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Abstract

An irregular pyramid consists of a stack of successively reduced graphs. Each smaller
graph is deduced from the preceding one using contraction or removal kernels. A con-
traction (resp. removal) kernel defines a forest of the initial (resp. dual ) graph, each tree
of this forest being reduced to a single vertex (resp. dual vertex) in the reduced graph. A
combinatorial map encodes a planar graph thanks to two permutations encoding the edges
and their orientation around the vertices. We present in this article a new definition of
contraction and removal kernels which allows to encode the different values attached to a
given vertex, dual vertex or edge along the pyramid.

1 Introduction
Irregular pyramids are widely used in image segmentation and image analysis frameworks
to encode a hierarchy of partitions [10, 12, 8]. These pyramids are defined as a stack of
successively reduced graphs. Each graph is built from the graph below by selecting a set
of vertices named surviving vertices and mapping each non surviving vertex to a surviving
one [10, 12, 8]. If the initial graph is planar its reduced versions are also planar. Moreover,
given an image, if each vertex of the initial graph is associated to one pixel, the set of initial
vertices mapped to a surviving vertex defines a region of the image.

The boundaries between two adjacent regions are encoded by the edges of the reduced
graphs. Using simple graphs (without multiple edges between vertices nor self-loops) multi-
ple boundaries between two regions are mapped into only one edge. This drawback may be�
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overcome by using the Dual graph reduction scheme [12]. Within this framework, the reduc-
tion operation is performed in two steps: First, the contraction of a set of edges identifies a
set of vertices. The set of contracted edges, named a contraction kernel, has to form a forest
of the initial graph. Each tree of this forest is then reduced to a single vertex in the reduced
graph. The contraction of the edges contained in a contraction kernel may create redundant
edges such as empty self-loops or double edges [12]. These redundant edges are characterized
in the dual of the graph and removed by a set of edge removals encoded by a removal kernel.
This removal kernel is a forest of the the dual graph and each tree of this forest is reduced to a
single vertex in the dual graph. Using such a reduction scheme each edge in the reduced graph
corresponds to one boundary between two regions. Moreover, inclusion relationships may be
differentiated from adjacency ones in the dual graph.

Combinatorial Pyramids [3, 6] may be defined as a stack of successively reduced combi-
natorial maps. These pyramids inherit all the useful properties from the dual graph pyramids
with the addition that they also preserve the local orientation of edges around vertices and
faces. Moreover, each combinatorial map of a combinatorial pyramid may be associated to a
topological data structure called a numbered simplicial set [14]. Each combinatorial map of a
combinatorial pyramid may thus be interpreted using a well known topological model and a
robust theoretical background from combinatorial topology [1].

Using either Dual Graphs or Combinatorial pyramids each tree of a contraction kernel is
reduced to a single vertex in the reduced graph. However, the trees composing a kernel are
non rooted ones. Therefore, if each vertex is identified by a unique label, the label of the
vertex which represents the tree in the reduced graph is selected randomly from the labels
of the tree in the graph below. This last property may be a severe drawback of the pyramid
construction scheme if we want to attach geometrical properties to vertices. Moreover, the
same problem holds for a removal kernel. For example, in one of our project we have to detect
manufactured objects made of long lines intersecting at corners. Our segmentation algorithm
should thus detect these lines and preserve dual vertices encoding their intersection. The use of
an oriented kernel will allow us to preserve the label of these dual vertices and thus to retrieve
their geometrical embedding from the implicit association between the label of the initial dual
vertices and their coordinates in the initial image.

The notion of rooted kernels presented in this paper allows us to overcome the above
drawback. Moreover, using rooted kernels the attributes associated to a given element (vertex,
edge or dual vertex) may be stored for each level of the pyramid where this element survives
and retrieved efficiently from the base level combinatorial map.

