graphical models [12][13] (FGM for short) may be used to design and analyze functional
models via the functional relations between the involved variables. “Graphical” is related to the
graph structure underlying a functional model.

2.1 Variables and implicit equations

Definition 1. We define a variable V; as a subset of R%. For convenience, we use the abusive
notation V; = (c1 ... cq,)t. c1, ..., cq; are referred in the following text as components of the variable
V.

The dimension of V; is the number of components of V;, noted dim(V;) = d;.

An instance of a variable V; is a given vector v; € V;.

A variable describes a set of admissible parameters associated to a primitive without specifying
them. A variable may be viewed as a means to identify a specific primitive. In the following text,
we do not distinguish between the terms primitive and variable.

We call function f; of dimension d and of variables Vj,, ..., anj , With j1,..., jn, a permutation
of n; integers, the function defined as :

Ji Vi X x V. - R?

(Uju "'7anj) = f(vju "'7anj)

Definition 2. An implicit relation of function f and of variables V,, ..., Vj, . is an nj-ary relation
characterized by the (n; + 1)-uple F; = (f,Vj,, ..., anj).

We say that F} is satisfied for (vj,,...,vj,.) € Vj, x ... x Vj,iff f(vj,,...;v5,,) = 0.

The domain set of the implicit relation F; = (f,Vj,, ..., Vj, ) is the set Dom(Fj) = {Vj,, ..., Vj, }.

For convenience, an implicit relation F; = (f,Vj,, ..., anj) is noted Fj = [f(V},, ..., anj) =0].
We will note dim(F};) = d, the dimension of function f, and we will note abusively |F;| = n;, the
cardinal of the domain set of F.

For example, we define a variable P = IR? that encodes a point of the plane. Let z and y be
the cartesian coordinates of P. Let us define another variable L = [0,27[xIR" = (8d)! encoding
a line, where its components are the angle 6 between the z axis of the coordinate system and the
distance d of the origin to the line. The relation specifying that a line encoded by L passes through
a point encoded by P can be written as :

Fi=[f(P,L)=0]=[z cosf+y sinf —d=0]

Its domain set is then Dom(Fy) = {P, L}, and its dimension is dim(F;) = 1.

We will need, for analyzing certain properties, that the relations depend effectively on all the
components of all the variables belonging to their domains. Without giving further analytical
details, we say that for a well-formed relation Fj, the validity of F; depends on all the components
of the variables of Dom(F}). From an analytical point of view which is only outlined here, the
well-formed condition is stated as :



Definition 3. Given instances of the variable from Dom(F}) satisfying F}, each function used for
defining the equations of F; is of class C*° and its partial derivative according to each component
of the variables involved in the relation is a bijection.

Thus, Fj is well-formed if it fulfills the conditions of application of the implicit function theorem.
The relation Fj defined above is well-formed. The relation Fy = (f2, P,L) = [d(z —y) = 0] is
not well-formed, as # can take any value without modifying the instances of P for which F;, holds.

2.2 Functional graphical model : definitions
Definition 4. A functional graphical model is a couple M = (V,F) with :

— V a set of primitives V; € V,
— F a set of implicit relations Fj € F of the form Fj = [f;(Vj,,...,Vj, ) = 0], where V;, € V and
fj is a function of dimension d;.

M s said to be well-formed iff VF; € F, F; is well-formed.

For example, an FGM characterizing two orthogonal lines L; = (6, dq)* and Ly = (6 do)?
crossing at a point S = (z y)’ can be given by M = ({L1, La, S}, {F1, F», F3}), with :

Fi =z cosb; +y sinfy —d; = 0]
Fy =[x cosfy +y sinfy —dy = 0]
F3 = [Sin(02 - 01) = 0]

M is not well-formed as F3 is not well-formed.

It is clear that the definition of an FGM involves an underlying hypergraph [2], with possibly
isolated vertices and several connected components. FGMs models some knowledge which can
be stated as functional dependencies between variables. They can be used to define and analyze
properties of implicit systems [12]. They also have a convenient graph representation that can be
displayed for giving an intuitive view of an underlying complex system.

For some FGMs, it is sometimes difficult to characterize some of their properties, as there
relations are not necessarily well-formed. We introduce the notion of simple FGM, which enables
one to proceed to the analysis component by component.

