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a b s t r a c t 

An efficient texture modeling framework based on Topological Attribute Patterns (TAP) is presented con- 

sidering topology related attributes calculated from Local Binary Patterns (LBP). Our main contribution is 

to introduce new efficient mapping mechanisms that improve some typical mappings for LBP-based op- 

erators in texture classification such as rotation invariant patterns ( ri ), rotation invariant uniform patterns 

( riu 2), and Local Binary Count (LBC). Like them, the proposed approach allows contrast and rotation in- 

variant image description using more compact descriptors by projecting binary patterns to a reduced fea- 

ture space. However, its expressiveness, and then its discrimination capability, is higher, since it includes 

additional information, related to the connected components of the binary patterns. The proposed map- 

ping, evaluated and compared with different popular mappings, validates the interest of our approach. 

We then develop Complemented Patterns of Topological Attributes (CTAP) that generalize TAP model and 

exploit complemented information to further enhance its discrimination capability, and evaluate it on 

different texture datasets. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

For two decades, Local Binary Patterns (LBP) [1] have been ex-

ensively used for texture analysis, an important area of computer

ision. Their decisive advantages are their low computational cost

nd their invariance to contrast changes, which made them attrac-

ive not only to texture recognition, but also to many other areas

f computer vision. 

The presented work consists of three main contributions for LBP

pproach. First, a family of novel mappings T AP A is presented by

onsidering topology-related attributes extracted from binary pat-

erns. Second, we propose a simple yet efficient mapping T AP A ,t ,
n improved version of the first ones, that allows to improve their

iscrimination power in complemented schemas while reducing

he curse of dimensionality of the feature space. The two proposed

appings do not increase significantly the computational cost of
� This paper has been recommended for acceptance by Dr. Y. Liu. 
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asic LBPs. They extend and improve several typical mappings such

s riu 2 or LBC, and are also compatible (and then can be com-

ined) with most of the other variants. Third, we investigate the

roposed mappings in complemented frameworks combining with

 LBP variant to construct an efficient descriptor that is comparable

o recent advances in texture classification. 

The remaining of this paper is organized as follows. The next

ection recalls LBP works more specifically related to our work.

ection 3 presents a new mapping mechanism, developed from

he preliminary work [2] . Section 4 presents an application of our

apping model to LBP variants for effective texture recognition.

ection 5 is a comparative evaluation of the different descriptors

erived from our models. 

. Related works 

.1. General form of LBP 

Local Binary Patterns are introduced in a generic form in [3] as

 binary code to present the local structure of a texture image by

onsidering the center pixel and its P neighbors sampled on the

entered circle of radius R . The sample values can be calculated by

nterpolation. For a scalar valued image I , the general form of the

http://dx.doi.org/10.1016/j.patrec.2016.06.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2016.06.003&domain=pdf
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Fig. 1. TAP approach. 
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LBP encoding is defined as follows, for every pixel p : 

LBP P,R (p ) = 

P−1 ∑ 

i =0 

s (I(q i ) − I(p ))2 

i , (1)

where the { q i } represent the P points sampled on the circle of cen-

ter p and radius R , and 

s (x ) = 

{
1 , x ≥ 0 

0 , otherwise. 
(2)

2.2. Mapping of the LBP labels 

In practice, the basic LBP labels are not much used because

of the high dimensionality of the descriptor when the number of

neighbors is large. They are projected into a limited-dimensional

space based on a mapping mechanism. 

The circular nature of the neighborhood justified the definition

and use of local binary uniform patterns that is the most popular

mapping of LBP labels. A LBP is said uniform when the number of

bit-transitions (1–0 or 0–1) in its binary chain is at most 2. Uni-

form LBP based encodings (denoted LBP u 2 ) consist in discarding

non uniform patterns in the global representation. 

Another important notion related to the circular coding is the

rotation invariant LBP, defined as: LBP ri 
P,R 

= min 

0 ≤i<P 
{ ROR ( LBP P,R , i ) } ,

where ROR ( x , i ) is the right circular bit-wise shift of i bits on the

P -bit number x . The rotation invariant form of uniform patterns

(denoted LBP riu 2 ), has shown impressive results for texture classifi-

cation. 