The remaining of this paper is as follows: We present in section 2 the combinatorial map
model and a consistent labeling of its permutations. In section 3 we define the contraction and
removal operations within the combinatorial map framework. The notion of rooted kernel is
finally presented in Section 4 together with its main properties.
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2 Consistent labeling of Combinatorial Maps
Combinatorial maps and generalized combinatorial maps define a general framework which
allows to encode any subdivision of nD topological spaces orientable or non-orientable with
or without boundaries. An exhaustive comparison of combinatorial maps with other boundary
representations such as cell-tuples and quad-edges is presented in [13]. Recent trends in com-
binatorial maps apply this framework to the segmentation of 3D images [2] and the encoding
of hierarchies [3].

The remaining of this paper will be based on 2D combinatorial maps which we simply call
combinatorial maps. A combinatorial map may be seen as a planar graph encoding explicitly
the orientation of edges around a given vertex. Figure 1(a) demonstrates the derivation of a
combinatorial map from a plane graph 	�
��������� corresponding to a ����� pixel grid. First
the edges of � are split into two half edges called darts, each dart having its origin at the vertex
it is attached to. The fact that two half-edges (darts) stem from the same edge is recorded in
the reverse permutation � . A second permutation � encodes the set of darts encountered when
turning counterclockwise around a vertex.

A combinatorial map is thus defined by a triplet 	�
���� �!�"���#� , where � is the set of darts
and � , � are two permutations defined on � such that � is an involution:

$"%'& � �)(*� % ��
 % (1)

If the darts are encoded by positive and negative integers, the involution � may be implic-
itly encoded by the sign (Figure 1(a)).

Given a dart
%

and a permutation + , the + -cycle of
%

denoted by +#,-� % � is the series of darts��+"./� % �0� .21 IN defined by the successive applications of + on the dart
%
. The � and � cycles of a

dart
%

will be respectively denoted by � , � % � and � , � % � .
Given a combinatorial map 	 
 ��� �!�3���4� , its dual is defined by 	 
 �5�6��78���4� with79
:�<;=� . The cycles of the permutation 7 encode the set of darts encountered when turning

around a face of 	 . Note that, using a counter-clockwise orientation for permutation � , each
dart of a 7 -cycle has its associated face on its right (see e.g. the 7 -cycle 7>,-�/?*�@
��A?B��CD�FEG�D�FEIHJ�
in Figure 1(a)).

Figure 1(a) illustrates the encoding 	K
L�NMPORQS�TMPOUEVORQP� of a �W�X��Y -connected discrete
grid by a combinatorial map. The dual combinatorial map 	�
��NM QS�TM E QP� is shown in Fig-
ure 1(b). Each vertex of the initial combinatorial map (Figure 1(a)) encodes a pixel of the grid.
The � -cycle of one vertex encodes its adjacency relationships with neighboring vertices. Let
us consider the dart ? in Figure 1(a) (see also Figure 1(c)). Turning counterclockwise around
the central vertex we encounter the darts ?J�F?-�R�[ZPY and H . We have thus �@�/?*�@
\?-� , ���A?-�]��
^ZPY ,�@�_ZPYS�`
LH and �@��HJ�`
a? . The � -cycle of ? is thus defined as � , �A?-��
 �A?B�F?-�D�[ZbYc�[HJ� . The
permutation � being implicitly encoded by the sign in Figure 1, we have � , �A?*�@
d�A?J�FEe?*� .

Using our construction scheme, each vertex of the initial combinatorial map is associated to
one pixel and thus to an open square centered on the coordinates of the pixel (see Figure 1(b)).
In the same way, each vertex of the dual combinatorial map may be associated to a corner of a
pixel. The top-left corner of the pixel represented in Figure 1(d) is for example encoded by the7 cycle : 7#,-�_ZPYS�=
f��ZbYc�FEe?-�]� . Moreover, each dart may be understood in this combinatorial
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map as an oriented crack, i.e. as a side of a pixel with an orientation. For example, the dart? in Figure 1(b) encodes the right side of the upper-left pixel oriented from bottom to top
(Figure 1(d)). The 7 , � and � cycles of a dart may thus be respectively understood as elements
of dimensions g , ? and Z .
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Figure 1: A ���u� grid encoded by a combinatorial map 	 (a) and its dual 	 (b). The � -cycle�v,-�/?*� encoding the top-left pixel is represented in the initial combinatorial map 	 (c) and its
dual 	 (d).