Definition 5. A simple FGM M = (V,F) is an FGM such that VV; € V,dim(V;) = 1 and
VF; € F,dim(F;) = 1.

A simple FGM M’ can be constructed from any FGM M by considering all the components of
the variables of M and all its relations.
We derive from classical hypergraph definitions the notion of partial model.

Definition 6. The partial FGM of an FGM M = (V,F) generated by o family E C F is an
FGM (Vg,E) where Ve = Up,ee Dom(F;),

A partial model is thus constituted by a subset of relations of the original model.
We will also need in the following text to characterize the union of two FGMs.

Definition 7. The union of two FGMs M; = (V1,F1) and My = (Va, F2) is the FGM M =
(V1 Uy, F1 Ufg).

For example, considering two FGMs characterizing two orthogonal lines crossing at the point S :

M = ({LlaLQaS}J{F17F2aF3})
M'" = ({Ly, L, S}, {FY, F3, F3})

Their union is defined as :

MUM' = ({L17L25L115L127‘S’}3{F15F25F37F117F21’Fé})'



Two FGMs M; = (Vi,F1) and My = (Va, F2) are disjoint iff 71 N Fy = (). Two FGMs are
independent iff V1 N Vs = 0. Remark that two independent FGMs are also disjoint. For example,
the FGMs M and M' are disjoint, but not independent, as they share the primitive S.

An FGM only describes the structure of functional relationships between unknown variables.
When confronted with reality, variables need to be instantiated, i.e. values for the variables are
given. The notion of FGM’s instance is given below :

Definition 8. An instance (M|V = v) of an FGM M = (V,F) is the attributed hypergraph
W, G,r) obtained by identifying the primitives of M to the real valued vectors of the set W =
{v1,.-,vv|}. The relations from G are subsets corresponding to the domain-sets of the relations
from F and are attributed by the real valued vectors r(g;) = —fj(’Ujl,...,’anj) (the relations’

residuals).

In [1], there is a similar distinction between Function-Described graphs which represent an
ensemble of attributed graphs (which could be considered in our formalism as instances of the
previous models).

2.3 Encoding primitives with FGMs

Certain variable’s instances of an FGM can be calculated knowing the values of other variable’s
instances and the implicit relations of the FGM. This is done by putting an implicit relation under
one of its explicit form (when the conditions of the implicit function theorem are fulfilled), i.e. a
relation f(z,y,2) = 0 (f,z,y,z being of dimension 1) can be used to calculate either z, y, or z
using respectively the equivalent forms z = ¢1(y, 2), ¥ = g2(x, 2) or z = g3(z,y).

Let us consider a simple well-formed FGM M = (V, F), and a realization (M|V = v) satisfying
each equation of the model. Each relation F; € F can be put, considering that the hypotheses of
the implicit equation theorem hold, under the following form :

W = g](VL—jl PREED] ‘/Z'—jnj —1)

Note that, according to the implicit function theorem, the expression of g; depends on the instance
of the model.

With these explicit forms, an ordered sequence of variables of M can be constructed. Thus, by
giving the instances vy, ..., v} of the first k variables V1, ..., V} of the sequence, and by using the
given explicit forms of some relations of the model, we can compute the instances of the remaining
variables Vi1, ..., Vjy| of the sequence. This leads to the following definition :

Definition 9. Let M = (V,F) be a simple well-formed FGM. The set G C V is a generating set
of M iff there exists an order Vi, ...,Vig|, Vig|41---» V]v| of all the variables of V such that :

- g = {‘/15 ;V|g|})
— Vk > |G|, 3F; € F such that Vi, € Dom(F;) and Dom(F;) N {Viq1,..., VV|} = 0.

G is said to be minimal if there exists no generating set smaller than G.

By giving instances of the variables of a minimum generating set G of a simple well-formed
FGM M satisfying the relations of M, we can in theory compute entirely the instance (M|V = E)
such that the relations of M are verified. Thus, when an FGM is known both by a coder and a
decoder, the code of an instance is given by the code of the corresponding instance of one of the
FGM’s minimum generating set.

By considering that the relations are known both by the coder and the decoder, finding the
smallest code encoding given variables of an FGM is then equivalent to finding the partial model
coding the variables with the smaller generating set. More formally, let us consider a set of variables
D, and a simple well-formed FGM M = (V, F), with D C V. We want to encode in an efficient way
instances of the variables of D knowing M. An efficient code is given by a minimum generating
set G of a partial model M' = (V', F') of M, such that D C V.