Zhao et al. [4] introduced Local Binary Count (LBC), inspired

from [5] , as an alternative mapping for LBP patterns. It discards

most of the structural information of LBP by merely counting the

number of 1s in the binary code. Good results have been reported

on rotation invariant texture classification using statistics of LBC

features. 

LBP mappings based on uniform patterns ignore all the geom-

etry of non-uniform patterns that can bring important informa-

tion about textural structures. Several authors have dealt with non-

uniform patterns to enhance the representation power of LBP riu 2 .

Liao et al. [6] and then Bianconi et al. [7] proposed to use dataset

dependent dominant patterns. Nanni et al. [8] used random sub-

space to train features based on non-uniform patterns. Zhou et al.

[9] combined non-uniform patterns by analyzing their structure

and occurrence probability. Fathi and Naghsh-Nilchi [10] encoded

the patterns having 4 transitions of bit (0–1 or 1–0) like riu 2 pat-

terns by counting their number of 1s. The other patterns are en-

coded by considering their number of bit transitions. 

2.3. LBP-based variants 

The basic LBP having several limitations, such as small spa-

tial support region, loss of local textural information, rotation

and noise sensitivities, a lot of LBP variants [11] have been in-

troduced. Different neighborhoods, such as elliptical [12] , three-

patch or four-patch approaches [13] have been employed to exploit

anisotropic information. In encoding step, three values {−1 , 0 , 1 }
are used in Local Ternary Patterns [14] to address the issue of LBP

instability on near constant image areas. Multi-structure approach

[15] is considered to represent information at larger scales. Exploit-

ing non-uniform patterns [2,6,8–10] is introduced to capture more

useful textural information. Guo et al. [16] used a complementary

component related to the magnitude of the differences. In another

work, Guo et al. [17] proposed to incorporate variance as a local

contrast measure into LBP histogram to take into account comple-

mentary information ignored in LBP encoding. Nguyen et al. then

developed this approach by introducing Statistical Binary Patterns
SBP) [18] that explore different order moments. In [19] , the dis-

riminative patterns are selected based on a three-layered learn-

ng framework. A linear model based descriptor is introduced in

20] to take into account the microscopic configuration and lo-

al structures. Nanni et al. [21] reported a comparison for extract-

ng features given the co-occurrence matrix using region-based ap-

roaches. In [22,23] , a more general class of LBP-based methods,

amely Histograms of Equivalent Patterns, has been developed. 

. Topological Attribute Patterns 

.1. Topology related attributes 

The local descriptors used by our texture model embed and

eneralize several rotation invariant descriptors, including uniform

atterns and local binary count. They are based on a family of nu-

erical attributes that are calculated on the original LBP. Consider

he support of LBP P , R as a set of P points on a circle, where two

onsecutive points are said adjacent (see Fig. 1 ). Topological infor-

ation can then be extracted from the LBP using the connected

omponents (circular runs) of 1s in the pattern. We will consider

he following attributes: 

• Number of connected components of 1s (#) 
• Length of the largest run of 1s (M) 
• Length of the smallest run of 1s (m) 

All these attributes are rotation invariant. # is a topological

easure, whose importance in the characterisation of shape is at-

ested by a number of works in digital topology, in particular in

he detection of critical points in thinning algorithms [24] . The uni-

orm patterns correspond to # = 1 or 0. M and m can be seen as

xtensions of the uniform pattern values to non uniform patterns.

ig. 1 illustrates a non-uniform binary pattern (10111010) of 8 bits;

ith # = 3, M = 3 , m = 1 . 

These attributes are not independent; all configurations of val-

es are not possible and must respect the following constraints: 

1. m ≤ M 4. if # = 1, 1 ≤ m = M ≤ P

2. 0 ≤ # ≤ � P/ 2 � 5. if # > 1 , 1 ≤ M ≤ P − 2# + 1 

3. if # = 0, m = M = 0 6. if # > 1 , 1 ≤ m ≤ � P/ # � - 1 

.2. Texture modeling 

The purpose of this work is to evaluate the contribution of

he different topological attributes in texture description. The main

dea is to propose a series of mappings for encoding binary pat-

erns. First, we present TAP A 
P,R 

mappings that have been firstly con-

idered in a preliminary paper [2] . Second, we propose a new se-

ies of mappings, so called TAP A ,t 
P,R 

, that are more efficient than the

revious ones in complemented schemas. 
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Table 1 

Number of different labels in TAP A P,R mapping. 