A cellular complex [11] w 
 �x����y'� %Sz_{ � is defined by a set � of abstract elements
called cells, one bounding relation between cells y and one function

%]z_{
which associates a

dimension to each cell. The functions y and
%]z�{

must satisfy the following relation :
$ �_|J�!|T}~� & ��( �x|J��|T}�� & yd� %Sz_{ �_|*��� %]z_{ �_|T}~�

Intuitively, this relationship impose that a cell of dimension 2 (a region) must be bounded by
cells of dimensions 1 (edges) or 0 (points).

A precise description of the relationships between a cellular complex [11], a numbered
simplicial set [14] (Section 1) and a combinatorial map is beyond the scope of this paper and
the reader is referred to [14] for a more precise study of these relationships. We can however,
associates informally the elements described by a combinatorial map 	�
���� �!�3���4� to a 2D
cellular complex in the following way:

w�
d�_�=�4�����v��� ( ��y'� %Sz_{ � (2)

with �=��
�MP7 , � % �t� %�& � QS�!����
�Mb� , � % �t� %W& ��QS�]� ( 
�M*� , � % �t� %�& � Q and
%]z�{ ���R��
 z

for all � & � . , z@& MbgD�F?J��Z�Q . Moreover, if we denote the permutations 7 , � and � by +"� , +�� and+ ( , a couple ��+ ,. �_�t�t�0+ ,� �_� } �0� belongs to y if and only if
z ��� and + ,. �_�t�v��+ ,� �_� } ���
^� .Using Figures 1(c) and 1(d), the ZB� cell encoding the top left pixel is encoded by the� -cycle �v,*�A?*��
 �A?J�F?F�D�[ZPYc��HJ� & � ( (Figure 1(c)). This ZB� cell is bounded by the ?-�

cells defined by Mb�4,-�/?*� , �),-�A?-�J� , �#,-�_ZPYS� , �#,-��HB�[Q �L��� (Figure 1(d)) and we have for exam-
ple �_�#,F�A?-�]�[�!�v,T�A?*�0� & y . Finally, each ?-� cell �4,F� % � is bounded by the two gJ� cells 74,*� % �
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and 7 , �_��� % �s� . The ?F� cell � , �_ZPYS� is for example, bounded by 7 , �_ZPYS�G
K�_ZPYc�F?-�J� & ��� and7 , �/E�ZbYS��
K�/E�ZbYc�[HR�[ZP�]� & ��� . More generally, within the segmentation framework, the 2D
cells of a cellular complex are associated to regions while 1D cells are associated to the re-
gion’s boundaries and 0 cells are associated the intersections of different region’s boundaries.

The cells are respectively encoded explicitly and implicitly within the cellular complexes
and combinatorial maps formalisms. This last point constitutes one of the main practical
difference between both encodings. The combinatorial map formalism allows to avoid an
explicit encoding of all the cells. However, if an application needs to associate values to the
cells of a given dimension this implicit encoding may become explicit using labeling functions:

Definition 1. Labeling function
A labeling function � associated to a permutation + defined on � is a function from � to

a set of labels   constants on each cycle of + :

$ � % � % }¡� & � ( �A� % ��
:�0� % }��#¢ + , � % ��
£+ , � % }��
Note that a labeling function on a permutation + may be simply defined by setting an

order on the cycles of + : All the darts of the first cycle are labeled by g , then all the darts of the
second cycle by ? until the last cycle of + . Let us denote by ��� , �x� and � ( three labeling functions
defined in this way on the permutations 7 , � and � of a combinatorial map 	¤
���� �!�3���4� .

A labeling function associates a unique value to each cycle of a permutation. Since the gD�F?
and Z cells of a combinatorial map are respectively defined by the cycles of the permutations7 , � and � , the labeling functions �5� , �x� and � ( associate a unique label to each cell and encode
thus respectively the cells of dimensions g , ? and Z of a combinatorial map.