Definition 10. Let us consider a set of variables D, and a simple well-formed FGM M = (V,F),
with D C V. Let M' = (V', F') be a partial model of M such that D C V'. M' is a minimal partial
model of M encoding D iff the sizes of the minimum generating sets of all the partial models
M" = V", F") of M such that D C V" are greater than the size of a minimum generating set of
M.

The last definition gives an efficient way of encoding any data set D with FGMs.

2.4 Stochastic FGMs and description length

In practice, variables’ instances do not satisfy exactly the model’s constraints, and are generated
by some random process. Practical applications need to model the errors of variables and relations,
especially when a model is confronted with real world measurements. The uncertainty on variables
can be explicitly taken into account in the model by associating probability laws to vertices and
hyperedges of the functional model, which leads to the definition of stochastic FGMs.

Definition 11. A stochastic FGM is an FGM M = (V,F) where probability laws are attributed
to the elements of V and F.

We can then define different costs that evaluates instances of stochastic FGMs, such as a model
selection criterion which evaluates the appropriateness of an instance of an FGM to a data set, and
which can be used to compare several FGMs that do not have necessarily the same structure. A
multipurpose cost may be, for example, the MDL which is widely used in computer vision [8][10].

We can define the description length of a two-part code of an instance of an FGM M = (V, F)
such that its simple derived FGM M' is well-formed and G is a minimum generating set of M’.
The complexity is then :

E(M|V =v) =— Z logs (p (F;)) + g sizeof (Real) (1)
FjeF

where sizeof is the size (in bits) of the given type, p (F;) =p (fj(le s eees anj) = 0) is the likeli-
hood of F} given the instances C of the variables, and g = |G| is the size of a minimum generating
set of M. Note that this is also the MDL criterion of a set D of variables knowing a FGM M when
its minimum partial model encoding D is M itself.

The preceding cost function can be used to evaluate the complexity of a given model, and the
appropriateness of one of its instances. Thus, it can be used to compare instances and FGMs. It
defines an estimation criterion and a model selection criterion.

We can also easily compute the MDL criterion for an instance of an FGM M = U2, M;, where
M; are independent FGMs. This cost is simply given by the sum of all the costs of the instances
of the models M;. This is due to the following result.

Theorem 1. A minimum generating set of the model M = U", M;, where M; are independent
FGMs, is given by the union of minimum generating sets of the models M;.

Proof. The proof is straightforward, as we can remark that if the models are independent, they
cannot share variables.

2.5 Multi-part FGMs : Encoding a digital signal

We want to encode a digital 1D-signal. Measurements associated to each sample of the digital signal
are vectors of the form m = (a t)! where a is the amplitude of the signal at time ¢. Functions can
be used to model regularities of the samples.

An FGM describing a signal is represented on figure 1. The upper part of the figure represents
a digital time varying 1D-signal and a possible continuous representation of that signal. The lower
part of the drawing represents the hypergraph structure of an FGM coding the relations between
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Fig.1. FGM of a signal

the groups of parameters used to draw the continuous signal, and the measurements associated
with the digital signal. The boxed parts which are surrounded by a dashed box define different
independent partial models.

The relations have the form Fy = [f(m,p1) = 0], Fz = [f(m,p2) = 0] and F3 = [f(m,p3) = 0]
where m is one of the measurements explained by each curve, p;, ps and p3 are the parameters of
the continuous curves representing each part of the digital signal, and f is a quadratic polynomial
of t.

The continuous primitives does not permit the direct retrieval of the time and the amplitude
from the functional model, as the partial model associated with each continuous primitive is valid
only on a time interval. To code such intervals on which time varies, we can associate with the
FGM a topological model (shown on the middle of the figure), and relations between the continuous
representation of the points of discontinuities of the signal and the discrete one. Then, the vector
of parameters associated with the points of discontinuities of the previous continuous model have
the form p’ = (a t)!, and the simple equation that permits one to encode the digital measurement
associated with that primitive has the form g(m,p') = m —p' = 0.

Thanks to both models, the overall model (including the measurements) may be encoded in a
compact representation depicted on Fig. 2. The intervals of the topological model are labeled with
a model consisting of a single relation that is used as a template to retrieve all the relations to
the measurements of the digital signal. In order to do so, we can store an extra parameter which
indicate the sampling frequency of the signal.