A # M m M# m# Mm Mm# 

TAP A 8 , 1 5 9 9 18 14 15 22 

TAP A 16 , 2 9 17 17 66 36 59 125 

TAP A 24 , 3 13 25 25 146 62 135 353 
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Table 2 

Number of different labels in TAP A ,t 
P,R 

mappings ( t ≥ 2). 

P TAP M , t TAP m , t TAP Mm , t 

8 10 10 16 

16 18 18 60 

24 26 26 136 

t  

o  

c  

c

m

3

3

 

b  

p

 

 

 

 

3

 

m

 

 

 

 

 

 

i  

p  

I  

p  

c

3

 

(  

t  

i  

t  

t

χ
i =1 

1 2 

 

1 Note that {M, m} alone do not allow to distinguish uniform patterns, since the 

identity M = m can occur with several connected components. 
.2.1. TAP A 
P,R 

mappings 

Every version of the descriptor used in the experiments is re-

ated to a vector of r topological attributes A = (A 1 , . . . , A r ) (1 ≤ r

3). Basically, a texture is described by computing, for each pixel

 , the LBP and its vector of r attributes, denoted TAP A P,R ( LBP P,R (p )) ,

nd by calculating, for the whole image, the joint histogram of

AP A 
P,R 

. The total feature number of the TAP depends on P and

he chosen subset of attributes, but it is always much smaller

han 2 P , the number of different LBPs (see Table 1 ). In practice,

o reduce the computation time of the descriptor, we pre-compute

y simple enumeration a label table � which is a bijection from

AP A P,R ([[0 , 2 P − 1]]) to [[0 , N A ]] , where N A is the number of dis-

inct attribute vectors. Finally we represent a texture by a his-

ogram of labels: 

(l) = |{ p ;�( LBP P,R (p ) ) = l}| (3)

ig. 3 shows a texture image with its corresponding label images

nd label histograms for the different configurations of TAP A 
1 , 8 

. In

ddition, Fig. 4 shows images and label histograms corresponding

o TAP # Mm 

1 , 8 
for different images, from the same class and from dif-

erent classes. The visual (dis)similarity of histograms is apparent

n the figure. 

.2.2. TAP A ,t 
P,R 

mappings 

Although smaller than traditional LBPs, the number of labels

and then of histogram bins) can become practically too big (see

ab. 1 ) when all three attributes (M,m,#) are combined, with P =
6 or P = 24 . This will be particularly true when this mapping

s applied on complemented LBP-based variant (CLBP) (see also

able 3 ). 

To address this problem, instead of combining all three at-

ributes, we propose to consider only two attributes (M and m),

nd to use the last one (#) to highlight the most important

atterns. Let us recall that the most popular mapping mecha-

isms ( u 2, riu 2) use only uniform patterns. Fathi and Naghsh-Nilchi

10] extended the notion of uniform pattern to capture more sig-

ificant patterns. These patterns have a strong link to our # at-

ribute, a u 2 pattern having # ≤ 1 and an extended u 2 pattern

aving # ≤ 2. The fact that the most significant patterns have a

mall value of # suggests us using # attribute to select patterns of

 = Mm labels. The key idea is to project all patterns having more

han t connected components to a unique label: 

AP 

A ,t 
P,R = 

{
0 , If # > t 

TAP 

A 
P,R , otherwise. 