Let us consider the labeling function � ( which maps all the darts of a cycle � , � % � to a unique
label which identifies the vertex and thus the associated region. The number of darts of a cycle�v,-� % � is equal to the number of boundaries surrounding the associated region. The definition
of a labeling function within the combinatorial map framework is thus quite different from a
connected component labeling which maps all the pixels of a given region to an unique value.
Moreover, one should note that all the labeling functions may not need to be encoded. For
example, within the segmentation framework, if an application uses only region’s features,
only the labeling function � ( associated to 2D cells and thus to regions needs to be encoded.

3 Combinatorial Pyramids
As in the dual graph pyramid scheme [12] (Section 1) a combinatorial pyramid is defined by
an initial combinatorial map successively reduced by a sequence of contraction or removal op-
erations. In order to preserve the number of connected components of the initial combinatorial
map, we forbid the removal of bridges and the contraction of self-loops. Such contractions
may be avoided by using a contraction kernel defined as a forest of the initial combinatorial
map. Given a contraction kernel defined by a set ¥ of darts to be contracted, the set of sur-
viving darts denoted by ¦>§ is equal to �¨E�¥ where � denotes the initial set of darts. In the
same way, the removal of bridges may be avoided by using a removal kernel defined as a forest
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1. set both
%

and ��� % � as belonging to ¥ in the boolean array of darts.

2. Given ©B��
f©PªPª-«��_� ( � % �s� and © ( 
¬©PªPª-«��_� ( �_��� % �s�0� select randomly one of the root
(say ©P� ) as being the root of the merged tree. The union of the two trees is performed
by setting �®J«0¯°|F©D±²© ( ³ to ©P� .

Figure 2: Update of our data structures after the insertion of the edge �@,-� % � in the kernel ¥ .

of the dual combinatorial map. Note that, while a contraction kernel is application dependent a
removal kernel may be automatically defined from one combinatorial map. Indeed, within our
reduction scheme a contraction kernel specifies a set of regions to be merged while a removal
kernel is restrained to the removal of double edges and empty self-loops defining redundant
boundaries between the merged regions.

Several methods [6] have been proposed to define a contraction kernel. However, in all
these methods a contraction kernel ¥ may be encoded using both a boolean array of darts to
encode the edges which belong to ¥ and an array �®J«0¯°|F© of vertices to encode the father of
each contracted vertex within its tree. Each vertex is initially its own father and this array is
initialized to e®J«0¯°|F©c±´� ³ 
µ� for each vertex. Using union-find techniques [6, 7], the root of
each tree may be determined from the array e®J«0¯°|F© in almost constant time [7].

Let us denote by ©PªPª-«��_� ( � % �s� , the root of a tree containing the vertex � ( � % � . The addition of
an edge �#,-� % � connecting two vertices � ( � % � and � ( �_��� % �s� to the contraction kernel ¥ merges
the two trees containing respectively � ( � % � and � ( �_��� % �s� . The update of our data structures
during the addition of this edge is performed using the two steps described in Figure 2.

Note that using a sequential algorithm, the construction scheme described in Figure 2 se-
lects randomly the root of each tree according to the order defined during the traversal of the
set of darts and the choice of the root made for each contracted dart.

The creation of the reduced combinatorial map 	 } 
K�5¦8§W�s� } ���#� from a contraction or a
removal kernel ¥ is performed in parallel using the following formula [6]:

$"%'& ¦8§ � } � % �@

¶ �"·c� % � if ¥ is a removal kernel7 · �_��� % �s� if ¥ is a contraction kernel (3)

with ¸¹
µº z ¸»M�¼ & IN ,�½ 73¾S�x��� % �0� & ¦>§�Q , if ¥ is a contraction kernel and ¸¹
µº z ¸»M�¼ &
IN , ½ �c¾�� % � & ¦8§WQ is ¥ is a removal kernel.