Fig. 2. Compact FGM of a signal

The compact representation can be used to the entire FGM. This representation is also much
simpler than the original digital image, and can be used to store it efficiently. Moreover, as it is
continuous, it naturally interpolates the original digital signal.

3 FGM based encoding of images

An image may be seen as a piecewise continuous function that has been digitized. The disconti-
nuities of the original function are of primary importance for image understanding. Completely
encoding an image by a continuous model can be achieved by describing the shape of the domains
where some encoded measures are discontinuous (i.e. geometrical information of an image), and



the behavior of those measures on the so defined domains (e.g. radiometric information). Most of
the common continuous variations observed on a structured image (such as an image of man-made
objects) can be captured by implicit functions. However, a topological model is required when
encoding both the geometry and other information with implicit functions.

Our goal here is to encode information associated with a digital image with a continuous model
formed by implicit functions. Examples of measures relevant for different applications are presented
in Table 3. This leads to the definition of a structure that is composed of a topological part and
of an FGM. Such a structure has nice properties, as it enables one to efficiently encode an image,
i.e. it can be used for compressing the amount of information needed to retrieve all the considered
measurements, using the theoretical background presented in the previous section. Moreover, it is
an efficient algorithmic structure that can be used in many subsequent problems, such as matching
and shape recognition. Thus, an FGM based code not only reduces in a significant manner the
amount of memory needed to store the entire model, but can also give relevant numerical and
symbolic information understandable by humans when the models are judiciously chosen.

Measure Comment
Coordinates |The explicit coding of real coordinates enables the use of subpixel coordinates.
Luminance/color|Luminance can be used for physical reasoning.

Gradient The gradient of an image gives information on the discontinuities of the continuous
underlying image.
Height A digital elevation model can be represented as any image.

Table 1. Some image measures

3.1 Topological model of images

Thus a continuous image may be defined by different specialized implicit models that can be put
together to explain simultaneously interesting measures (geometry of discontinuities and radiome-
try, for example). A topological model is then required in order to indicate on which domain each
implicit model applies.

A generic topological model in 2D is a topological map defined as the decomposition of an
orientable surface into three different disconnected sets (Fig. 3) :

a) continuous image b) topological map for geometry and color encoding

Fig. 3. Continuous topological map encoding implicit functions

— A finite set S of points.
— A finite set A of Jordan curves whose extremities are elements of S.

— A finite set F of simply connected domains (the faces), whose boundaries are unions of elements
of S and A.

Vertices, curves and faces are called topological primitives of the topological model. Each of those
primitive are defined in such a way that they capture coherent continuous variations of measure-
ments. For example, curves, which capture the (geometric) faces’ shapes, are divided into curve



segments described by smooth functions, and the variation of color on a face is captured by a
single implicit equation.

This topological model is implicit when the parameters of each implicit curve defining the
boundaries of the faces are known. When they are not, the topological model encapsulates con-
straints that restrict the space of admissible values for those parameters, as the implicit curves
have to respect the topological constraints encapsulated in the topological model.

A topological map can be encoded by a combinatorial map [4], which permits the retrieval of
all the adjacency relations between the different topological primitives. In this case, the memory
complexity can be easily computed. For each dart of the combinatorial map, we store a reference
to a face, a vertex, and to one other dart. For each vertex and for each face, we need to store a
reference to one adjacent dart. There are two darts per arc, so the complexity is kr = (7Ta + f +
s)sizeof (reference), where a, f and s are respectively the number of arcs, faces, and vertices of
the map, and sizeof (reference) is the size of a reference to a primitive.

3.2 Local models and composition

A digital image may be viewed as a set of measurements embedded on a digital space. An image
I is then defined as a function I : Z? < E where E is a set of measurements. For illustrating
image encoding, we consider a graylevel image associated with measurements that are vectors of
the form I(i,j) = (z y n dr dy)?, where z and y are (subpixel) coordinates associated with the
digital point (i,7), (dz,dy) is the computed gradient at the considered pixel, and n is the gray
value of the original image at the point (4, 7).

As a functional based encoding of images describes relationships between a continuous rep-
resentation and a finite set of measurements, we cannot theoretically describe primitives that
are not preserved under digitization. For example, ambiguities in the coding may occur when
non-intersecting continuous curves are associated with intersecting digital curves or intersecting
continuous curves are associated with non-intersecting digital curves. Thus, we limit ourselves to
the representation of piecewise continuous functions that have a correct digital counterpart. Fig.
4 illustrates a good embedding of a continuous model on a square grid.