(4) 

bviously the difference between feature vector sizes using

AP Mm , t and TAP Mm 

P,R 
mappings is negligible since only one more

in is used if t ≥ 2 for discarding unimportant patterns. On the

ther hand, TAP Mm,t 
P,R 

allows to considerably reduce the feature

pace compared with TAP Mm # 
P,R 

. In addition, by considering only the

ore stable patterns based on # attribute, TAP Mm,t 
P,R 

mapping may

e more discriminant. In the same way, TAP M,t 
P,R 

and TAP m,t 
P,R 

can be

efined to highlight the more stable patterns using the # attribute.

ecause TAP M,t 
P,R 

, TAP m,t 
P,R 

and TAP Mm,t 
P,R 

simply become LBP riu 2 when

 = 1 , in this work we consider only t ≥ 2. Moreover, for TAP A ,t 

appings, A is just a subset of M,m, attribute # is not consid-

red anymore, then the number of TAP A , t labels is simply equal
o the number of TAP A label, plus one, independently on the value

f t . Table 2 presents the number of labels for TAP A ,t 
P,R 

mapping. It

an be seen that the dimensionality of the proposed mapping is

onsiderably reduced in comparison with the corresponding TAP A P,R 
apping. 

.3. Relation with previous works 

.3.1. Relation with run-length texture analysis 

Our proposed mappings share a similar point with [25] since

oth of them exploit run-length features for texture analysis. We

oint out the main differences between them as follows. 

• Our mapping works on a circular support of LBP, not directly

on the pixel values like [25] . 
• In [25] , a run-length is calculated in different directions and

takes a value as the number of adjacent pixels having a same

gray level. 
• In our mapping, we consider a set of run-lengths and extract

its attributes: #, M and m, not handled in [25] . 

.3.2. Relation with LBP-based methods 

We point out hereafter the relations between the proposed

appings and the classic mapping riu 2 

• When card (A ) ≥ 2 and ( # ∈ A ), TAP A P,R is a superset of LBP riu 2 
P,R 

patterns . In that case indeed, riu 2 patterns are distinguished, ei-

ther by the value of # and anyone among {M, m}. 1 Therefore,

for such combination of attributes A , TAP A P,R inherits the dis-

tinctive properties of LBP riu 2 
P,R 

, while containing more informa-

tion. In this sense, TAP A 
P,R 

generalizes LBP riu 2 
P,R 

. 

• When t = 1 , TAP M,t 
P,R 

, TAP m,t 
P,R 

and TAP Mm,t 
P,R 

are identical to LBP riu 2 

• When card (A ) = 1 or A = { M , m } , A and riu 2 are complemen-

tary. 

There is a strong link between TAP A ,t 
P,R 

and previous works aim-

ng at exploiting information from non-uniform patterns to im-

rove the texture descriptors. In particular TAP A , 2 
P,R 

are close to [10] .

n this work, the authors extended the notion of uniform pattern to

atterns having at most 4 transitions between 0–1 and 1-0, which

orresponds to # = 2 . 

.4. Texture classification 

For texture classification, we use Nearest Neighbor Classifier

NNC) to evaluate our descriptor on different datasets. The χ2 dis-

ance between histograms is classically used to measure the sim-

larity between two texture images [3] . If H 1 and H 2 are two at-

ribute label histograms, the χ2 -dissimilarity between the two tex-

ures is as follows. 

2 (H 1 , H 2 ) = 

N A ∑ (H 1 (i ) − H 2 (i )) 2 

H (i ) + H (i ) 
, (5)
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Table 3 

Number of histogram bins in the complemented texture descriptors, for the differ- 

ent configurations. 

A # M m M# m# Mm Mm# 

CTAP A 8 , 1 50 162 162 648 392 450 968 

CTAP A 16 , 2 162 578 578 8712 2592 6962 31250 

CTAP A 24 , 3 338 1250 1250 42632 7688 36450 249218 

Table 4 

Number of different labels in CTAP A ,t 
P,R 

mappings ( t ≥ 2). 

P CTAP M , M , t CTAP m , m , t CTAP Mm , M , t CTAP Mm , m , t 

8 200 200 320 320 

16 648 648 2160 2160 

24 1352 1352 7072 7072 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Multi circular supports. 

Fig. 3. First row: a texture image and its label images; Second row: zoom image, 

label histograms for the different configurations of attributes, with (P, R ) = (8 , 1) . 

For the best visualization, the label images are zoomed from a part corresponding 

to the red square of the texture image. 