Let us assume that the kernel ¥ is a contraction kernel and that only the labeling function� ( is defined on the combinatorial map 	�
��� �!�"�!�4� . The construction of the reduced com-
binatorial map 	 } 
��5� } �!� } �!�4� and the labeling function � }( associated to � } is then performed
as follows:

For each dart
%'& �

O if
%�& ¦8§�
£�LE¹¥ we set

1. the value of � } � % � using equation 3,
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2. the label � }( �
% � of

%
to ©PªPª-«��_� ( � % �s� .

O if
%�& ¥ , we merge the values associated to � ( � % � and � ( �_��� % �s� to the one associated to©PªPª-«��_� ( � % �s� . These two vertices are then removed from the vertex set.

The adaptation of the above steps to the cases where ¥ is a removal kernel or where other
labeling functions are defined on 	 may be easily defined using the following remarks:

1. The contraction operation merges 2D cells (vertices of 	 ) without removing any 0 cell
(vertices of 	 ). Conversely, the removal operation, merges 0 cells without removing any
2D cell.

2. If the labeling function �_� is defined on 	 , the removal or the contraction of an edge�),-� % � implies the removal of the label �_��� % � .
The above steps and remarks allow us to reduce a combinatorial map using either con-

traction or removal kernels. Starting from an initial combinatorial map, encoding for example
a 4-connected sampling grid, we can apply a sequence of contraction or removal operations
defined by kernels to obtain a sequence of reduced combinatorial maps. Such a sequence con-
stitute an explicit encoding of the combinatorial pyramid. However, we have shown [5] that
the whole pyramid may be encoded by storing:

1. For each dart of the initial combinatorial map, the maximal level to which it survives in
the pyramid plus one.

2. the operation (contraction or removal) applied at each level.

This encoding constitutes an implicit encoding of the pyramid. This encoding provides
a compact representation of the pyramid which allows to retrieve efficiently most of its fea-
tures [5]. For example, within the segmentation framework, the retrieval of the combinatorial
map encoding a partition at a given level of the pyramid is performed in a time proportional to
the length of the boundaries associated to this partition.

Let us consider a contraction kernel ¥ and a tree ¿ of ¥ . Using our construction scheme,
the label of the vertex corresponding to ¿ in the reduced combinatorial map is selected ran-
domly among the labels of the vertices of ¿ . This last property does not allow us to ensure
that two reconstructions of a given level of the pyramid from the implicit encoding will provide
combinatorial maps with identical labels of vertices.

This last point may be a drawback if we want to compute the different values associated to a
given vertex along the pyramid.We propose in the following section, a more efficient encoding
scheme based on the notion of kernel of darts rather than the usual notion of kernel of edges.

4 Rooted Kernels
Using a non rooted tree, a kernel is defined as a set of edges encoding a forest of a combina-
torial or its dual. Therefore, given any dart

%
of a kernel ¥ , the other dart of the same edge:��� % � should also belong to ¥ (see Figure 2, step 1).
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Figure 3: A rooted and a non rooted tree of a kernel.

Given a kernel ¥ and one edge �4,-� % � to be contracted, the basic idea of a rooted kernel is
to adds only one of the darts

%
and ��� % � to ¥ . The orientation of the edge provided by the darts

encodes a father-child relationship between the two vertices connected by �>,-� % � (Figure 3). If¥ is a contraction kernel, we assume that a dart
%

belonging to ¥ encodes the fact that �#,*� % �
is a child of � , �x��� % �0� in the hierarchy. For example, in Figure 3, the vertices � , �/?*�t�s� , �AEG�]�
and � , �/E�ZJ� are the child of � , �AEe?*� which contains the dart E�?¹
Æ���A?*�[���Ç
Æ���/EI�J� andZW
���AEIZJ� . In the same way given a removal kernel ¥ , a dart

%u& ¥ encodes the fact that7#,-� % � is a child of 7#,*�_��� % �s� .
Given a kernel ¥ , a rooted kernel ¥ } associated to ¥ must contain only one of the two darts

of each edge � , � % �I�\¥ . This last condition is however not sufficient to insure that a rooted
kernel defines a valid hierarchy. We must additionally requires that each vertex belonging to a
rooted tree has at most one father within this tree. This condition may be expressed as follows
within the combinatorial map formalism:

O If ¥ is a rooted contraction kernel:
$"%X& ¥ ½ �»,F� % �4�u¥ ½)È ? where ½ÊÉx½ denotes the

cardinal of the set.