4) continuous embedding b) well-composed embedding

Fig. 4. Example of a topological map and its embeddings

The relation between a continuous piecewise function and the measurement sets of its digital
embedding can be described by three different kinds of partial FGMs which involve primitives
describing vertices, curves, and regions. Fig. 5 shows the hypergraph structure of those three
partial models. Each big disk represents a primitive of the depicted model, and the relational
equations are depicted as small disks, connected to the primitives involved in the relation by lines.
The dashed arrows represent topological constraints that are discussed below.

A model of a vertex (Fig. 5a) is composed of a primitive I(4,5) which is the measurement
associated with an image point, a primitive S that codes the information associated with a vertex
and primitives Cj, ..., C,, which are the parameters of the curve segments adjacent to the vertex.
Two types of relations are involved in the model. A relation Fy j(; ;) enables the explicit linking
of a primitive S and its associated measurement I (3, j). Other relations Fg ¢, link a junction S to
the adjacent curves C;, and do not need to be stored explicitly, as they are redundant with the
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a) a vertex model b) a curve model ¢) aregion model

Fig. 5. The three connected partial models

relations of the topological model. For example, we can use a vertex primitive S = (zg ys), and

the following relations.
rs — T
Fsri.5) = =0
S,1(i,5) [(le _y) ]
FS,Ci = [f(l'says, CZ) = 0]

where C; is the primitive associated with a curve adjacent to the vertex, and f is a monodimen-
sional implicit function associated with the curve C; (see below). The second relation enables the
reduction of the number of parameters associated with a vertex primitive, as one of its coordinate
can be deduced by giving one relation, and the two coordinates are deduced by two relations.

A curve model (Fig. 5b) is composed of a primitive C' which encodes the parameters of the
continuous curve, and a set of digital points. The digitization of a continuous curves result in a
well-composed digital curve [7]. In order to have a coherent digital embedding, we should impose
that the set of measurements associated to a curve primitive forms a well-composed digital curve.
For ensuring the preservation of topology, the following constraint can be taken into account : the
order of the points of the digital curve is not the same as the order of their closest points on the
associated continuous curve. This constraint is illustrated in Fig. 6, where black figures represent
the numbering of the points on the digital curve, whereas gray figures represent the numbering of
their closest point on the continuous curve in correspondence. For our application, the following
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a) order preserved b) order not preserved

Fig. 6. Order constraint on curves

relation is used :

Fon,j) = [(sin 01 ic(zfr’cl‘é:amflj()dy/dﬂb"))) N O]

where f is an implicit function associated with C'. For example, a line segment may be represented
by a primitive C = (8¢ d¢), where d¢ is the distance of the origin to the line, and the function
f would be f(z,y,C) = zcosb + ysinf — d. The number of parameters needed to store a curve
segment is the number of components of C, as vertices of the curve segment are already stored by
the model.

The two preceding models encode the geometrical information of the image, and do not encode
the radiometrical part of the associated measurements. They can be encoded by other relations
involving the region primitives described below.

A connected region model (Fig. 5¢) links each measurement of a region to a primitive R that
are parameters of the smooth function encoding the variations of the measurements on R. Fach
relation Fp f(; ;) relating R to a measurement I(i, j) inside the region can then be describe by :



6g(m,y7R) —n
FR’I(ivj) = g_w(x7 Y, R) —dx =0
ﬁ(wayaR) —dy

where g is a smooth function, whose parameters are encoded by R.

As demonstrated in Fig. 7, the union of those models forms an FGM encoding the measurements
of an image. We can derive from that model a compact representation independent of the digital
embedding. The compact representation involves only continuous primitives and their domain of
validity. This compact representation can then be used in order to generate the complete model
for a specific embedding, when for example a model instance is given.

a) original image b) embedded FGM ©) compact model

Fig. 7. An image FGM example

3.3 Global models

The preceding section was dedicated to local partial models. Some other models may be defined
in order to code global information, such as alignments of line segments, pencil of lines, circles
formed by circle arcs, concentric circles, etc. In this section, we are interested in the alignment
and pencil models which form an FGM that has a tree structure (Fig. 8).