Fig. 4. Texture images and their label images and histograms for TAP # Mm 
8 , 1 . The first 

row contains images of the same class, the second row contains images of different 

classes. 
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4. Texture descriptor based on TAP 

A ,t 
P,R 

mappings 

We investigate our proposed mapping compared with others on

LBP encoding [1] as well as on different LBP-based variants such as

Local Ternary Patterns (LTP) [14] , Complemented LBP (CLBP) [16] ,

Biological Filters (BF) [26] , Statistical Binary Patterns (SBP) [18] us-

ing single or multi circular support. 

4.1. Complemented descriptor using TAP A ,t 
P,R 

Inspired from Guo et al. [16] , we developed a complemented

framework for TAP A 
P,R 

in the preliminary work [2] . Accordingly,

the texture operator, denoted CTAP A P,R , is formed by the joint

histograms of CTAP_S A 
P,R 

(identical to TAP A 
P,R 

), CTAP_M 

A 
P,R 

and

CTAP_C P , R . Obviously, the number of histogram bins becomes

much larger. If N A is the dimension of TAP A P,R , the dimension of

CTAP A 
P,R 

will be 2 N 

2 
A . When card (A ) > 2 and P is large, the high

dimension of CTAP A 
P,R 

is a critical problem for the descriptor con-

struction and the recognition performance. Table 3 displays the

number of histogram bins for the different configurations. Clearly,

there are many cases where the very high dimension of the de-

scriptors prevents this method to be applied in practice, both for

computational limits and for irrelevance of the descriptors, due to

the sparsity of the histograms. This problem can be overcome by

addressing our new operator CTAP A ,t 
P,R 

that will be presented here-

after. 

As shown in Section 3 , TAP A ,t 
P,R 

allows to combine more at-

tributes without increasing significantly the dimensionality of the

feature space while improving discrimination power. We remark

that nothing prevents to use different mappings in the CLBP model.

On the other hand, it is well-known that the CLBP_S component is

more discriminative than CLBP_M. Therefore, in order to maintain

a reasonable size of descriptor, we prefer to use TAP Mm,t 
P,R 

mapping

to encode the first component, and TAP M,t 
P,R 

or TAP m,t 
P,R 

mapping for

the second one. Let us denote “/” and “–” as join and concatenation

operations respectively. We may for example consider the follow-

ing complemented descriptor: 

CTAP 

Mm,M,t 
P,R = CLBP _ S Mm,t 

P,R 
/ CLBP _ M 

M,t 
P,R 

/ CLBP _ C P,R (6)

Table 4 shows the dimensionality of CTAP A ,t descriptors. Obvi-

ously, compared with Table 3 , the dimensionality is significantly

reduced in complemented schemas by using CTAP A ,t . 

4.2. Robust texture descriptor using CTAP A ,t 
P,R 

Using the proposed mappings, we can exploit more informa-

tion from non-uniform patterns. However, our mappings are also

sensitive to noise since a simple change of LBP code can lead to
mportant modifications of its attributes. In order to remedy this

ssue, our solution is to combine with a noise tolerant LBP-based

ariant. We introduce hereafter a robust texture framework for

hese mappings based on a recent LBP-based variant (SBP [18,27] )

o show the interest of our mapping compared to others on noisy

exture images. We note that this framework can be similarly ap-

lied for other noise insensitive LBP-based variants. The principle

f SBP is to separate a given texture image into different maps that

re robust against noise and uniform regions in images consider-

ng different maps of moment calculated from a local support. In

his paper, we address a simple version of SBP [27] based on two

rst order moments: mean and variance. For each filtered image,

TAP Mm,M,t 
P,R 

is used to explore its texture feature. The descriptor is

btained by concatenating the feature vectors of filtered images

nd is denoted as SBP_CTAP Mm,M,t 
P,R 

. Moreover, TAP and CTAP ex-

loit topological attributes considered in a single circular support.

any authors pointed out that a multi-scale approach can sig-

ificantly improve the performance of LBP-based operator. In our

ork, M_SBP_CTAP Mm,M,t 
P,R 1 : R 2 

is constructed from SBP_CTAP Mm,M,t 
P,R 

on

ifferent circular supports ( P , R ) where R varies by step one from

 1 to R 2 (see Fig. 2 ). 