O If ¥ is rooted removal kernel:
$"%�& ¥ ½ 7 , � % �"��¥ ½SÈ ?

The root of the tree is defined as the vertex having children within the tree but no father. In
other word, if ¥ is a rooted contraction kernel, a vertex �»,-� % � is the root of a tree if and only
if: ½ � , � % �v�Ë¥ ½ 
£g and Ì % } & ¥ ½ ��� % }�� & � , � % �

For example, using Figure 3, the rooted contraction kernel is defined by ¥Í
�MS?J�FEIZR�FEG�D�Yc�[ÎSQ and we have �Ï,*�/E�ZJ�#�9¥ 
�MSEIZ�Q . The vertex �Ï,-�/E�ZJ� belongs thus to one tree of the
contraction kernel but is not the root of this tree since ½ � , �AEIZJ�»�Ð¥ ½ �
dg . On the other hand,� , �/E�?-�>�9¥ 
fg while ���/?*�e
LEe? & � , �AEe?*� with ? & ¥ . The vertex � , �AEe?*� is thus the
root of one tree of ¥ . Note that that same considerations hold with a rooted removal kernel by
simply replacing the permutation � by the permutation 7 .

A rooted kernel may thus be considered as an usual kernel on which we have selected a
root for each tree of the forest and selected the darts encoding the father-child relationships
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accordingly. Therefore, all results obtained for usual kernels [4, 3] may be easily adapted for
rooted ones. We have especially the following properties:

1. Any rooted kernel ¥ may be decomposed into a family of rooted kernels ¥W�F� É~É~É ��¥ · .
2. Given a rooted contraction (resp. removal) kernel ¥�� defined on a combinatorial map 	 ,

if 	�� denotes the reduced combinatorial map deduced from 	 and ¥�� and ¥ ( denotes a
rooted contraction (resp. removal) kernel ¥ ( defined on 	Ñ� , the set of darts ¥¨
£¥��s��¥ (
is a rooted contraction (resp. removal) kernel of 	 .

These two properties allow us to decompose a kernel into several sub kernels or on the
contrary to group several kernels into one. The size of the kernels used in the pyramid is often
application dependent. For example, using the reduction scheme defined by Haximusa [9],
the depth of the trees of a contraction kernel is at most one. Using such a reduction scheme
the reduction of a combinatorial map requires the application of many small kernels. The
above properties show us that the contracted edges encoded by these kernels may be grouped
into a single equivalent contraction kernel whose reduction will provide the same reduced
combinatorial map. Moreover the use of rooted kernels allows us to ensure that the labels of
the vertices, dual vertices and edges will be the same using either a sequence of small kernels
or an equivalent one. We can therefore use this property to decrease the height of the pyramid
by removing intermediate levels. On the contrary, a single reduction step performing too many
operations simultaneously may be decomposed into several kernels which induce several levels
in the pyramid.

The implicit encoding of a combinatorial pyramid with rooted kernels is performed by
attributing signed levels to darts: By convention all the darts with a level Ò z or E z belong to a
non rooted kernel defined at level

z
while only the darts whose level is equal to Ò z belong to

the corresponding rooted kernel. The absolute value of the level of a dart corresponds thus to
the usual level defined within the implicit encoding of a pyramid. The sign attribute added to
the function level allows us to distinguish rooted from non rooted kernels.

5 Conclusion
In this paper, we have defined the notion of rooted kernels and proposed an encoding of such
kernels within the combinatorial pyramid framework. Rooted kernels provide an elegant tool
to fix the label of the cells at any level of the pyramid. Such a feature may be a decisive
advantage in any application which requires an encoding of the different attributes associated
to a cell (vertex, edge or dual vertex) along the pyramid. The advantages of the combinatorial
pyramid framework such as the encoding of the adjacency and inclusion relationships between
regions at any levels of the pyramid are preserved by this new framework.
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