O

Fig. 8. Model of a pencil of aligned line segments

The alignment model is composed of relations involving the parameters of the line associated
with each segment C, and the parameter of the line L = (6, dr) describing the alignment.

For=[C—-L=0

This generalization can be extended to any implicit curve, or to regions. It takes naturally into
account effects of occlusion, and can be viewed as “perceptual organization” of segments [9].

The pencil model involves alignment primitives and the pencil primitive of form P = (zp yp)?,
where zp and yp are the coordinates of the vertex common to each line. This form cannot represent
parallel lines. The relation involved in the pencil model is :

Fpr =[xp cosfr +yp sinfy —dr = 0]



When the relations are treated as constraints, the preceding models (alignment and pencil) are
equivalent to compact models that are derived by parameter substitution, replacing simple implicit
equations by complex ones, This is done by giving an explicit form of some other equation related
by a model variable [12], which has as a consequence the suppression of variables and relations.
Substituted models can then be optimized in place of the overall hierarchical model, leading to
more reliable parameters. Their generating sets can also be determined easily.

The reduced alignment model relates the primitive L and each measure I(i,j) thanks to the

relation :
[ xcosfr, +ysinfy —dp, -0
L3 = |\ sin (1, — arctan(dy/dz)) ) —

The reduced pencil model is composed of relations of form :

7 - _ | cosbL(x—zp) +sinfL(y —yp) —0
P,LI(ij) = sin (01, — arctan(dy/dz)) B

Some structural constraints can be added in order to achieve a coherent digital/continuous map-
ping. An example of such a constraint is the order constraint of curve segment models (section 3)
generalized to curve models.

3.4 Image FGM description length

The code of an instance of an image FGM M contains the codes of all the instances of the partial
models involved, and the code of the topological model. Its description length, for the previously
defined partial model set, takes the following form :

kr(M) =3, k(MR) + 30, K(Mp) + 35, B(ML) + 30y, K(My) + Ky

where k(.) is the description length of each partial model (equation 1). However, each partial model
is not independent, as for example vertex and curve models. However, the preceding approximation
is computable, and each complexity may be computed as follow :

— k(My) is the minimum sized code of the vertex model My . In order to code a vertex model, we
need to know the angle associated to the primitive S. Moreover, if only one curve is adjacent
to the vertex model, then we need to know another parameter, and g = 1. If the vertex is
adjacent to more than one curve segment, its coordinates can be retrieved from the functional
model and g = 0.

— k(M7p) is the minimum sized code of the reduced curve model My, such that My, is not a
partial model of a pencil model. Two real valued parameters define a line (g = 2).

— k(Mp) is the minimum sized code of the reduced pencil model Mp, and g = 2+ n, where n is
the number of lines involved in the pencil model.

— k(Mpg) is the minimum sized code of the region partial model Mg. The size of the generating
set is then the size of the vector R encoding the parameters of the smooth function used for
modeling the measurement variation on the region.

— k(K3) is the size of the topological model, which is considered fixed here. This size can never-
theless be computed when the topological structure is an attributed combinatorial map.

The given cost function can be used to estimate the parameters of a model given measurements
on the original image, and also to choose the model the most adapted to a given image. Model
construction or recognition turn out to be in that context a combinatorial optimization problem.

4 Perspectives

In this contribution, we have introduced functional graphical models. They offer a convenient
way to represent functional relations between variables. Those models can be used to capture



regularities in data that can be described by implicit equations. The variables involved in such a
description can be encoded efficiently, as only a subset of variable instances of a specific model
can be theoretically used to retrieve all the instances of the variables involved in the model. Thus,
this code enables a significant reduction of the the space needed to store data with regularities. A
description length has been derived. This one can be used as a cost function for problems such as
parameter estimation and model selection.

When considering a topological model and a functional model, one can describe regularities
of images efficiently. The FGM-based models can encode simple and local regularities as well
as complex ones, leading to a generic mathematical framework describing coherently geometric
and radiometric information. The description length of such a model can be in turn used to
define primitive extraction and shape recognition in a combinatorial optimization paradigm. The
extraction of all the regularities of the data can then achieved by optimizing a single cost function.

The presented framework can be extended in several ways. We can apply the framework for
modeling images of higher dimensions, such as 3D images. We can also design viewing system
models for space orientation and 3D reconstruction. Image sequences can also be encoded by
FGMs, for compression applications for example.
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