. Experiments 

.1. Datasets 

The effectiveness of the proposed method and the impact of

he different attributes were evaluated on different representative
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Table 5 

Comparison between our mapping TAP Mm , 2 and 

other mappings: riu 2 and LBC considering differ- 

ent LBP-based encodings on Outex TC10 dataset. The 

configuration (P, R ) = (24 , 3) is used. 

Encoding method TAP Mm , 2 riu 2 LBC 

CLBP [16] 99.76 98.93 98.72 

LTP [14] 94.92 94.77 90.08 

BF [26] 98.52 98.99 96.35 

SBP 2 [18] 98.93 98.44 96.85 
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atabases: Outex [28] , CUReT [29] , UIUC [30] , 2D Hela [31] and

TH-TIPS 2b [32] 2 . 

Concerning the Outex database, we used the two popular test

uites: TC10 and TC12 that are designed for texture classification

nder different orientations and illuminations. 

Two databases CUReT, UIUC use a same experimental protocol

16,30,33] using N random images for each class to form a learning 

et. The classification rate is reported as the mean value together

ith over 100 runs. N is respectively set to 46 and 20 for CUReT

nd UIUC datasets. The 2D Hela dataset, which consists of 862 sin-

le cell images, is decomposed into 10 classes where each class

ontains more than or equal to 80 images. Following [31] , 80% im-

ges of dataset are used for training and the rest is used for testing,

he accuracy rate is obtained using a 5-fold cross validation. For

TH-TIPS 2b, we followed the training and testing scheme used in

32] . Experiments were done by training on three samples; testing

s always performed on unseen samples only. 

.2. Parameter setting 

TAP A 
P,R 

was evaluated and compared with different mappings 

n Outex dataset in the same condition using the most commonly

sed single scale (P, R ) = (24 , 3) . 

For complemented schemas, we choose the improved version

_SBP_CTAP Mm,m,t 
16 , 2:12 

that represents a fair trade-off between dis-

rimination power and calculation performance. In order to have

 reasonable feature vector length, only 16 neighbors are con-

idered at each scale that varies from 2 to 12. The TAP Mm,t 
P,R 

and

AP M,t 
P,R 

mappings are used respectively for encoding of CLBP_S and

LBP_M components, where t is set to 2 empirically to give the

est results. For SBP approach [18] , the default local support {(1,

), (2, 8)} is used to calculate moments. 

.3. Evaluation of TAP A P,R and TAP A ,t 
P,R 

mappings 

The following evaluations of the proposed mapping are ap-

lied on Outex test suites using different encodings. Although it

resents only the results on the configuration (P, R ) = (24 , 3) , we

ave tested on different configurations of ( P , R ) and the obtained

onclusions are the same. 

.3.1. LBP encoding 

Table 7 compares our proposed mapping (TAP A 
P,R 

) with the dif-

erent popular mappings such as LBP riu 2 [3] , LBP ri [3] , LBP NT [10] ,

LBP [6] and LBC [4] on Outex dataset using LBP encoding [3] . We

an make the following comments. 

• The three attributes have distinct properties. Considered alone

(rows 1 to 3 of Table 7 ), their performance is comparable to

LBP riu 2 
P,R 

, except for #, whose expressiveness is too weak if taken

alone. 
• Jointly considering 2 attributes (rows 4 to 6), the results are

always better than LBP riu 2 
P,R 

, with an average improvement which

can reach 6%. 
• Using all three attributes doesn’t improve the results compared

with a combination of two attributes. This can be explained

by the fact that in this case, the number of labels is too high,

which makes the histogram too sparse and reduces the effec-

tiveness of descriptor. 
• Regarding the comparison with state-of-the-art LPB mappings,

our mapping TAP Mm 

P,R 
is comparable with DLBP and outperforms

other mappings. 
2 Our code is available and can be downloaded from this address: http:// 

pnguyen.univ-tln.fr/download/TopoLBP. 

w  

n  

t  

l

• Regarding the comparison between the proposed mappings, the

performances decrease from TAP A 
P,R 

to TAP A ,t 
P,R 

. This proves that

the non-uniform patterns improve the discrimination power of

the descriptor. 

.3.2. LBP-based encodings 

Table 5 presents the results of our mapping on different LBP-

ased encodings such as: LTP, CLBP, SBP, BF compared with other

appings: LBC and LBP riu 2 . It could be seen that the proposed

apping make different encoding schemes more robust than us-

ng typical mappings. 

.4. Evaluation of proposed descriptor based on CTAP Mm , M , t 

.4.1. Robust discrimination power 

This section evaluates our proposed descriptors in Section 4.2 :

_SBP_CTAP Mm,M, 2 
16 , 2:12 

. The dimension of the considered descriptor

s 2160 × 11 = 23760 . For a fair evaluation, we compare with

he same frameworks but using different existing mappings: riu 2

nd LBC . These descriptors are denoted respectively as follows:

_SBP_CLBP riu 2 
16 , 2:12 

, and M_SBP_CLBC 16, 2: 12 . The evaluation is car-

ied out on different datasets: CUReT, UIUC, 2D Hela and KTH-TIPS

b. Table 6 presents our results compared with the best results of

eferenced methods on these datasets. 

For UIUC, CuRET and 2D Hela datasets, the results are reported

y mean ± std over 100, 100 and 5 random selections respectively.

xcept for the 2d Hela dataset, where the results are obtained us-

ng a linear SVM classifier to be comparable with other methods,

he NNC is used as classifier for other datasets. In general, it can be

een from this table, our proposed descriptor gives very good re-

ults on these datasets. In addition, the proposed mapping clearly

ontributes to the discriminative power of descriptor framework

ompared to other mappings: riu 2 and LBC. 

For UIUC and CuRET datasets, our descriptor clearly outper-

orms recent state-of-the-art results. It also gives good result on

D Hela dataset. 

For KTH-TIPS 2b dataset, we compare with different methods:

BP riu 2 [3] , VZ-MR8 [34] , VZ-Joint [33] , CLBC [4] , CLBP [16] and

I/RD/CI [35] . As it can be seen, our framework significantly out-

erforms the LBP-based algorithms. Recently, Khan et al. have sig-

ificantly improved the state-of-the-art result (70.6%) on KTH-TIPS

b dataset. However Khan et al. used a complex combination of

any different texture descriptors: CLBP [16] , WLD [36] , BGP [37] ,

PQ [38] and BSIF [39] to improve the discrimination power. Using

ultiscale approach, our descriptor (M_SBP_CTAP Mm , M , 2 ) still out-

erforms this result on KTH-TIPS 2b dataset, by reaching 71.28%.

n the other hand, with a same texture framework, our map-

ing allows clearly to improve the discrimination power compared

ith other mappings: riu 2 (70.71%), (LBC 65.49%). For other tech-

iques, Cimpoi et al. [40] set a new state-of-the-art result based on

he combination between Improved Fisher Vector (IFV) and a deep

earning technique (DeCAF). 

http://tpnguyen.univ-tln.fr/download/TopoLBP
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Table 6 

Experimental results on CUReT, UIUC, 2D Hela and KTH-TIPS 2b datasets. 

Method CUReT ( N = 46) UIUC ( N = 20) 2D Hela KTH-TIPS 2b ( N train = 3) 

M_SBP_CTAP Mm,M, 2 
16 , 2:12 

98.46 ± 0.37 96.41 ± 0.89 92.30 ± 0.51 71.28 

M_SBP_CLBP riu 2 
16 , 2:12 98.21 ± 0.36 95.74 ± 0.91 91.38 ± 1.6 70.71 

M_SBP_CLBC 16, 2: 12 97.59 ± 0.35 94.18 ± 1.14 92.30 ± 0.9 65.49 

SBP_CTAP Mm,M, 2 
16 , 3 

97.31 ± 0.44 95.54 ± 0.66 69.02 

CLBP [16] 95.86 91.19 67.42 

BF+CLBP [26] 95.01 93.78 

DNS+LBP 24, 3 [41] 94.52 

Xu et al. [42] 92.74 

BRINT2_S_M (MS9) [43] 97.86 

Lazebnik et al. [30] 72.5 96.03 

EQP [44] 92.0 

EQP β [44] 92.4 

LTP [14] 91.4 

DLBP [6] 90.0 

dis(S+M) ri 
N,R [19] 95.4 

NI/RD/CI [35] 65.0 

VZ-Joint [33] 98.03 97.83 60.7 

Khan et al. [45] 70.6 

Timofte et al. [46] 66.3 

DeCAF [40] 70.7 

IFV [40] 99.6 97.0 69.3 

Table 7 

Comparison between the basic TAP A and different mappings 

such as LBP riu 2 , LBP ri , LBC, LBP NT , DLBP, etc. on Outex dataset 

using LBP encoding. 

Row number Method (P,R) = (24,3) 

TC10 TC12 t TC12 h 

1 TAP # 76.98 67.50 58.19 

2 TAP M 95.89 88.10 86.37 

3 TAP m 96.48 86.20 80.37 

4 TAP M# 96.77 88.75 84.33 

5 TAP m # 97.47 89.28 85.00 

6 TAP Mm 98.12 92.22 87.20 

7 TAP Mm # 97.19 90.93 86.71 

8 TAP M , 2 95.05 87.06 83.38 

9 TAP m , 2 95.81 84.91 80.95 

10 TAP Mm , 2 96.95 88.56 85.30 

11 TAP M , 3 95.05 87.06 84.95 

12 TAP m , 3 96.90 85.83 80.44 

13 TAP Mm , 3 96.95 88.56 85.30 

14 LBP riu 2 [3] 94.6 84.0 80.5 

15 LBP NT [10] 96.07 86.69 82.11 

16 LBP ri 91.72 88.26 88.47 

17 DLBP [6] 98.1 91.6 87.4 

18 LBC [4] 91.22 83.94 82.34 
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Can we extend this framework to other applications? 
5.4.2. Robustness against noise 

As mentioned in Section 4.2 , the proposed descriptor is robust

against noise. The key idea is to take into account the extracted

maps that is insensitive to noise. We consider the images from

UIUC dataset by adding Gaussian noises at different levels (SNR:
Table 8 

Noise tolerance on UIUC datasets. 

Method SNR = 05 SNR = 

M_SBP_CTAP Mm,M, 2 
16 , 2:12 

95.50 ± 0.91 96.23 ±
M_CLBP riu 2 

16 , 2:12 94.71 ± 0.87 95.35 ±
M_CLBC 16, 2: 12 93.08 ± 1.00 93.39 ±
CLBP [16] 67.54 81.54 

CRLBP( α = 1 ) [47] 79.20 88.57 
ignal to noise ratio). Table 8 compares our descriptor with the

ame frameworks using different mappings: riu 2 and LBC and with

ther methods. Although three descriptors based on SBP are more

obust against noise than two other methods thanks to noise in-

ensitivity of SBP, the proposed descriptors is more powerful than

sing two mappings riu 2 and LBC. 

. Discussion and conclusive remarks 

We have introduced a versatile and efficient framework for tex-

ure modeling and recognition, based on a family of rotation in-

ariant attributes calculated on local binary patterns. It extends ex-

sting rotation invariant LBP based coding, including riu 2 and LBC,

hile enhancing their expressiveness and improving their discrim-

nation capability. Through an extensive evaluation on five recent

exture datasets, the impact of the different attributes themselves

as been assessed, as well as their relevance in combination with

ther LBP variants. 

While most configurations of attributes outperform state-of-

he-art LBP based texture classification methods, several questions

emain to enhance the efficiency of this framework: 

• Are there other relevant rotation invariant attributes? We

also experimented a fourth attribute: a dissymmetry measure,

which did not improve the recognition results. 
• How to combine the attributes to optimize the trade-off be-

tween recognition rate and computational performance? 
•

10 SNR = 15 SNR = 30 

0.87 96.24 ± 0.78 96.37 ± 0.66 

0.91 95.78 ± 0.83 95.66 ± 0.65 

0.94 93.99 ± 1.11 94.57 ± 0.65 

87.56 90.38 

92.74 93.07 
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These questions should be addressed in future works. 3 
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